Jump to content

User:Tomruen/0/1/2-polytope

From Wikipedia, the free encyclopedia

A 0/1/2-polytope or ternary polytope is the convex hull of a set of vertices {-1,0,+1}d. A d-dimensional polytope requires at least d+1 vertices, and can not all exist in the same hyperplane.

Regular polytope examples are family of hypercube and dual orthoplex. Taking (n+1) of 2n vertices of the n-cube makes a simplex.

Hanner polytopes are examples that recursively mix prism and bipyramid operators.

A subset include the 0/1-polytopes with coordinates {0,1}d.

Operator polytopes

[edit]

A recursive class of 0/1/2 polytopes can be made by recursive operators of products, sums, and joins. Johnson defined product, sum, and join operators for constructing higher dimensional polytopes from lower. Johnson defines ( ) as a point (0-polytope), { } is a line segment defined between two points (1-polytope). Many vertex figures for uniform polytopes can be expressed with these operators.

A product operator, ×, defines rectangles and prisms with independent proportions. dim(A×B) = dim(A)+dim(B).

For instance { }×{ } is a rectangle, symmetry [2], (a lower symmetry form of a square), and {4}×{ } is a square prism, symmetry [4,2] (a lower symmetry form of a cube), and {4}×{4} is called a duoprism in 4-dimensions, symmetry [4,2,4] (a lower symmetry form of a tesseract).

A sum operator, +, makes duals to the prisms. dim(A+B) = dim(A)+dim(B).

For instance, { }+{ } is a rhombus or fusil in general, symmetry [2], {4}+{ } is a square bipyramid, symmetry [4,2] (lower symmetry form of a regular octahedron), and {4}+{4} is called a duopyramid in 4-dimensions, symmetry [4,2,4] (a lower symmetry form of the 16-cell).

The product and sum operators are related by duality: !(A×B)=!A+!B and !(A+B)=!A×!B, where !A is dual polytope of A.

A join operator, ∨, makes pyramidal composites, orthogonal orientations with an offset direction as well, with edges between all pairs of vertices across the two. dim(A∨B) = dim(A)+dim(B)+1.

The isosceles triangle can be seen as ( )∨{ }, symmetry [ ], and tetragonal disphenoid is { }∨{ }, symmetry [2]. A square pyramid is {4}∨( ), symmetry [4,1]. A 1 branch is symbolic, representing [4,2,1+], or , having an orthogonal mirror inactivated by an alternation.

The join operator is self-related by duality: !(A∨B)=!A∨!B. More generally any expression of these operators can be dualed by replacing polytopes by dual, and swapping product and sum operators.

Polytopes can be constructed with:

  1. Products are orthotopes (prisms) with 2n coordinates (±1,±1,±1,...,±1), being a hypercube.
  2. Sums are orthoplexes (bipyramids, duopyramids or fusils) Coordinates ([±1,0,0,...]) with 2n vertices: (±1,0,0,...,0), (0,±1,0,...,0), (0,0,±1,0,...,0), ... (0,...,0,0,±1).
  3. Products and sums are Hanner polytopes (list)
  4. Join are simplexes (pyramids and disphenoids). Regular simplices exists as integer coordinates going up one dimension. ([1,0,0,...,0]) means n vertices: (1,0,0,...,0), (0,1,0,...,0), (0,0,1,0...,0), ... (0,...0,0,1), being one nonnegative simplex facet of a n-orthoplex.

As well alternation cuts vertices in half for polytopes with even-sided faces.rectification creates new vertices mid-edge. However the duals of these polytopes are not generally 0/1/2 polytopes.

1D

[edit]
Construction Name Symmetry Order Coordinates Vertices f0 Dual
{ } Segment [ ] 2 (±1) 2 2 2 Self-dual
h{4} = {2} Segment [2] 4 ±(1,1) 2 2 2 Self-dual
( )∨( ) Segment [1]+ 1 (-1,-1), (+1,+1) 1+1 1 Self-dual
{ } Segment [1] 1 ([1,0]) 2 1 Self-dual

2D

[edit]
Construction Name Symmetry Order Coordinates Vertices f0 f1 Dual
{ }+{ } or r({ }×{ }) = {4} Diamond [4] 8 (±1,0), (0,±1) = ([±1,0]) 2+2 4 4 Square
{ }×{ } or r({ }+{ }) = {4} Square [4] 8 (±1,±1) 2×2 4 4 Diamond
{ }∨( ) Triangle [1,1] 2 ([1,0],0), (0,0,+1) 2+1 3 3 Self-dual
( )∨( )∨( ) = {3} Triangle [3,1] 2 ([1,0,0]) 3 3 3 Self-dual

3D

[edit]
Construction Name Symmetry Order Coordinates Vertices f0 f1 f2 Dual
{ }+{ }+{ } or {3,4} Octahedron [4,3] 48 ([±1,0,0]) 2×3 6 12 8 Cube
r{4,3} or r{3,4} Cuboctahedron [4,3] 48 ([±1,±1,0]) 12 12 24 14 Rhombic dodecahedron
{ }×{ }×{ } or {4,3} Cube [4,3] 48 (±1,±1,±1) 23 8 12 6 Octahedron
h{4,3} Tetrahedron [3,3] 24 half (±1,±1,±1) 4 4 6 4 Self-dual
s{2,4} or h{4,3} = {3,3} Rhombic disphenoid [2+,4] or [3,3] 8 or 24 (±(1,1),-1), (±(1,-1),1) 4 4 6 4 Self-dual
({ }×{ })∨( ) or {4}∨( ) Square pyramid [4,1] 8 (±1,±1,0), (0,0,+1) 2×2+1 5 8 5 Self-dual
{ }∨( )∨( ) Triangle pyramid [1,1,1] 2 ([1,0],0,0), (0,0,1,0), (0,0,0,1) 2+1+1 4 6 4 Self-dual
{ }∨{ } Digonal disphenoid [2,2,1] 8 ([1,0],0,0), (0,0,[1,0]) 2+2 4 6 4 Self-dual
( )∨( )∨( )∨( ) = {3}∨( ) Triangular pyramid [3,1,1] 6 ([1,0,0],0), (0,0,0,1) 3+1 4 6 4 Self-dual
( )∨( )∨( )∨( ) = {3,3} tetrahedron [3,3,1] 24 ([1,0,0,0]) 4 4 6 4 Self-dual

4D

[edit]
Construction Name Symmetry Order Coordinates Vertices f0 f1 f2 f3 Dual
{ }+{ }+{ }+{ } or {3,3,4} 16-cell [4,3,3] 384 ([±1,0,0,0]) 2×4 8 24 32 16 Tesseract
r{3,3,4} Rectified 16-cell or 24-cell [4,3,3] 384 ([±1,±1,0,0]) 4×6 24 96 96 24 Self-dual
r{4,3,3} Rectified tesseract [4,3,3] 384 ([±1,±1,±1,0]) 8×4 32 96 88 24
{ }×{ }×{ }×{ } or {4,3,3} Tesseract [4,3,3] 384 (±1,±1,±1,±1) 24 16 32 24 8 16-cell
h{4,3,3} 16-cell [31,1,1] 192 half (±1,±1,±1,±1) 8 8 24 32 16 Tesseract
({ }+{ }+{ })×{ } or {3,4}×{ } Octahedral prism [4,3,2] 96 ([±1,0,0]; ±1) 8×2 12 30 28 10 cubical bipyramid
r{3,4}×{ } Cuboctahedral prism [4,3,2] 96 ([±1,±1,0]; ±1) 12×2 24 60 52 16 rhombic dodedecahedral bipyramid
r{3,4}+{ } Cuboctahedral bipyramid [4,3,2] 96 ([±1,±1,0]; 0), (0,0,0; ±1) 12+2 14 rhombic dodedecahedral prism
{ }×{ }×{ }+{ } or {4,3}+{ } Cubical bipyramid [4,3,2] 96 ([±1,±1,±1]; 0), (0,0,0; ±1) 8+2 10 28 30 12 octahedral prism
{3,4}∨( ) Octahedral pyramid [4,3,1] 48 ([±1,0,0]; 0), (0,0,0; 1) 6+1 7 18 20 9 cubical pyramid
r{3,4}∨( ) Cuboctahedral pyramid [4,3,1] 48 ([±1,±1,0]; 0), (0,0,0; 1) 12+1 13 36 38 15 rhombic dodecahedral pyramid
{4,3}∨( ) Cubic pyramid [4,3,1] 48 ([±1,±1,±1]; 0), (0,0,0; 1) 8+1 9 20 18 7 octahedral pyramid
{4}∨{ } Square-segment disphenoid [4,2,1] 16 ([±1,±1],0,0), (0,0,±1,1) 4+2 6 13 13 6 Self-dual
( )∨( )∨( )∨( )∨( ) = { }∨{ }∨( ) Digonal disphenoid pyramid = 5-cell [2,2,1,1] 8 ([1,0],0,0,0), (0,0,[1,0],0), (0,0,0,0,1) 2+2+1 5 10 10 5 Self-dual
( )∨( )∨( )∨( )∨( ) = {3}∨{ } Triangle-segment disphenoid = 5-cell [3,2,1,1] 12 ([1,0,0]; 0,0), (0,0,0; [1,0]) 3+2 5 10 10 5 Self-dual
( )∨( )∨( )∨( )∨( ) = {3,3}∨( ) Tetrahedral pyramid = 5-cell [3,3,1,1] 24 ([1,0,0,0]; 0), (0,0,0,0; 1) 4+1 5 10 10 5 Self-dual
( )∨( )∨( )∨( )∨( ) = {3,3,3} 5-cell [3,3,3,1] 120 ([1,0,0,0,0]) 5 5 15 10 5 Self-dual

5D

[edit]
Construction Name Symmetry Order Coordinates Vertices f0 f1 f2 f3 f4 Dual
{ }+{ }+{ }+{ }+{ } or {3,3,3,4} 5-orthoplex [4,3,3,3] 3840 ([±1,0,0,0,0]) 2×5 10 40 80 80 32 5-cube
r{3,3,3,4} rectified 5-orthoplex [4,3,3,3] 3840 ([±1,±1,0,0,0]) 4×10 40 240 400 240 42
2r{3,3,3,4} = 2r{4,3,3,3} birectified 5-orthoplex [4,3,3,3] 3840 ([±1,±1,±1,0,0]) 8×10 80 480 640 280 42
3r{3,3,3,4} = r{4,3,3,3} birectified 5-cube [4,3,3,3] 3840 ([±1,±1,±1,±1,0]) 16×5 80 320 400 200 42
{ }×{ }×{ }×{ }×{ } or {4,3,3,3} 5-cube [4,3,3,3] 3840 (±1,±1,±1,±1,±1) 25 32 80 80 40 10 5-orthoplex
h{4,3,3,3} 5-demicube [3,3,31,1] 1920 half (±1,±1,±1,±1,±1) 24 16 80 160 120 26
({ }+{ }+{ }+{ })×{ } or {3,3,4}×{ } 16-cell prism [4,3,3,2] 768 ([±1,0,0,0]; ±1) 8×2 16 56 88 64 18 tesseract bipyramid
{ }×{ }×{ }×{ }+{ } or {4,3,3}+{ } tesseract bipyramid [4,3,3,2] 768 ([±1,±1,±1,±1]; 0), (0,0,0,0,±1) 16+2 18 64 88 56 16 tesseract 16-cell
{4,3}+{4} cube-square duopyramid [4,3,2,4] 384 ([±1,±1,±1]; 0,0), (0,0,0; ±1,±1) 8+4 12 48 86 72 24 octahedron,square double-prism
r{4,3}+{4} cuboctahedron-square duopyramid [4,3,2,4] 384 ([±1,±1,0]; 0,0), (0,0,0; ±1,±1) 12+4 16 rhombic-dodecahedron-square duoprism
r{4,3}×{4} cuboctahedron-square prism [4,3,2,4] 384 ([±1,±1,0]; ±1,±1) 12×4 48 rhombic-dodecahedron-square double-pyramid
{3,4}×{4} octahedron-square duoprism [4,3,2,4] 384 ([±1,0,0]; ±1,±1) 6×4 24 72 86 48 12 cube-square double-pyramid
{3,4}×{ }+{ } octahedral prism bipyramid [4,3,2,4] 384 ([±1,0,0]; ±1; 0), (0,0,0; 0; ±1) 6×2+2 14 54 88 66 20 cubic bipyramid prism
r{4,3}×{ }+{ } cuboctahedral prism bipyramid [4,3,2,4] 384 ([±1,±1,0]; ±1; 0), (0,0,0; 0; ±1) 12×2+2 26 rhombic-dodecahedral bipyramid prism
({4,3}+{ })×{ } cubic bipyramid prism [4,3,2,4] 384 ([±1,±1,±1]; 0; ±1), (0,0,0; ±1; ±1) (8+2)×2 20 66 88 54 14 octahedral prism bipyramid
{3,4}∨{ } octahedron-segment disphenoid [4,3,2,1] 96 ([±1,0,0]; 0; -1), (0,0,0; ±1; +1]) 6+2 8 10 cube-segment pyramid
r{4,3}∨{ } cuboctahedron-segment disphenoid [4,3,2,1] 96 ([±1,±1,0]; 0; -1), (0,0,0; ±1; +1]) 12+2 14 rhombic-dodecahedron-segment pyramid
{4,3}∨{ } cube-segment disphenoid [4,3,2,1] 96 ([±1,±1,±1]; 0; -1), (0,0,0; ±1; +1) 8+2 10 8 octahedron-segment pyramid
{3,4}×{ }+{ } octahedron-prism bipyramid [4,3,2,2] 192 ([±1,0,0]; ±1; 0), (0,0,0; 0; ±1) 6×2+2 14 20 cube bipyramid prism
r{3,4}×{ }+{ } cuboctahedron-prism bipyramid [4,3,2,2] 192 ([±1,±1,0]; ±1; 0), (0,0,0; 0; ±1) 12×2+2 26 rhombic-dodecahedral bipyramid prism
({4,3}+{ })×{ } cube bipyramid prism [4,3,2,2] 192 ([±1,±1,±1]; 0; ±1), (0,0,0; ±1; ±1) (8+2)×2 20 14 octahedron-prism bipyramid
{3,3,4}∨( ) 16-cell pyramid [4,3,3,1] 384 ([±1,0,0,0]; 0), (0,0,0,0; 1) 8+1 9 17 tesseract pyramid
r{3,3,4}∨( ) Rectified 16-cell pyramid [4,3,3,1] 384 ([±1,±1,0,0]; 0), (0,0,0,0; 1) 12+1 13
2r{3,3,4}∨( ) Rectified tesseract pyramid [4,3,3,1] 384 ([±1,±1,±1,0]; 0), (0,0,0,0; 1) 24+1 25
{4,3,3}∨( ) tesseract pyramid [4,3,3,1] 384 ([±1,±1,±1,±1]; 0), (0,0,0,0; 1) 16+1 17 9 16-cell pyramid
({3,4}∨( ))+{ } octahedral pyramid bipyramid [4,3,2,1] 96 ([±1,0,0]; 0; 0), (0,0,0; 1; 0), (0,0,0; 0; ±1) 6+1+2 9 18 cube pyramid prism
(r{3,4}∨( ))+{ } cuboctahedral pyramid bipyramid [4,3,2,1] 96 ([±1,±1,0]; 0; 0), (0,0,0; 1; 0), (0,0,0; 0; ±1) 12+1+2 15 rhombic-dodecahedral pyramid prism
({4,3}∨( ))×{ } cube pyramid prism [4,3,2,1] 96 ([±1,±1,±1]; 0; ±1), (0,0,0; ±1; 0) (8+1)×2 18 9 octahedral pyramid bipyramid
{4}∨{4} square-square disphenoid [4,2,4,1] 64 ([±1,±1],0,0,-1), (0,0,[±1,±1],+1) 4+4 8 8 self-dual
{3,4}×{3} octahedron-triangle prism [4,3,2,3,1] 384 ([±1,0,0]; [1,0,0]) 6×3 18 11 cube-triangle bipyramid
r{3,4}×{3} cuboctahedron-triangle prism [4,3,2,3,1] 384 ([±1,±1,0]; [1,0,0]) 12×3 36 11 rhombic-dodecahedral-triangle bipyramid
{4,3}+{3} cube-triangle duopyramid [4,3,2,3,1] 384 ([±1,±1,±1]; 0,0,0), (0,0,0, [1,0,0]) 8+3 11 18 octahedron-triangle prism
{3,3}×{4} tetrahedron-square prism [3,3,2,4,1] 192 ([1,0,0,0]; ±1; ±1) 12×4 16 8 tetrahedron-square bipyramid
{3,3}+{4} tetrahedron-square duopyramid [3,3,2,4,1] 192 ([1,0,0,0]; 0,0), (0,0,0,0, ±1; ±1) 4+4 8 16 tetrahedron-square prism
{3,3,3}×{ } 5-cell-segment prism [3,3,3,2,1] 240 ([1,0,0,0,0]; ±1) 5×2 10 7 5-cell-segment bipyramid
{3,3,3}+{ } 5-cell-segment bipyramid [3,3,3,2,1] 240 ([1,0,0,0,0]; 0), (0,0,0,0,0; ±1) 5+2 7 10 5-cell-segment prism
{4}∨{3} square-triangle disphenoid [4,2,3,1,1] 48 ([±1,±1],0,0,0,-1), (0,0,[1,0,0],+1) 4+3 7 19 26 19 7 self-dual
{3,3,3,3} 5-simplex [3,3,3,3,1] 720 ([1,0,0,0,0,0]) 6 6 15 20 15 6 self-dual
{3,3,3}∨( ) 5-cell pyramid [3,3,3,1,1] 120 ([1,0,0,0,0],0), (0,0,0,0,0,1) 5+1 6 15 20 15 6 self-dual
{3,3}∨{ } tetrahedron-segment disphenoid [3,3,2,1,1] 48 ([1,0,0,0],0,0), (0,0,0,0,[1,0]) 4+2 6 15 20 15 6 self-dual
{3}∨{3} triangle-triangle disphenoid [3,2,3,1,1] 36 ([1,0,0],0,0,0), (0,0,0,[1,0,0]) 3+3 6 15 20 15 6 self-dual
{ }∨{ }∨{ } segment-segment-segment trisphenoid [2,2,2,1,1] 16 ([1,0],0,0,0,0), (0,0,[1,0],0,0), (0,0,0,0,[1,0]) 2+2+2 6 15 20 15 6 self-dual

References

[edit]