2022 in archosaur paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 220: Line 220:
* Reconstruction of the appendicular musculature of ''[[Thecodontosaurus]] antiquus'' is presented by Ballell, [[Emily Rayfield|Rayfield]] & [[Michael Benton|Benton]] (2022).<ref>{{cite journal | vauthors = Ballell A, Rayfield EJ, Benton MJ | title = Walking with early dinosaurs: appendicular myology of the Late Triassic sauropodomorph ''Thecodontosaurus antiquus'' | journal = Royal Society Open Science | volume = 9 | issue = 1 | pages = Article ID 211356 | year = 2022 | doi = 10.1098/rsos.211356 |pmid=35116154 |pmc=8767213 | doi-access = free }}</ref>
* Reconstruction of the appendicular musculature of ''[[Thecodontosaurus]] antiquus'' is presented by Ballell, [[Emily Rayfield|Rayfield]] & [[Michael Benton|Benton]] (2022).<ref>{{cite journal | vauthors = Ballell A, Rayfield EJ, Benton MJ | title = Walking with early dinosaurs: appendicular myology of the Late Triassic sauropodomorph ''Thecodontosaurus antiquus'' | journal = Royal Society Open Science | volume = 9 | issue = 1 | pages = Article ID 211356 | year = 2022 | doi = 10.1098/rsos.211356 |pmid=35116154 |pmc=8767213 | doi-access = free }}</ref>
* Evidence of widespread incompleteness of necks even in best-preserved and best-known sauropod specimens, and of widespread distortion of known sauropod cervical vertebrae, is presented by [[Michael P. Taylor|Taylor]] (2022).<ref>{{cite journal| author = Taylor MP |title=Almost all known sauropod necks are incomplete and distorted |year=2022 |journal=PeerJ |volume=10 |pages=e12810 |doi=10.7717/peerj.12810 |pmid=35127288 |pmc=8793732 |doi-access=free }}</ref>
* Evidence of widespread incompleteness of necks even in best-preserved and best-known sauropod specimens, and of widespread distortion of known sauropod cervical vertebrae, is presented by [[Michael P. Taylor|Taylor]] (2022).<ref>{{cite journal| author = Taylor MP |title=Almost all known sauropod necks are incomplete and distorted |year=2022 |journal=PeerJ |volume=10 |pages=e12810 |doi=10.7717/peerj.12810 |pmid=35127288 |pmc=8793732 |doi-access=free }}</ref>
* A study on bony pathologic structures stemming from the pneumatic features in the cervical vertebrae of a diplodocine specimen from the Lower O’Hair Quarry ([[Morrison Formation]]' [[Montana]], [[United States]]) is published by Woodruff ''et al.'' (2022), who diagnose this specimen as likely affected by an avian-like [[airsacculitis]], constituting the first identification of this disease in a non-avian dinosaur specimen.<ref>{{cite journal| vauthors = Woodruff DC, Wolff ED, Wedel MJ, Dennison S, Witmer LM |title=The first occurrence of an avian-style respiratory infection in a non-avian dinosaur |year=2022 |journal=Scientific Reports |volume=12 |issue=1 |pages=Article number 1954 |doi=10.1038/s41598-022-05761-3 | doi-access = free }}</ref>
* A study on the morphology, preservation and taphonomy of the skin of ''[[Haestasaurus]] becklesii'', and a review of sauropod skin morphology, is published by Pittman ''et al.'' (2022).<ref>{{Cite journal |vauthors=Pittman M, Enriquez NJ, Bell PR, Kaye TG, Upchurch P|title=Newly detected data from ''Haestasaurus'' and review of sauropod skin morphology suggests Early Jurassic origin of skin papillae |year=2022 |journal=Communications Biology |volume=5 |issue=1 |pages=Article number 122 |doi=10.1038/s42003-022-03062-z |doi-access=free }}</ref>
* A study on the morphology, preservation and taphonomy of the skin of ''[[Haestasaurus]] becklesii'', and a review of sauropod skin morphology, is published by Pittman ''et al.'' (2022).<ref>{{Cite journal |vauthors=Pittman M, Enriquez NJ, Bell PR, Kaye TG, Upchurch P|title=Newly detected data from ''Haestasaurus'' and review of sauropod skin morphology suggests Early Jurassic origin of skin papillae |year=2022 |journal=Communications Biology |volume=5 |issue=1 |pages=Article number 122 |doi=10.1038/s42003-022-03062-z |doi-access=free }}</ref>
* A study on the morphological variability of hindlimb bones of titanosaur sauropods from the Lo Hueco Konzentrat-[[Lagerstätte]] ([[Villalba de la Sierra Formation]], [[Spain]]) is published by Páramo ''et al.'' (2022).<ref>{{Cite journal|vauthors=Páramo A, Escaso F, Mocho P, Marcos-Fernández F, Sanz JL, Ortega F |year=2022 |title=3D Geometric morphometrics of the hind limb in the titanosaur sauropods from Lo Hueco (Cuenca, Spain) |journal=Cretaceous Research |volume=in press |pages=Article 105147 |doi=10.1016/j.cretres.2022.105147 }}</ref>
* A study on the morphological variability of hindlimb bones of titanosaur sauropods from the Lo Hueco Konzentrat-[[Lagerstätte]] ([[Villalba de la Sierra Formation]], [[Spain]]) is published by Páramo ''et al.'' (2022).<ref>{{Cite journal|vauthors=Páramo A, Escaso F, Mocho P, Marcos-Fernández F, Sanz JL, Ortega F |year=2022 |title=3D Geometric morphometrics of the hind limb in the titanosaur sauropods from Lo Hueco (Cuenca, Spain) |journal=Cretaceous Research |volume=in press |pages=Article 105147 |doi=10.1016/j.cretres.2022.105147 }}</ref>

Revision as of 17:36, 10 February 2022

List of years in archosaur paleontology
In reptile paleontology
2019
2020
2021
2022
2023
2024
2025
In paleontology
2019
2020
2021
2022
2023
2024
2025
In science
2019
2020
2021
2022
2023
2024
2025
+...

This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2022, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2022.

Pseudosuchians

New pseudosuchian taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Eptalofosuchus[1]

Gen. et sp. nov

Valid

Marinho et al.

Late Cretaceous

Uberaba Formation

 Brazil

A notosuchian crocodylomorph.
The type species is E. viridi.
Announced in 2021; the final article version was published in 2022.

Mambawakale[2]

Gen. et sp. nov

Valid

Butler et al.

Middle Triassic

Manda Beds

 Tanzania

An early diverging pseudosuchian of uncertain affinities.
The type species is M. ruhuhu.

Mambawakale
Mambawakale

Yanjisuchus[3]

Gen. et sp. nov

Valid

Rummy et al.

Cretaceous (AlbianCenomanian)

Longjing Formation

 China

A paralligatorid crocodyliform.
The type species is Y. longshanensis.
Announced in 2021; the final article version was published in 2022.

General pseudosuchian research

  • Revision of Tsylmosuchus donensis and Scythosuchus basileus is published by Sennikov (2022), who interprets the latter taxon as a junior synonym of the former one, and interprets T. donensis as a likely member of the family Ctenosauriscidae.[4]
  • A study aiming to model to the likely gait of Batrachotomus kupferzellensis is published by Polet & Hutchinson (2022).[5]

Aetosaur research

Crocodylomorph research

  • A study on the phylogenetic affinities of Portugalosuchus azenhae is published by Darlim et al. (2022).[6]

Non-avian dinosaurs

New dinosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Abditosaurus[7]

Gen. et sp. nov

In press

Vila et al.

Late Cretaceous (Maastrichtian)

Conques Formation

 Spain

A saltasaurine titanosaur.
The type species is A. kuehnei.

Guemesia[8]

Gen. et sp. nov

In press

Agnolín et al.

Late Cretaceous (Campanian)

Los Blanquitos Formation

 Argentina

An abelisaurid theropod. The type species is G. ochoai.

Menucocelsior[9]

Gen. et sp. nov

Valid

Rolando et al.

Late Cretaceous (Campanian-Maastrichtian)

Allen Formation

 Argentina

A titanosaur sauropod.
The type species is M. arriagadai.
Announced in 2021; the final article version was published in 2022.

Napaisaurus[10]

Gen. et sp. nov

Valid

Ji & Zhang

Early Cretaceous

Xinlong Formation

 China

A basal member of Iguanodontia. The type species is N. guangxiensis. Announced in 2021; the final article version was published in 2022.

Papiliovenator[11]

Gen. et sp. nov

Valid

Pei et al.

Late Cretaceous (Campanian)

Bayan Mandahu Formation

 China

A troodontid theropod.
The type species is P. neimengguensis.
Announced in 2021; the final article version to be published in 2022.

Sierraceratops[12]

Gen. et sp. nov

Valid

Dalman et al

Late Cretaceous (latest CampanianMaastrichtian)

Hall Lake Formation

 United States
( New Mexico)

A chasmosaurine ceratopsid.
The type species is S. turneri.
Announced in 2021; the final article version will be published in 2022.

General non-avian dinosaur research

  • A large dinosaur tracksite preserving theropod tracks and abundant hadrosaurid tracks is described from the Upper Cretaceous (Campanian) Wapiti Formation (Alberta, Canada) by Enriquez et al. (2022), who evaluate the implications of this finding for the knowledge of the paleoecology of dinosaurs known from the Wapiti Formation.[13]

Ornithischian research

Cerapod research

Thyreophoran research

Saurischian research

Sauropodomorph research

  • A study on the shape and variation of the anterolateral scar in the femora of Pampadromaeus barberenai and Buriolestes schultzi, and on its implications for the knowledge of the distribution of the anterolateral scar in ornithodirans, is published by Müller (2022).[21]
  • Reconstruction of the appendicular musculature of Thecodontosaurus antiquus is presented by Ballell, Rayfield & Benton (2022).[22]
  • Evidence of widespread incompleteness of necks even in best-preserved and best-known sauropod specimens, and of widespread distortion of known sauropod cervical vertebrae, is presented by Taylor (2022).[23]
  • A study on bony pathologic structures stemming from the pneumatic features in the cervical vertebrae of a diplodocine specimen from the Lower O’Hair Quarry (Morrison Formation' Montana, United States) is published by Woodruff et al. (2022), who diagnose this specimen as likely affected by an avian-like airsacculitis, constituting the first identification of this disease in a non-avian dinosaur specimen.[24]
  • A study on the morphology, preservation and taphonomy of the skin of Haestasaurus becklesii, and a review of sauropod skin morphology, is published by Pittman et al. (2022).[25]
  • A study on the morphological variability of hindlimb bones of titanosaur sauropods from the Lo Hueco Konzentrat-Lagerstätte (Villalba de la Sierra Formation, Spain) is published by Páramo et al. (2022).[26]
  • Titanosaur tracks preserving claw impressions are reported from the Anacleto Formation (Argentina) by Tomaselli et al. (2022), who devise a new classification for titanosaur tracks and name the new ichnotaxon Teratopodus malarguensis.[27]

Theropod research

  • Review of the morphology and distribution of non-feathered integumentary structures in non-avialan theropods is published by Hendrickx et al. (2022).[28]
  • Description of a small high-density assemblage of theropod tracks from the Cretaceous Haman Formation (South Korea), and a study on the distribution of grallatorid tracks in east Asia, is published by Lockley et al. (2022).[29]
  • Revision of theropod teeth from the Campanian site of Laño (Spain), evaluating their implications for the knowledge of diversity and evolutionary history of theropods from the Late Cretaceous of Europe, is published by Isasmendi et al. (2022).[30]
  • Description of the frontal anatomy of Teratophoneus curriei is published by Yun (2022).[31]
  • Description of the neurovascular canals in rostral cranial elements of Tyrannosaurus rex, and a study on the evolution of these canals among Sauropsida and on the possibility of the presence of lips and specialised sensory organs among non-avian theropods, is published by Bouabdellah, Lessner & Benoit (2022).[32]
  • Redescription of Parvicursor remotus is published by Averianov & Lopatin (2022).[33]
  • New theropod assemblage, including the first records of a large carcharodontosaur allosauroid and of a troodontid maniraptoran in Appalachia reported to date, as well as the earliest occurrence of a tyrannosauroid in Appalachia reported to date, is described from the Cenomanian Lewisville Formation (Woodbine Group; Texas, United States) by Noto et al. (2022).[34]

Birds

New bird taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Beiguornis[35] Gen. et sp. nov Wang et al. Early Cretaceous Longjiang Formation  China A member of Enantiornithes. The type species is B. khinganensis.

Avian research

  • Review of the palaeognath fossil record is published by Widrig & Field (2022).[36]
  • A study on the stratigraphic provenance of Psammornis eggshells (probably produced by giant ostriches), and on their implications for the knowledge of the evolutionary history of struthionids, is published by Buffetaut (2022).[37]
  • A study on the relationships between the shape and size of extant waterfowl tarsometatarsi and their locomotory habits, and on their implications for the knowledge of the locomotory habits of Cayaoa and Paranyroca, is published by De Mendoza & Gómez (2022).[38]
  • Description of a new partial fossil sternum belonging to a member of Procellariidae from the Middle Pleistocene Ichijiku Formation (Japan) is published by Aotsuka, Isaji, and Endo (2022).[39]
  • A study on plant material from rock overhangs from mid-late Holocene sites along the Kawarau-Cromwell-Roxburgh Gorges in Central Otago (New Zealand), much of which was likely transported as roosting material or consumed by moa birds, and on its implications for the knowledge of moa diet and ecology (including the first known evidence of the consumption of kōwhai by moa birds), is published by Pole (2022).[40]

Pterosaurs

New pterosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Pterosaur research

  • A study reinterpreting the orbital, antorbital and narial fenestrae in the skulls of the anurognathid pterosaurs, based mainly on data from the skulls of specimens of Batrachognathus volans, and aiming to determine the phylogenetic affinities of anurognathids is published by Dalla Vecchia (2022).[41]
  • Two specimens of Kunpengopterus sinensis preserved with bromalites are described from the Jurassic Tiaojishan Formation (China) by Jiang et al. (2022), who interpret the bromalites as fossilized gastric pellets, and evaluate their implications for the knowledge of the diet and the digestive system of this pterosaur.[42]
  • Redescription of the holotype specimen of Moganopterus zhuiana is published by Gao et al. (2022).[43]

General research

  • Gatesy et al. (2022) propose a standard methodological approach for measuring the relative position and orientation of the major segments of the pelvis and hindlimb of extant and fossil archosaurs in three dimensions.[44]

References

  1. ^ Marinho TS, Martinelli AG, Basilici G, Soares MV, Marconato A, Ribeiro LC, Iori FV (2022). "First Upper Cretaceous notosuchians (Crocodyliformes) from the Uberaba Formation (Bauru Group), southeastern Brazil: enhancing crocodyliform diversity". Cretaceous Research. 129: Article 105000. doi:10.1016/j.cretres.2021.105000. S2CID 238725546.
  2. ^ Butler RJ, Fernandez V, Nesbitt SJ, Leite JV, Gower DJ (2022). "A new pseudosuchian archosaur, Mambawakale ruhuhu gen. et sp. nov., from the Middle Triassic Manda Beds of Tanzania". Royal Society Open Science. 9 (2): Article ID 211622. doi:10.1098/rsos.211622.
  3. ^ Rummy P, Wu XC, Clark JM, Zhao Q, Jin CZ, Shibata M, Jin F, Xu X (2022). "A new paralligatorid (Crocodyliformes, Neosuchia) from the middle Cretaceous of Jilin Province, northeastern China". Cretaceous Research. 129: Article 105018. doi:10.1016/j.cretres.2021.105018. S2CID 239651801.
  4. ^ Sennikov AG (2022). "On pseudosuchians Tsylmosuchus donensis and Scythosuchus basileus from the Early Triassic of Eastern Europe". Paleontological Journal. 56 (1): 91–96.
  5. ^ Polet, D. T.; Hutchinson, J. R. (2022). "Estimating Gaits of an Ancient Crocodile-Line Archosaur Through Trajectory Optimization, With Comparison to Fossil Trackways". Frontiers in Bioengineering and Biotechnology. 9: Article 800311. doi:10.3389/fbioe.2021.800311.
  6. ^ Darlim G, Lee MS, Walter J, Rabi M (2022). "The impact of molecular data on the phylogenetic position of the putative oldest crown crocodilian and the age of the clade". Biology Letters. 18 (2): Article ID 20210603. doi:10.1098/rsbl.2021.0603. PMID 35135314. S2CID 246652848.
  7. ^ Vila B, Sellés A, Moreno-Azanza M, Razzolini NL, Gil-Delgado A, Canudo JI, Galobart À (2022). "A titanosaurian sauropod with Gondwanan affinities in the latest Cretaceous of Europe". Nature Ecology & Evolution. in press. doi:10.1038/s41559-021-01651-5. PMID 35132183. S2CID 246650381.
  8. ^ Agnolín FL, Cerroni MA, Scanferla A, Goswami A, Paulina-Carabajal A, Halliday T, Cuff AR, Reuil S (2022). "First definitive abelisaurid theropod from the Late Cretaceous of Northwestern Argentina". Journal of Vertebrate Paleontology. in press: e2002348. doi:10.1080/02724634.2021.2002348.
  9. ^ Rolando MA, Garcia Marsà JA, Agnolín FL, Motta MJ, Rodazilla S, Novas FE (2022). "The sauropod record of Salitral Ojo del Agua: An Upper Cretaceous (Allen Formation) fossiliferous locality from northern Patagonia, Argentina". Cretaceous Research. 129: Article 105029. doi:10.1016/j.cretres.2021.105029. ISSN 0195-6671. S2CID 240577726.
  10. ^ Ji S, Zhang P (2022). "First new genus and species of basal iguanodontian dinosaur (Ornithischia: Ornithopoda) from southern China". Acta Geoscientica Sinica. 43 (1): 1–10. doi:10.3975/cagsb.2021.090701.
  11. ^ Pei, R.; Qin, Yuying; Wen, Aishu; Zhao, Q.; Wang, Z.; Liu, Z.; Guo, W.; Liu, P.; Ye, W.; Wang, L.; Yin, Z.; Dai, R.; Xu, X. (2022). "A New Troodontid from the Upper Cretaceous Gobi Basin of Inner Mongolia, China". Cretaceous Research. 130: Article 105052. doi:10.1016/j.cretres.2021.105052. S2CID 244186762.
  12. ^ Dalman, S.G.; Lucas, S.G.; Jasinski, S.E.; Longrich, N.R. (2022). "Sierraceratops turneri, a new chasmosaurine ceratopsid from the Hall Lake Formation (Upper Cretaceous) of south-central New Mexico". Cretaceous Research. 130: Article 105034. doi:10.1016/j.cretres.2021.105034. S2CID 244210664.
  13. ^ Enriquez NJ, Campione NE, White MA, Fanti F, Sissons RL, Sullivan C, Vavrek M, Bell PR (2022). "The dinosaur tracks of Tyrants Aisle: An Upper Cretaceous ichnofauna from Unit 4 of the Wapiti Formation (upper Campanian), Alberta, Canada". PLOS ONE. 17 (2): e0262824. doi:10.1371/journal.pone.0262824. PMC 8809565. PMID 35108301.
  14. ^ Sánchez-Fenollosa S, Verdú FJ, Suñer M, de Santisteban C (2022). "Tracing Late Jurassic ornithopod diversity in the eastern Iberian Peninsula: Camptosaurus-like postcranial remains from Alpuente (Valencia, Spain)". Journal of Iberian Geology. doi:10.1007/s41513-021-00182-z. S2CID 245804125.
  15. ^ Gasulla JM, Escaso F, Narváez I, Sanz JL, Ortega F (2022). "New Iguanodon bernissartensis Axial Bones (Dinosauria, Ornithopoda) from the Early Cretaceous of Morella, Spain". Diversity. 14 (2): Article 63. doi:10.3390/d14020063.
  16. ^ García-Cobeña J, Verdú FJ, Cobos A (2022). "Abundance of large ornithopod dinosaurs in the El Castellar Formation (Hauterivian-Barremian, Lower Cretaceous) of the Peñagolosa sub-basin (Teruel, Spain)". Journal of Iberian Geology. doi:10.1007/s41513-021-00185-w. S2CID 246029826.
  17. ^ Samathi A, Suteethorn S (2022). "New materials of iguanodontians (Dinosauria: Ornithopoda) from the Lower Cretaceous Khok Kruat Formation, Ubon Ratchathani, Thailand". Zootaxa. 5094 (2): 301–320. doi:10.11646/zootaxa.5094.2.5. S2CID 246588650.
  18. ^ Baag SJ, Lee YN (2022). "Bone histology on Koreaceratops hwaseongensis (Dinosauria: Ceratopsia) from the Lower Cretaceous of South Korea". Cretaceous Research. in press: Article 105150. doi:10.1016/j.cretres.2022.105150. S2CID 246340350.
  19. ^ Schade M, Stumpf S, Kriwet J, Kettler C, Pfaff C (2022). "Neuroanatomy of the nodosaurid Struthiosaurus austriacus (Dinosauria: Thyreophora) supports potential ecological differentiations within Ankylosauria". Scientific Reports. 12 (1): Article number 144. doi:10.1038/s41598-021-03599-9. PMC 8741922. PMID 34996895.
  20. ^ Schade M, Ansorge J (2022). "New thyreophoran dinosaur material from the Early Jurassic of northeastern Germany". PalZ. doi:10.1007/s12542-022-00605-x.
  21. ^ Müller RT (2022). "On the Presence and Shape of Anterolateral Scars in the Ontogenetic Series of Femora for Two Early Sauropodomorph Dinosaurs from the Upper Triassic of Brazil". Paleontological Research. 26 (1): 1–7. doi:10.2517/PR200001. S2CID 245488555.
  22. ^ Ballell A, Rayfield EJ, Benton MJ (2022). "Walking with early dinosaurs: appendicular myology of the Late Triassic sauropodomorph Thecodontosaurus antiquus". Royal Society Open Science. 9 (1): Article ID 211356. doi:10.1098/rsos.211356. PMC 8767213. PMID 35116154.
  23. ^ Taylor MP (2022). "Almost all known sauropod necks are incomplete and distorted". PeerJ. 10: e12810. doi:10.7717/peerj.12810. PMC 8793732. PMID 35127288.
  24. ^ Woodruff DC, Wolff ED, Wedel MJ, Dennison S, Witmer LM (2022). "The first occurrence of an avian-style respiratory infection in a non-avian dinosaur". Scientific Reports. 12 (1): Article number 1954. doi:10.1038/s41598-022-05761-3.
  25. ^ Pittman M, Enriquez NJ, Bell PR, Kaye TG, Upchurch P (2022). "Newly detected data from Haestasaurus and review of sauropod skin morphology suggests Early Jurassic origin of skin papillae". Communications Biology. 5 (1): Article number 122. doi:10.1038/s42003-022-03062-z.
  26. ^ Páramo A, Escaso F, Mocho P, Marcos-Fernández F, Sanz JL, Ortega F (2022). "3D Geometric morphometrics of the hind limb in the titanosaur sauropods from Lo Hueco (Cuenca, Spain)". Cretaceous Research. in press: Article 105147. doi:10.1016/j.cretres.2022.105147.
  27. ^ Tomaselli MB, Ortiz David LB, González Riga BJ, Coria JP, Mercado CR, Guerra M, Tiviroli GS (2022). "New titanosaurian sauropod tracks with exceptionally well-preserved claw impressions from the Upper Cretaceous of Argentina". Cretaceous Research. 129: Article 104990. doi:10.1016/j.cretres.2021.104990. S2CID 238695181.
  28. ^ Hendrickx C, Bell PR, Pittman M, Milner AR, Cuesta E, O'Connor J, Loewen M, Currie PJ, Mateus O, Kaye TG, Delcourt R (2022). "Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs". Biological Reviews. in press. doi:10.1111/brv.12829. PMID 34991180. S2CID 245820672.
  29. ^ Lockley MG, Kim SH, Kim KS, Bae SM, Kim JY, Xing L (2022). "A high-density Grallator assemblage from the Haman Formation (Cretaceous), Korea: implications for Cretaceous distribution of grallatorids in east Asia". Historical Biology: An International Journal of Paleobiology. in press: 1–9. doi:10.1080/08912963.2021.2018687. S2CID 245683766.
  30. ^ Isasmendi E, Torices A, Canudo JI, Currie PJ, Pereda-Suberbiola X (2022). "Upper Cretaceous European theropod palaeobiodiversity, palaeobiogeography and the intra-Maastrichtian faunal turnover: new contributions from the Iberian fossil site of Laño". Papers in Palaeontology. in press. doi:10.1002/spp2.1419. S2CID 246028305.
  31. ^ Yun CG (2022). "Frontal bone anatomy of Teratophoneus curriei (Theropoda: Tyrannosauridae) from the Upper Cretaceous Kaiparowits Formation of Utah" (PDF). Acta Palaeontologica Romaniae. 18 (1): 51–64. doi:10.35463/j.apr.2022.01.06.
  32. ^ Bouabdellah F, Lessner E, Benoit J (2022). "The rostral neurovascular system of Tyrannosaurus rex". Palaeontologia Electronica. 25 (1): Article number 25.1.1.a3. doi:10.26879/1178.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ Averianov AO, Lopatin AV (2022). "A re-appraisal of Parvicursor remotus from the Late Cretaceous of Mongolia: implications for the phylogeny and taxonomy of alvarezsaurid theropod dinosaurs". Journal of Systematic Palaeontology. in press: 1–32. doi:10.1080/14772019.2021.2013965.
  34. ^ Noto CR, D'Amore DC, Drumheller SK, Adams TL (2022). "A newly recognized theropod assemblage from the Lewisville Formation (Woodbine Group; Cenomanian) and its implications for understanding Late Cretaceous Appalachian terrestrial ecosystems". PeerJ. 10: e12782. doi:10.7717/peerj.12782. PMC 8796713. PMID 35127286.
  35. ^ Wang X, Ju S, Wu W, Liu Y, Guo Z, Ji Q (2022). "The first enantiornithine bird from the Lower Cretaceous Longjiang Formation in the Great Khingan Range of Inner Mongolia". Acta Geologica Sinica.
  36. ^ Widrig K, Field DJ (2022). "The Evolution and Fossil Record of Palaeognathous Birds (Neornithes: Palaeognathae)". Diversity. 14 (2): Article 105. doi:10.3390/d14020105.
  37. ^ Buffetaut E (2022). "The Enigmatic Avian Oogenus Psammornis: A Review of Stratigraphic Evidence". Diversity. 14 (2): Article 123. doi:10.3390/d14020123.
  38. ^ De Mendoza RS, Gómez RO (2022). "Ecomorphology of the tarsometatarsus of waterfowl (Anseriformes) based on geometric morphometrics and its application to fossils". The Anatomical Record. in press. doi:10.1002/ar.24891. PMID 35132811.
  39. ^ Aotsuka K, Isaji S, Endo H (2022). "An Avian Sternum (Aves: Procellariidae) from the Pleistocene Ichijiku Formation in Chiba, Japan". Paleontological Research. 26 (1): 74–86. doi:10.2517/PR200007. S2CID 245478620.
  40. ^ Pole M (2022). "A vanished ecosystem: Sophora microphylla (Kōwhai) dominated forest recorded in mid-late Holocene rock shelters in Central Otago, New Zealand". Palaeontologia Electronica. 25 (1): Article number 25.1.1A. doi:10.26879/1169.
  41. ^ Dalla Vecchia FM (2022). "The presence of an orbitoantorbital fenestra: further evidence of the anurognathid peculiarity within the Pterosauria". Rivista Italiana di Paleontologia e Stratigrafia. 128 (1): 23–42. doi:10.54103/2039-4942/16973.
  42. ^ Jiang S, Wang X, Zheng X, Cheng X, Wang X, Wei G, Kellner AW (2022). "Two emetolite-pterosaur associations from the Late Jurassic of China: showing the first evidence for antiperistalsis in pterosaurs". Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1847): Article ID 20210043. doi:10.1098/rstb.2021.0043. PMID 35125005. S2CID 246608508.
  43. ^ Gao DS, Jiang SX, Xu L, Cheng X, Yang LL, Jia SH, Wang XL (2022). "Reappraisal of the largest ctenochasmatid Moganopterus zhuiana Lü et al., 2012". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.2096-9899.220111.
  44. ^ Gatesy SM, Manafzadeh AR, Bishop PJ, Turner ML, Kambic RE, Cuff AR, Hutchinson JR (2022). "A proposed standard for quantifying 3-D hindlimb joint poses in living and extinct archosaurs". Journal of Anatomy. in press. doi:10.1111/joa.13635. PMID 35118654. S2CID 246529365.