Jump to content

Late Triassic

From Wikipedia, the free encyclopedia
Late/Upper Triassic
~237 – 201.4 ± 0.2 Ma
Map of Earth as it appeared 220 million years ago during the Late Triassic, Norian age[citation needed]
Chronology
Etymology
Chronostratigraphic nameUpper Triassic
Geochronological nameLate Triassic
Name formalityFormal
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitEpoch
Stratigraphic unitSeries
Time span formalityFormal
Lower boundary definitionFAD of the Ammonite Daxatina canadensis
Lower boundary GSSPPrati di Stuores, Dolomites, Italy
46°31′37″N 11°55′49″E / 46.5269°N 11.9303°E / 46.5269; 11.9303
Lower GSSP ratified2008[6]
Upper boundary definitionFAD of the Ammonite Psiloceras spelae tirolicum
Upper boundary GSSPKuhjoch section, Karwendel mountains, Northern Calcareous Alps, Austria
47°29′02″N 11°31′50″E / 47.4839°N 11.5306°E / 47.4839; 11.5306
Upper GSSP ratified2010[7]

The Late Triassic is the third and final epoch of the Triassic Period in the geologic time scale, spanning the time between 237 Ma and 201.4 Ma (million years ago). It is preceded by the Middle Triassic Epoch and followed by the Early Jurassic Epoch. The corresponding series of rock beds is known as the Upper Triassic. The Late Triassic is divided into the Carnian, Norian and Rhaetian ages.

Many of the first dinosaurs evolved during the Late Triassic, including Plateosaurus, Coelophysis, Herrerasaurus, and Eoraptor. The Triassic–Jurassic extinction event began during this epoch and is one of the five major mass extinction events of the Earth.[8]

Etymology

[edit]

The Triassic was named in 1834 by Friedrich von Alberti, after a succession of three distinct rock layers (Greek triás meaning 'triad') that are widespread in southern Germany: the lower Buntsandstein (colourful sandstone), the middle Muschelkalk (shell-bearing limestone) and the upper Keuper (coloured clay).[9] The Late Triassic Series corresponds approximately to the middle and upper Keuper.[10]

Dating and subdivisions

[edit]

On the geologic time scale, the Late Triassic is usually divided into the Carnian, Norian, and Rhaetian ages, and the corresponding rocks are referred to as the Carnian, Norian, and Rhaetian stages.[11]

Triassic chronostratigraphy was originally based on ammonite fossils, beginning with the work of Edmund von Mojsisovics in the 1860s. The base of the Late Triassic (which is also the base of the Carnian) is set at the first appearance of an ammonite, Daxatina canadensis. In the 1990s, conodonts became increasingly important in the Triassic timescale, and the base of the Rhaetian is now set at the first appearance of a conodont, Misikella posthernsteini. As of 2010, the base of the Norian has not yet been established, but will likely be based on conodonts.[12]

The late Triassic is also divided into land-vertebrate faunachrons. These are, from oldest to youngest, the Berdyankian, Otischalkian, Adamanian, Revueltian and Apachean.[13]

Late Triassic life

[edit]

Following the Permian–Triassic extinction event, surviving organisms diversified. On land, archosauriforms, most notably the dinosaurs became an important faunal component in the Late Triassic. Likewise, bony fishes diversified in aquatic environments, most notably the Neopterygii, to which nearly all extant species of fish belong. Among the neopterygians, stem-group teleosts and the now extinct Pycnodontiformes became more abundant in the Late Triassic.[14]

Carnian Age

[edit]

The Carnian is the first age of the Late Triassic, covering the time interval from 237 to 227 million years ago.[11] The earliest true dinosaurs likely appeared during the Carnian and rapidly diversified.[15][16] They emerged in a world dominated by crurotarsan archosaurs (ancestors of crocodiles), predatory phytosaurs, herbivorous armored aetosaurs, and giant carnivorous rauisuchians, which the dinosaurs gradually began to displace.[17]

The emergence of the first dinosaurs came at about the same time as the Carnian pluvial episode, at 234 to 232 Ma. This was a humid interval in the generally arid Triassic. It was marked by high extinction rates in marine organisms, but may have opened niches for the radiation of the dinosaurs.[18][19]

Norian Age

[edit]

The Norian is the second age of the Late Triassic, covering the time interval from about 227 to 208.5 million years ago.[11] During this age, herbiverous sauropodomorphs diversified and began to displace the large herbivorous therapsids, perhaps because they were better able to adapt to the increasingly arid climate.[20] However crurotarsans continued to occupy more ecological niches than dinosaurs.[17] In the oceans, neopterygian fish proliferated at the expense of ceratitid ammonites.[21]

The Manicouagan impact event occurred 214 million years ago. However, no extinction event is associated with this impact.[22][23]

Rhaetian Age

[edit]

The Rhaetian Age was the final age of the Late Triassic, following the Norian Age,[11] and it included the last major disruption of life until the end-Cretaceous mass extinction. This age of the Triassic is known for its extinction of marine reptiles, such as nothosaurs and shastasaurs with the ichthyosaurs, similar to today's dolphin. This age was concluded with the disappearance of many species that removed types of plankton from the ocean, as well as some organisms known for reef-building, and the pelagic conodonts. In addition to these species that became extinct, the straight-shelled nautiloids, placodonts, bivalves, and many types of reptile did not survive through this age.

Climate and environment during the Triassic Period

[edit]

During the beginning of the Triassic Period, the Earth consisted of a giant landmass known as Pangea, which covered about a quarter of Earth's surface. Towards the end of the period, continental drift occurred which separated Pangea. At this time, polar ice was not present because of the large differences between the equator and the poles.[citation needed] A single, large landmass similar to Pangea would be expected to have extreme seasons; however, evidence offers contradictions. Evidence suggests that there is arid climate as well as proof of strong precipitation. The planet's atmosphere and temperature components were mainly warm and dry, with other seasonal changes in certain ranges.[citation needed]

The Middle Triassic was known to have consistent intervals of high levels of humidity. The circulation and movement of these humidity patterns, geographically, are not known however. The major Carnian Pluvial Event stands as one focus point of many studies. Different hypotheses of the events occurrence include eruptions, monsoonal effects, and changes caused by plate tectonics. Continental deposits also support certain ideas relative to the Triassic Period. Sediments that include red beds, which are sandstones and shales of color, may suggest seasonal precipitation. Rocks also included dinosaur tracks, mudcracks, and fossils of crustaceans and fish, which provide climate evidence, since animals and plants can only live during periods of which they can survive through.

Evidence of environmental disruption and climate change[citation needed]

[edit]

The Late Triassic is described as semiarid. Semiarid is characterized by light rainfall, having up to 10–20 inches of precipitation a year. The epoch had a fluctuating, warm climate in which it was occasionally marked by instances of powerful heat. Different basins in certain areas of Europe provided evidence of the emergence of the "Middle Carnian Pluvial Event." For example, the Western Tethys and German Basin was defined by the theory of a middle Carnian wet climate phase. This event stands as the most distinctive climate change within the Triassic Period. Propositions for its cause include:

  • Different behaviors of atmospheric or oceanic circulation forced by plate tectonics that may have participated in modifying the carbon cycle and other scientific factors.
  • heavy rains due to shifting of the earth
  • sparked by eruptions, typically originating from an accumulation of igneous rocks, which could have included liquid rock or volcanic rock formations

Theories and concepts are supported universally, due to extensive areal proof of Carnian siliciclastic sediments. The physical positions as well as comparisons of that location to surrounding sediments and layers stood as basis for recording data. Multiple resourced and recurring patterns in results of evaluations allowed for the satisfactory clarification of facts and common conceptions on the Late Triassic. Conclusions summarized that the correlation of these sediments led to the modified version of the new map of Central Eastern Pangea, as well as that the sediment's relation to the "Carnian Pluvial Event" is greater than expected.

  • High interest concerning the Triassic Period has fueled the need to uncover more information about the period's climate. The Late Triassic Epoch is classified as a phase entirely flooded with phases of monsoonal events. A monsoon affects large regions and brings heavy rains along with powerful winds. Field studies confirm the impact and occurrence of strong monsoonal circulation during this time frame. However, hesitations concerning climatic variability remains. Upgrading knowledge on the climate of a period is a difficult task to assess. Understanding of and assumptions of temporal and spatial patterns of the Triassic Period's climate variability still need revision. Diverse proxies hindered the flow of palaeontological evidence. Studies in certain zones are missing and could be benefited by collaborating the already existing but uncompared records of Triassic palaeoclimate.
  • A specific physical piece of evidence was found. A fire scar on the trunk of a tree, found in southeast Utah, dates back to the Late Triassic. The feature was evaluated and paved the path to the conclusion of one fire's history. It was categorized through comparison of other modern tree scars. The scar stood as evidence of Late Triassic wildfire, an old climatic event.

Triassic–Jurassic extinction event[citation needed]

[edit]

The extinction event that began during the Late Triassic resulted in the disappearance of about 76% of all terrestrial and marine life species, as well as almost 20% of taxonomic families. Although the Late Triassic Epoch did not prove to be as destructive as the preceding Permian Period, which took place approximately 50 million years earlier and destroyed about 70% of land species, 57% of insect families as well as 95% of marine life, it resulted in great decreases in population sizes of many living organism populations.

The environment of the Late Triassic had negative effects on the conodonts and ammonoid groups. These groups once served as vital index fossils, which made it possible to identify feasible life span to multiple strata of the Triassic strata. These groups were severely affected during the epoch, and conodonts became extinct soon after (in the earliest Jurassic). Despite the large populations that withered away with the coming of the Late Triassic, many families, such as the pterosaurs, crocodiles, mammals and fish were very minimally affected. However, such families as the bivalves, gastropods, marine reptiles and brachiopods were greatly affected and many species became extinct during this time.

Causes of the extinction

[edit]

Most of the evidence suggests the increase of volcanic activity was the main cause of the extinction. As a result of the rifting of the super continent Pangea, there was an increase in widespread volcanic activity which released large amounts of carbon dioxide. At the end of the Triassic Period, massive eruptions occurred along the rift zone, known as the Central Atlantic Magmatic Province, for about 500,000 years. These intense eruptions were classified as flood basalt eruptions, which are a type of large scale volcanic activity that releases a huge volume of lava in addition to sulfur dioxide and carbon dioxide. The sudden increase in carbon dioxide levels is believed to have enhanced the greenhouse effect, which acidified the oceans and raised average air temperature. As a result of the change in biological conditions in the oceans, 22% of marine families became extinct. In addition, 53% of marine genera and about 76–86% of all species became extinct, which vacated ecological niches; thus, enabling dinosaurs to become the dominant presence in the Jurassic Period. While the majority of the scientists agree that volcanic activity was the main cause of the extinction, other theories suggest the extinction was triggered by the impact of an asteroid, climate change, or rising sea levels.

Biological impact

[edit]

The impacts that the Late Triassic had on surrounding environments and organisms were wildfire destruction of habitats and prevention of photosynthesis. Climatic cooling also occurred due to the soot in the atmosphere. Studies also show that 103 families of marine invertebrates became extinct at the end of the Triassic, but another 175 families lived on into the Jurassic. Marine and extant species were hit fairly hard by extinctions during this epoch. Almost 20% of 300 extant families became extinct; bivalves, cephalopods, and brachiopods suffered greatly. 92% of bivalves were wiped out episodically throughout the Triassic.

The end of the Triassic also brought about the decline of corals and reef builders during what is called a "reef gap". The changes in sea levels brought this decline upon corals, particularly the calcisponges and scleractinian corals. However, some corals would make a resurgence during the Jurassic Period. 17 brachiopod species were also wiped out by the end of the Triassic. Furthermore, conulariids became extinct.

References

[edit]
  1. ^ Widmann, Philipp; Bucher, Hugo; Leu, Marc; et al. (2020). "Dynamics of the Largest Carbon Isotope Excursion During the Early Triassic Biotic Recovery". Frontiers in Earth Science. 8 (196): 196. Bibcode:2020FrEaS...8..196W. doi:10.3389/feart.2020.00196.
  2. ^ McElwain, J. C.; Punyasena, S. W. (2007). "Mass extinction events and the plant fossil record". Trends in Ecology & Evolution. 22 (10): 548–557. doi:10.1016/j.tree.2007.09.003. PMID 17919771.
  3. ^ Retallack, G. J.; Veevers, J.; Morante, R. (1996). "Global coal gap between Permian–Triassic extinctions and middle Triassic recovery of peat forming plants". GSA Bulletin. 108 (2): 195–207. Bibcode:1996GSAB..108..195R. doi:10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2. Retrieved 29 September 2007.
  4. ^ Payne, J. L.; Lehrmann, D. J.; Wei, J.; Orchard, M. J.; Schrag, D. P.; Knoll, A. H. (2004). "Large Perturbations of the Carbon Cycle During Recovery from the End-Permian Extinction". Science. 305 (5683): 506–9. Bibcode:2004Sci...305..506P. doi:10.1126/science.1097023. PMID 15273391. S2CID 35498132.
  5. ^ Ogg, James G.; Ogg, Gabi M.; Gradstein, Felix M. (2016). "Triassic". A Concise Geologic Time Scale: 2016. Elsevier. pp. 133–149. ISBN 978-0-444-63771-0.
  6. ^ Mietto, Paolo; Manfrin, Stefano; Preto, Nereo; Rigo, Manuel; Roghi, Guido; Furin, Stefano; Gianolla, Piero; Posenato, Renato; Muttoni, Giovanni; Nicora, Alda; Buratti, Nicoletta; Cirilli, Simonetta; Spötl, Christoph; Ramezani, Jahandar; Bowring, Samuel (September 2012). "The Global Boundary Stratotype Section and Point (GSSP) of the Carnian Stage (Late Triassic) at Prati Di Stuores/Stuores Wiesen Section (Southern Alps, NE Italy)" (PDF). Episodes. 35 (3): 414–430. doi:10.18814/epiiugs/2012/v35i3/003. Retrieved 13 December 2020.
  7. ^ Hillebrandt, A.v.; Krystyn, L.; Kürschner, W.M.; Bonis, N.R.; Ruhl, M.; Richoz, S.; Schobben, M. A. N.; Urlichs, M.; Bown, P.R.; Kment, K.; McRoberts, C.A.; Simms, M.; Tomãsových, A (September 2013). "The Global Stratotype Sections and Point (GSSP) for the base of the Jurassic System at Kuhjoch (Karwendel Mountains, Northern Calcareous Alps, Tyrol, Austria)". Episodes. 36 (3): 162–198. CiteSeerX 10.1.1.736.9905. doi:10.18814/epiiugs/2013/v36i3/001. S2CID 128552062.
  8. ^ Blackburn, Terrence J.; Olsen, Paul E.; Bowring, Samuel A.; McLean, Noah M.; Kent, Dennis V; Puffer, John; McHone, Greg; Rasbury, Troy; Et-Touhami7, Mohammed (2013). "Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province" (PDF). Science. 340 (6135): 941–945. Bibcode:2013Sci...340..941B. CiteSeerX 10.1.1.1019.4042. doi:10.1126/science.1234204. PMID 23519213. S2CID 15895416.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  9. ^ Friedrich von Alberti, Beitrag zu einer Monographie des bunten Sandsteins, Muschelkalks und Keupers, und die Verbindung dieser Gebilde zu einer Formation [Contribution to a monograph on the colored sandstone, shell limestone and mudstone, and the joining of these structures into one formation] (Stuttgart and Tübingen, (Germany): J. G. Cotta, 1834). Alberti coined the term "Trias" on page 324 :
    "… bunter Sandstein, Muschelkalk und Keuper das Resultat einer Periode, ihre Versteinerungen, um mich der Worte E. de Beaumont’s zu bedeinen, die Thermometer einer geologischen Epoche seyen, … also die bis jezt beobachtete Trennung dieser Gebilde in 3 Formationen nicht angemessen, und es mehr dem Begriffe Formation entsprechend sey, sie zu einer Formation, welche ich vorläufig Trias nennen will, zu verbinden."
    ( … colored sandstone, shell limestone, and mudstone are the result of a period; their fossils are, to avail myself of the words of E. de Beaumont, the thermometer of a geologic epoch; … thus the separation of these structures into 3 formations, which has been maintained until now, isn't appropriate, and it is more consistent with the concept of "formation" to join them into one formation, which for now I will name "trias".)
  10. ^ Mohr, Markus; Warren, John K.; Kukla, Peter A.; Urai, Janos L.; Irmen, Anton (2007). "Subsurface seismic record of salt glaciers in an extensional intracontinental setting (Late Triassic of northwestern Germany)". Geology. 35 (11). Page 963; figure 1A. doi:10.1130/G23378A.1.
  11. ^ a b c d Ogg, Ogg & Gradstein 2016.
  12. ^ Lucas, Spencer G. (2010). "The Triassic chronostratigraphic scale: history and status". Geological Society, London, Special Publications. 334 (1): 17–39. doi:10.1144/SP334.2. S2CID 129648527.
  13. ^ Lucas, Spencer G. (2018). "Late Triassic Terrestrial Tetrapods: Biostratigraphy, Biochronology and Biotic Events". The Late Triassic World. Topics in Geobiology. Vol. 46. pp. 351–405. doi:10.1007/978-3-319-68009-5_10. ISBN 978-3-319-68008-8.
  14. ^ Romano, Carlo; Koot, Martha B.; Kogan, Ilja; Brayard, Arnaud; Minikh, Alla V.; Brinkmann, Winand; Bucher, Hugo; Kriwet, Jürgen (February 2016). "Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution". Biological Reviews. 91 (1): 106–147. doi:10.1111/brv.12161. PMID 25431138. S2CID 5332637.
  15. ^ Alcober, Oscar A.; Martinez, Ricardo N. (2010). "A new herrerasaurid (Dinosauria, Saurischia) from the Upper Triassic Ischigualasto Formation of northwestern Argentina". ZooKeys (63). Sofia: Pensoft Publishers: 55–81. doi:10.3897/zookeys.63.550. ISSN 1313-2989. PMC 3088398. PMID 21594020.
  16. ^ Langer, Max C.; Ramezani, Jahandar; Da Rosa, Átila A.S. (May 2018). "U-Pb age constraints on dinosaur rise from south Brazil". Gondwana Research. 57. Amsterdam: Elsevier: 133–140. Bibcode:2018GondR..57..133L. doi:10.1016/j.gr.2018.01.005. ISSN 1342-937X.
  17. ^ a b Brusatte, Stephen L.; Benton, Michael J.; Ruta, Marcello; Lloyd, Graeme T. (2008). "Superiority, Competition, and Opportunism in the Evolutionary Radiation of Dinosaurs" (PDF). Science. 321 (5895). Washington, D.C.: American Association for the Advancement of Science: 1485–1488. Bibcode:2008Sci...321.1485B. doi:10.1126/science.1161833. hdl:20.500.11820/00556baf-6575-44d9-af39-bdd0b072ad2b. ISSN 0036-8075. PMID 18787166. S2CID 13393888. Retrieved 22 October 2019.
  18. ^ Simms, M. J.; Ruffell, A. H. (1989). "Synchroneity of climatic change and extinctions in the Late Triassic". Geology. 17 (3): 265–268. doi:10.1130/0091-7613(1989)017<0265:soccae>2.3.co;2.
  19. ^ Furin, S.; Preto, N.; Rigo, M.; Roghi, G.; Gianolla, P.; Crowley, J. L.; Bowring, S. A. (2006). "High-precision U-Pb zircon age from the Triassic of Italy: Implications for the Triassic time scale and the Carnian origin of calcareous nanoplankton, lepidosaurs, and dinosaurs". Geology. 34 (12): 1009–1012. doi:10.1130/g22967a.1.
  20. ^ Olsen, P.E.; Schneider, V.; Sues, H.-D.; Peyer, K. M.; Carter, J. G. (2001). "Biotic provinciality of the Late Triassic equatorial humid zone". Geological Society of America, Abstracts with Programs. 33 (2): A-27.
  21. ^ Teichert, Curt (22 October 2013). "Main Features of Cehalopod Evolution". In Clarke, M. R.; Trueman, E. R. (eds.). Paleontology and Neontology of Cephalopods. Vol. 12. Academic Press, Harcourt Brace Jovanovich. p. 1988. ISBN 9781483275529. Retrieved 23 November 2021.
  22. ^ Hodych, J. P.; G. R. Dunning (1992). "Did the Manicouagan impact trigger end-of-Triassic mass extinction?". Geology. 20 (1): 51.54. Bibcode:1992Geo....20...51H. doi:10.1130/0091-7613(1992)020<0051:DTMITE>2.3.CO;2.
  23. ^ Ramezani, J., S. A. Bowring, M. S. Pringle, F. D. Winslow, III, and E. T. Rasbury (2005). "The Manicouagan impact melt rock: a proposed standard for intercalibration of U-Pb and 40Ar/39Ar isotopic systems". 15th V.M. Goldsmidt Conference Abstract Volume, p. A321.

Sources

[edit]

Further reading

[edit]