Jump to content

Diphosphorus tetraiodide

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Kupirijo (talk | contribs) at 17:27, 19 January 2011 (Category:Phosphanes). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Diphosphorus tetraiodide
Ball-and-stick model of the diphosphorus tetraiodide molecule
Names
IUPAC name
Diphosphorus tetraiodide
Preferred IUPAC name
Tetraiododiphosphane
Other names
phosphorus(II) iodide
Identifiers
ECHA InfoCard 100.033.301 Edit this at Wikidata
Properties
P2I4
Molar mass 569.57 g mol−1
Appearance orange crystalline solid
Density ? g cm−3, solid
Melting point 124-127 °C
Boiling point Decomposes
Decomposes
Hazards
Flash point non-flammable
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Diphosphorus tetraiodide, P2I4, is an orange crystalline solid, and a versatile reducing agent. The phosphorus atom has an NMR chemical shift of about +100 ppm (downfield of H3PO4) (+108 ppm in CS2). Phosphorus contains a rare oxidation state of +2 in this compound.

Synthesis

Diphosphorus tetraiodide is easily generated by the disproportionation of phosphorus triiodide in dry ether:

2PI3 → P2I4 + I2

It can also be obtained by reacting phosphorus trichloride and potassium iodide in anhydrous conditions[1].

Reactions

P2I4 reacts with bromine to form a mixture of PI3, PBr3, PBr2I and PBrI2[2].

Applications

Diphosphorus tetraiodide is used in organic chemistry for converting carboxylic acids to nitriles[3], for deprotecting acetals and ketals to aldehydes and ketones, and for converting epoxides into alkenes and aldoximes into nitriles. It can also cyclize 2-aminoalcohols to aziridines[4] and to convert α,β-unsaturated carboxylic acids to α,β-unsaturated bromides[5].

In the Kuhn-Winterstein Reaction diphosphorus tetraiodide is used in the conversion of glycols to alkenes [6].

References

  1. ^ H. Suzuki, T. Fuchita, A. Iwasa, T. Mishina (1978). "Diphosphorus Tetraiodide as a Reagent for Converting Epoxides into Olefins, and Aldoximes into Nitriles under Mild Conditions". Synthesis. 1978 (12): 905–908. doi:10.1055/s-1978-24936. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  2. ^ A. H. Cowley and S. T. Cohen (1965). "The Iodides of Phosphorus. II. The Reaction of Bromine with Diphosphorus Tetraiodide". Tetrahedron Letters. 4 (8): 1221–1222. doi:10.1021/ic50030a029. {{cite journal}}: Unknown parameter |month= ignored (help)
  3. ^ Vikas N. Telvekar and Rajesh A. Rane (2007). "A novel system for the synthesis of nitriles from carboxylic acids". Tetrahedron Letters. 48 (34): 6051–6053. doi:10.1016/j.tetlet.2007.06.108. {{cite journal}}: Unknown parameter |month= ignored (help)
  4. ^ H. Suzuki, H. Tani (1984). "A mild cyclization of 2-aminoalcohols to aziridines using diphosphorus tetraiodide". Chemistry Letters. 13 (12): 2129–2130. doi:10.1246/cl.1984.2129. {{cite journal}}: Cite has empty unknown parameter: |month= (help)
  5. ^ Vikas N. Telvekar, Somsundaram N. Chettiar (2007). "A novel system for decarboxylative bromination". Tetrahedron Letters. 48 (26): 4529–4532. doi:10.1016/j.tetlet.2007.04.137. {{cite journal}}: Unknown parameter |month= ignored (help)
  6. ^ Über konjugierte Doppelbindungen I. Synthese von Diphenyl-poly-enen Richard Kuhn, Alfred Winterstein Helvetica Chimica Acta Volume 11 Issue 1, Pages 87 - 116 1928 doi:10.1002/hlca.19280110107

See also