# List of thermal conductivities

In heat transfer, the thermal conductivity of a substance, k, is an intensive property that indicates its ability to conduct heat.

Thermal conductivity is often measured with laser flash analysis. Alternative measurements are also established.

Mixtures may have variable thermal conductivities due to composition.

Note that this table shows thermal conductivity in units of watts per metre per Kelvin (W·m−1·K−1). This is the current metric unit of measurement. Prior to this, however, thermal conductivity was measured in terms of BTUs per foot per hour per degree Fahrenheit. A value for the former can be computed from the latter by multiplying by 1.728.[1] To convert from W/m K to Btu/hr.ft.F multiply by 0.5777892052

Material Thermal conductivity [W·m−1·K−1] Temperature [K] Electrical conductivity @ 293 K
[Ω−1·m−1]
Notes
Acrylic Glass (Plexiglas V045i) 0.17[2]-0.19[2]-0.2[3] 296[2] 7.1430001120969E-15[2] - 4.9999999811584E-14[2]
Air 0.024[4][5][6]-0.025[7]
0.0262 (1 bar)[8]
0.0457 (1 bar)[8]
273[4][5]-293[7]-298[6]
300[8]
600[8]
hiAerosols2.95[9]-loAerosols7.83[9]×10−15 (78.03%N2,21%O2,+0.93%Ar,+0.04%CO2) (1 atm)
Alcohols OR Oils 0.1[6][7]-0.110[10]-0.21[6][7]-0.212[10] 293[7]-298[6]-300[10]
Aluminium, pure 204.3[11]-205[4]-220[12]-237[7][13][14][15]-250[6]
214.6[11]
249.3[11]
293[7][11]-298[6][14][15]
366[11]
478[11]
37,450,000[14] - 37,740,000[16]
Aluminium nitride 170[13]-175[17]-190[17] 293[17] 1×10−11[17]
Aluminium oxide, pure 26[18]-30[7]-35[18]-39[13]-40[19] 293[7][18][19] 1×10−12-[18][19]
Ammonia, saturated 0.507[10] 300[10]
Argon 0.016[6]-0.01772[15]-0.0179[15][20] 298[6][15]-300[15][20]
Beryllium oxide 218[13]-260[21]-300[21] 293[21] 1×10−12[21]
Bismuth 7.97[15] 300[15]
Brass Cu63% 125[22] 296[22] 15,150,000[22] - 16,130,000[22] (Cu63%, Zn37%)
Brass Cu70% 109[4][23] - 121[23] 293[4]-296[23] 12,820,000[23] - 16,130,000[23] (Cu70%, Zn30%)
Brick 0.15[4]-0.6[4]-0.69[6]-1.31[6] 293[4]-298[6]
Bronze 26[12]
42[24]-50[11][24]
293[11]-296[24]
5,882,000[24] - 7,143,000[24]
Sn25%[12]
(Cu89%, Sn11%)[24]
Calcium silicate 0.063[25] 373[25]
Carbon dioxide 0.0146[6]-0.01465[26]-0.0168[20](sat. liquid 0.087[27]) 298[6]-273[26]-300[20](293[27])
Carbon nanotubes, bulk 2.5 (multiwall)[28] - 35 (single wall, disordered mats)[28] - 200(single wall, aligned mats)[28] 300[28] "bulk" refers to a group of nanotubes either arranged or disordered, for a single nanotube, see "carbon nanotube, single" .[28]
Carbon nanotube, single 3180 (multiwall)[29][30]-3500 (single wall)[31]
(SWcalc.6,600[29][32]-37,000[29][32])
320[29][30]-300[31]
(300[29][32]-100[29][32])
(Lateral)10−16[33] - (Ballistic)108[33]) values only for one single SWNT(length:2.6 μm, diameter:1.7 nm) and CNT. "Single", as opposed to "bulk" quantity (see "carbon nanotubes, bulk" ) of many nanotubes, which should not be confused with the denomination of nanotubes themselves which can be singlewall(SWNT) or multiwall(CNT)[28]
Concrete 0.8[4] - 1.28[7] - 1.65 [34] - 2.5 [34] 293[7] ~61-67%CaO
Copper, pure 385[4]-386[11][12]-390[7]-401[6][15][35]
368.7[11]
353.1[11]
293[4][6][7][11][15][35]
573[11]
873[11]
59,170,000[35] - 59,590,000[16] International Annealed Copper Standard (IACS) pure =1.7×10−8Ω•m
=58.82×106Ω−1•m−1

For main article, see: Copper in heat exchangers.

Cork 0.04[4] - 0.07[7] 293[7]
Cotton or Plastic Insulation-foamed 0.03[6][7] 293[7]
Diamond, impure 1,000[4][36] 273[36] - 293[4] 1×10−16~[37] Type I (98.1% of Gem Diamonds) (C+0.1%N)
Diamond, natural 2,200[38] 293[38] 1×10−16~[37] Type IIa (99%12C and 1%13C)
Diamond, isotopically enriched 3,320[38]-41,000[29][39](99.999% 12C calc.200,000[39]) 293[38]-104[29][39](~80[39]) (Lateral)10−16[37] - (Ballistic)108[37] Type IIa isotopically enriched (>99.9%12C)
Epoxy, thermally conductive 0.682[40] - 1.038 - 1.384[41]
Expanded polystyrene - EPS 0.03[6]-0.033[4][6][36]((PS Only)0.1[42]-0.13[42]) 98[36]-298[6][36](296[42]) 1×10−14[42] (PS+Air+CO2+CnH2n+x)
Extruded polystyrene - XPS 0.029 - 0.39 98-298
Fiberglass or Foam-glass 0.045[7] 293[7]
Gallium arsenide 56[36] 300[36]
Glass 0.8[4]-0.93[7](SiO2pure1[13]-SiO296%1.2[43]-1.4[43]) 293[4][7][43] 10−14[44][45]-10−12[43]-10−10[44][45] <1% Iron oxides
Glycerol 0.285[10]-0.29[7] 300[10]-293[7]
Gold, pure 314[4]-315[11]-318[12][15][46] 293[11]-298[15][46] 45,170,000[16] - 45,450,000[46]
Granite 1.73[47] - 3.98[47] (72%SiO2+14%Al2O3+4%K2O etc.)
Graphene (4840±440)[48] - (5300±480)[48] 293[48] 100,000,000[49]
Graphite, natural 25-470[50] 293[50] 5000000-30000000[50]
Helium II >100000[51] 2.2 liquid Helium in its superfluid state below 2.2 K
Hydrogen 0.1819[52] 290 Hydrogen gas at room temperature.
Ice 1.6[4]-2.1[7]-2.2[36]-2.22[53] 293[4][7] - 273[36][53]
Indium phosphide 80[36] 300[36]
Iron, pure 71.8[12]-72.7[11]-79.5[4]-80[6]-80.2[36]-80.4[15][54]
55.4[11]
34.6[11]
293[4][11]-298[6]-300[15][36][54]
573[11]
1273[11]
9,901,000[54] - 10,410,000[16]
Iron, cast 55[6][12] 298[6] (Fe+(2-4)%C+(1-3)%Si)
29.8[11]
293[4][11]-298[6]-300[15][55]
573[11]
4,808,000[16] - 4,854,000[55]
Limestone 1.26[47] - 1.33[47] Mostly CaCO3
Marble 2.07[47]-2.08[6]-2.94[6][47] 298[6] Mostly CaCO3
Methane 0.030[6]-0.03281[56] 298[6]-273[56]
Mineral Insulation or Wool(Felt/Glass/Rock) 0.04[4][6][7] 293[7]-298[6]
Nickel 90.9[15]-91[6] 298[6][15]
Nitrogen, pure 0.0234[4]-0.024[6]-0.02583[15]-0.026[20][36] 293[4]-298[6]-300[15][20][36] (N2) (1 atm)
Oxygen, pure (gas) 0.0238[4]-0.024[6]-0.0263[20]-0.02658[15] 293[4]-298[6]-300[15][20] (O2) (1 atm)
Paper 0.05[6] 298[6]
Perlite, (1 atm) 0.031[6] 298[6]
Perlite in partial vacuum 0.00137[6] 298[6]
Plastic, fiber-reinforced 0.23[57] - 0.7[57] - 1.06[7] 293[7] - 296[57] 10−15[57] - 100[57] 10-40%GF or CF
Polyethylene High Density 0.42[6] - 0.51[6] 298[6]
Polymer, High-Density 0.33[57] - 0.52[57] 296[57] 10−16[57] - 102[57]
Polymer, Low-density 0.04[57] - 0.16[7] - 0.25[7] - 0.33[57] 293[7] - 296[57] 10−17[57] - 100[57]
Polyurethane foam 0.02[6] - 0.021[6] 298[6]
Quartz (single crystal) 12[36] $\parallel$ to c axis, 6.8[36] $\perp$ to c axis 300[36]
Quartz-Fused or Vitreous Silica or Fused Silica 1.46[58]-3[7]
1.4[36]
293[7][58]
323[36]
1.3329999732855E-18[44] - 10−16[58]
Rice hulls (ash) 0.062[59]
Rice hulls (whole) 0.0359[59]
Rubber (92%) 0.16[36] 303[36] 1×10−13~[44]
Sandstone 1.83[47] - 2.90[47]
2.1[60] - 3.9[60]
~95-71%SiO2
~98-48%SiO2, ~16-30% Porosity
Silica Aerogel 0.003[36](carbon black9%~0.0042[61])-0.008[61]-0.017[61]-0.02[6]-0.03[36] 98[36] - 298[6][36] Foamed Glass
Silver, pure 406[4]-407[11]-418[12]
427[13]-429[6][15][36][62]-430[15]
293[4][11]
298[6][15][62]-300[15][36]
61,350,000[62] - 63,010,000[16] Highest electrical conductivity of any metal
Silver, sterling 361[63]
Snow, dry 0.05[6]-0.11[4]-0.25[6] 273[6]
Sodium chloride 35.1 - 6.5 - 4.85[64] 80 - 289 - 400[64]
Soil, dry w/ organic matter 0.15[7][65]-1.15[65]-2[7] 293[7] composition may vary
Soil, saturated 0.6[7]-4[7] 293[7] composition may vary
Solder, Sn/63% Pb/37% 50[66]
Lead free solder, Sn/95.6% Ag/3.5% Cu/0.9%, Sn/95.5% Ag/3.8% Cu/0.7% (SAC) ~60[66]
Steel, carbon 36[11][12]-43[6] 50.2[4]-54[6][11][12] 293[4][11]-298[6] (Fe+(1.5-0.5)%C)
Steel, stainless 16.3[12][67]-16.7[68]-18[69]-24[69] 296[67][68][69] 1,176,000[68] - 1,786,000[69] (Fe, Cr12.5-25%, Ni0-20%, Mo0-3%, Ti0-trace)
Thermal grease, silver-based 0.94+[70]
Thermal tape 0.60[71]
Titanium, pure 15.6[12]-19.0[11]-21.9[15][72]-22.5[11] 293[11]-300[15][72] 1,852,000[72] - 2,381,000[16]
Titanium Alloy 5.8[73] 296[73] 595,200[73] (Ti+6%Al+4%V)
Tungsten, Pure 173[37] 293[37] 18,940,000[37]
Water 0.563[74]-0.596[74]-0.6[4][7]-0.609[10] 273[74]-293[4][7][74]-300[10] Pure10−6[37]-Sweet10−3±1[37]-Sea1[74] <4[74]%(NaCl+MgCl2+CaCl2)
Water vapor 0.016[6]-0.02479 (101.3 kPa)[75]
0.0471 (1 bar)[8]
293[75]-398[6]
600[8]
Wood, +>=12% water 0.09091[76]-0.16[36]-0.21[76]-0.4[7] 298[36]-293[7] Species-Variable[76]
Wood, oven-dry 0.04[4]-0.055[6]-0.07692[76]-0.12[4]-0.17[6][76] 293[4]-298[6] Balsa[6]-Cedar[76]-Hickory[76]/Oak[6]
Zinc, Pure 116[37] 293[37] 16,950,000[37]
Zinc oxide 21[13]
Material Thermal conductivity [W·m−1·K−1] Temperature [K] Electrical conductivity @ 293 K [Ω−1·m−1] Notes

## References

1. ^ Roger N. Wright (3 December 2010). "Wire Technology: Process Engineering and Metallurgy". Elsevier. p. 281. ISBN 978-0-12-382093-8{{inconsistent citations}}
2. http://www.goodfellow.com/E/Polymethylmethacrylate.html
3. ^ http://www.plexiglas.com/tds/4b.pdf
4. HyperPhysics, most from Young, Hugh D., University Physics, 7th Ed., Addison Wesley, 1992. Table 15-5. (most data should be at 293 K (20 °C; 68 °F))
5. ^ a b http://www.engineeringtoolbox.com/air-properties-d_156.html
6. http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
7. Hukseflux Thermal Sensors
8. "Thermal conductivity of gases", CRC Handbook, p. 6–195.
9. ^ a b Pawar, S. D.; Murugavel, P.; Lal, D. M. (2009). "Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian Ocean". Journal of Geophysical Research 114: D02205. Bibcode:2009JGRD..11402205P. doi:10.1029/2007JD009716.
10. http://www.engineeringtoolbox.com/thermal-conductivity-liquids-d_1260.html
11. http://www.engineeringtoolbox.com/thermal-conductivity-metals-d_858.html
12. http://www.engineersedge.com/properties_of_metals.htm
13. Greg Becker, Chris Lee, and Zuchen Lin (July 2005). "Thermal conductivity in advanced chips — Emerging generation of thermal greases offers advantages". Advanced Packaging: pp.2–4. Retrieved 2008-03-04.
14. ^ a b c http://www.goodfellow.com/E/Aluminium.html
15. Thermal conductivities of the elements (data page)
16. Electrical resistivities of the elements (data page)
17. ^ a b c d http://www.goodfellow.com/E/AluminiumNitride'.html
18. ^ a b c d http://www.goodfellow.com/E/Alumina.html
19. ^ a b c Alumina (Al2O3) - Physical, Mechanical, Thermal, Electrical and Chemical Properties - Supplier Data by Ceramaret
20. http://www.engineersedge.com/heat_transfer/thermal-conductivity-gases.htm
21. ^ a b c d http://www.goodfellow.com/E/Beryllia.html
22. ^ a b c d http://www.goodfellow.com/E/Brass.html
23. http://www.goodfellow.com/E/Brass'.html
24. http://www.goodfellow.com/E/Bronze.html
25. ^ a b http://www.engineeringtoolbox.com/calcium-silicate-insulation-k-values-d_1171.html
26. ^ a b http://encyclopedia.airliquide.com/encyclopedia.asp?GasID=26
27. ^ a b http://www.engineeringtoolbox.com/carbon-dioxide-d_1000.html
28. "Carbon nanotubes : Reinforced metal matrix composites" by A.Agarwal, S.R.Bakshi and D.Lahiri, CRC Press, 2011 (ch.1, p.8, chart 1.1 : physical properties of carbon materials )
29. "Carbon Nanotubes: Thermal Properties" (PDF). Retrieved 2009-06-06.
30. ^ a b Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. et al. (2001-06-01). "Thermal transport measurements of individual multiwalled nanotubes". Physical Review Letters 87 (21): 215502–215506. arXiv:cond-mat/0106578. Bibcode:2001PhRvL..87u5502K. doi:10.1103/PhysRevLett.87.215502. PMID 11736348.
31. ^ a b Pop, Eric; Mann, David; Wang, Qian; Goodson, Kenneth; Dai, Hongjie et al. (2005-12-22). "Thermal conductance of an individual single-wall carbon nanotube above room temperature". Nano Letters 6 (1): 96–100. arXiv:cond-mat/0512624. Bibcode:2006NanoL...6...96P. doi:10.1021/nl052145f. PMID 16402794.
32. ^ a b c d Berber, Savas; Kwon, Young-Kyun; Tománek, David (2000-02-23). "Unusually high thermal conductivity of carbon nanotubes". Physical Review Letters 84 (20): 4613–4616. arXiv:cond-mat/0002414. Bibcode:2000PhRvL..84.4613B. doi:10.1103/PhysRevLett.84.4613. PMID 10990753.
33. ^ a b Li, Qingwen; Li, Yuan; Chikkannanavar, S. B.; Zhao, Y. H.; Dangelewicz, A. M.; Zheng, L. X.; Doorn, S. K. et al. (2007). "Structure-Dependent Electrical Properties of Carbon Nanotube Fibers". Advanced Materials 19 (20): 3358–3363. doi:10.1002/adma.200602966.
34. ^ a b International Standard EN-ISO 10456:2007 'Building materials and products - Hygrothermal properties - Tabulated design values and procedures for determining declared and design thermal values'
35. ^ a b c http://www.goodfellow.com/E/Copper.html
36. CRC handbook of chemistry and physics[verification needed](subscription required)(HTTP cookies required)
37. Other references listed within Wikipedia (this table may not be cited, pure elements are sourced from Chemical elements data references, otherwise an in-table linked-page must list the relevant references)
38. ^ a b c d Anthony, T. R.; Banholzer, W. F.; Fleischer, J. F.; Wei, Lanhua; Kuo, P. K.; Thomas, R. L.; Pryor, R. W. (1989-12-27). "Thermal conductivity of isotopically enriched 12C diamond". Physical Review B 42 (2): 1104–1111. Bibcode:1990PhRvB..42.1104A. doi:10.1103/PhysRevB.42.1104.
39. ^ a b c d Wei, Lanhua; Kuo, P. K.; Thomas, R. L.; Anthony, T. R.; Banholzer, W. F. (1993-02-16). "Thermal conductivity of isotopically modified single crystal diamond". Physical Review Letters 70 (24): 3764–3767. Bibcode:1993PhRvL..70.3764W. doi:10.1103/PhysRevLett.70.3764. PMID 10053956.
40. ^
41. ^
42. ^ a b c d http://www.goodfellow.com/E/Polystyrene.html
43. ^ a b c d http://www.goodfellow.com/E/Silica.html
44. ^ a b c d Serway, Raymond A. (1998). Principles of Physics (2nd ed.). Fort Worth, Texas; London: Saunders College Pub. p. 602. ISBN 0-03-020457-7.
45. ^ a b Griffiths, David (1999) [1981]. "7. Electrodynamics". In Alison Reeves (ed.). Introduction to Electrodynamics (3rd ed.). Upper Saddle River, New Jersey: Prentice Hall. p. 286. ISBN 0-13-805326-X. OCLC 40251748.
46. ^ a b c http://www.goodfellow.com/E/Gold.html
47. Marble Institute of America (2 values are usually given: the highest and lowest test scores)
48. ^ a b c Balandin, Alexander A.; Ghosh, Suchismita; Bao, Wenzhong; Calizo, Irene; Teweldebrhan, Desalegne; Miao, Feng; Lau, Chun Ning et al. (2008-02-20). "Superior Thermal Conductivity of Single-Layer Graphene". Nano Letters ASAP 8 (3): 902–907. Bibcode:2008NanoL...8..902B. doi:10.1021/nl0731872. PMID 18284217.
49. ^ Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene
50. ^ a b c Properties of Graphite
51. ^ Clifford A. Hampel (1968). The Encyclopedia of the Chemical Elements. New York: Van Nostrand Reinhold. pp. 256–268. ISBN 0-442-15598-0.
52. ^ M. J. Assael, S. Mixafendi, W. A. Wakeham (1 July 1986). "The Viscosity and Thermal Conductivity of Normal Hydrogen in the Limit of Zero Density" (PDF). NIST. Retrieved 2 April 2015.
53. ^ a b http://www.engineeringtoolbox.com/ice-thermal-properties-d_576.html
54. ^ a b c http://www.goodfellow.com/E/Iron.html
55. ^ a b c http://www.goodfellow.com/E/Lead.html
56. ^ a b http://encyclopedia.airliquide.com/Encyclopedia.asp?GasID=41
57. http://www.goodfellow.com/Home.aspx?LangType=2057
58. ^ a b c http://www.goodfellow.com/E/Quartz-Fused.html
59. ^ a b http://esrla.com/pdf/ricehullhouse.pdf
61. ^ a b c http://energy.lbl.gov/ECS/aerogels/sa-thermal.html Thermal Properties - Silica Aerogels
62. ^ a b c http://www.goodfellow.com/E/Silver.html
63. ^ S. Vandana (1 December 2002). "Alternative Energy". APH. p. 45. ISBN 978-81-7648-349-0{{inconsistent citations}}
64. ^ a b http://www.almazoptics.com/NaCl.htm
65. ^ a b Soil Sci Journals
66. ^ a b
67. ^ a b
68. ^ a b c http://www.goodfellow.com/E/Stainless-Steel-17-7PH.html
69. ^ a b c d http://www.goodfellow.com/E/Stainless-Steel-AISI-410.html
70. ^ NREL Review of Thermal Greases (Free PDF Form Available Through Search Engines)
71. ^ [1]
72. ^ a b c http://www.goodfellow.com/E/Titanium.html
73. ^ a b c http://www.goodfellow.com/E/Titanium-Aluminium-Vanadium.html
74. "2.7.9 Physical properties of sea water". Kaye and Laby - National Physical Laboratory. Retrieved 2010-01-25.
75. ^ a b "Thermal conductivity of saturated H2O and D2O, CRC Handbook, p. 6–4.