Jump to content

Tris

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Adabow (talk | contribs) at 05:40, 4 May 2013 (→‎Uses). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Tris
Chemical structure of tris
Names
IUPAC name
2-Amino-2-hydroxymethyl-propane-1,3-diol
Other names
TRIS, Tris, Tris base, Tris buffer,
TrizmaTM, Trisamine, THAM,
Tromethamine, Trometamol, Tromethane, Trisaminol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.969 Edit this at Wikidata
KEGG
RTECS number
  • TY2900000
UNII
  • InChI=1S/C4H11NO3/c5-4(1-6,2-7)3-8/h6-8H,1-3,5H2 checkY
    Key: LENZDBCJOHFCAS-UHFFFAOYSA-N checkY
  • InChI=1/C4H11NO3/c5-4(1-6,2-7)3-8/h6-8H,1-3,5H2
    Key: LENZDBCJOHFCAS-UHFFFAOYAN
  • OCC(N)(CO)CO
Properties
C4H11NO3
Molar mass 121.136 g·mol−1
Appearance White crystalline powder
Density 1.328g/cm3
Melting point >175-176 °C (448-449 K)
Boiling point 219 °C (426 °F; 492 K)
~50 g/100 mL (25 °C)
Acidity (pKa) 8.07
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Irritant
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability (red): no hazard codeInstability (yellow): no hazard codeSpecial hazards (white): no code
2
Flash point Non-flammable
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Tris (also known as THAM) is an abbreviation of the organic compound known as tris(hydroxymethyl)aminomethane, with the formula (HOCH2)3CNH2. Tris is extensively used in biochemistry and molecular biology.[1] In biochemistry, Tris is widely used as a component of buffer solutions, such as in TAE and TBE buffer, especially for solutions of nucleic acids. It is a primary amine and thus undergoes the reactions associated with typical amines, e.g. condensations with aldehydes.

Buffering features

Tris has a pKa of 8.07 at 25 °C, which implies that the buffer has an effective pH range between 7.1 and 9.0.

Buffer details

  • The pKa declines approximately 0.03 units per degree Celsius rise in temperature.[2][3]
  • Silver-containing single-junction pH electrodes (e.g., silver chloride electrode) are incompatible with Tris (Ag-tris precipitation clogs the junction). Double-junction electrodes are resistant to this problem, and non-silver containing electrodes are immune.
  • Making buffer solutions by neutralizing TrisHCl requires attention to the attendant changes in ionic strength.

Buffer inhibition

  • Tris inhibits a number of enzymes,[4][5] and therefore it should be used with care when studying proteins.

Preparation

Tris is prepared industrially in two steps from nitromethane via the intermediate (HOCH2)3CNO2. Reduction of the latter gives tris(hydroxymethyl)aminomethane.[6]

Uses

The useful buffer range for tris (7-9) coincides with the physiological pH typical of most living organisms. This, and its low cost, make tris one of the most common buffers in the biology/biochemistry laboratory. Tris is also used as a primary standard to standardize acid solutions for chemical analysis.

Tris is used to increase membrane permeability of cell membranes.[7]

Medical

Tris (usually known as THAM in this context) is used as alternative to sodium bicarbonate in the treatment of metabolic acidosis.[8]

See also

References

  1. ^ Gomori, G., Preparation of Buffers for Use in Enzyme Studies. Methods Enzymology., 1, 138-146 (1955).
  2. ^ El-Harakany, A.A. (1984). "Dissociation constants and related thermodynamic quantities of the protonated acid form of tris-(hydroxymethyl)-aminomethane in mixtures of 2-methoxyethanol and water at different temperatures". J. Electroanal. Chem. 162 (1–2): 285–305. doi:10.1016/S0022-0728(84)80171-0. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. ^ Vega, C.A. (1985). "Thermodynamics of the Dissociation of Protonated Tris(hydroxymethy1)aminomethane in 25 and 50 wt % 2-Propanol from 5 to 45 °C". J. Chem. Eng. Data. 30 (4): 376–379. doi:10.1021/je00042a003. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  4. ^ Desmarais, WT (2002). "The 1.20 Å resolution crystal structure of the aminopeptidase from Aeromonas proteolytica complexed with Tris: A tale of buffer inhibition". Structure. 10 (8): 1063–1072. doi:10.1016/S0969-2126(02)00810-9. PMID 12176384. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  5. ^ Ghalanbor, Z (2008). "Binding of Tris to Bacillus licheniformis alpha-amylase can affect its starch hydrolysis activity". Protein Peptide Lett. 15 (2): 212–214. doi:10.2174/092986608783489616. PMID 18289113. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  6. ^ Markofsky, Sheldon B. (2000). "Nitro Compounds, Aliphatic". doi:10.1002/14356007.a17_401. {{cite journal}}: Cite journal requires |journal= (help)
  7. ^ Irvin, R.T.; MacAlister, T.J.; Costerton, J.W. (1981). "Tris(hydroxymethyl)aminomethane Buffer Modification of Escherichia coli Outer Membrane Permeability". J. Bacteriol. 145 (3): 1397–1403.
  8. ^ Kallet, RH (2000). "The treatment of acidosis in acute lung injury with tris-hydroxymethyl aminomethane (THAM)". American Journal of Respiratory and Critical Care Medicine. 161 (4): 1149–1153. PMID 10764304. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)