Talk:Arithmetization of analysis

From Wikipedia, the free encyclopedia
Jump to: navigation, search
          This article is of interest to the following WikiProjects:
WikiProject Mathematics (Rated Stub-class, Mid-importance)
WikiProject Mathematics
This article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of Mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Mathematics rating:
Stub Class
Mid Importance
 Field: Analysis (historical)
WikiProject Philosophy (Rated Stub-class)
WikiProject icon This article is within the scope of the WikiProject Philosophy, which collaborates on articles related to philosophy. To participate, you can edit this article or visit the project page for more details.
Stub-Class article Stub  This article has been rated as Stub-Class on the project's quality scale.
 ???  This article has not yet received a rating on the project's importance scale.
 
WikiProject History of Science  
WikiProject icon This article is part of the History of Science WikiProject, an attempt to improve and organize the history of science content on Wikipedia. If you would like to participate, you can edit the article attached to this page, or visit the project page, where you can join the project and/or contribute to the discussion. You can also help with the History of Science Collaboration of the Month.
 ???  This article has not yet received a rating on the project's quality scale.
 ???  This article has not yet received a rating on the project's importance scale.
 

problematic article[edit]

This article apparently treats an important idea in the history of math-foundational thought; see for example Simpson, who asserts:

Another important development was the "arithmetization of analysis" (Weierstrass, Dedekind). Thus it was no longer necessary to regard real numbers and continuous functions as basic, unanalyzed concepts; instead they could be reduced to the natural numbers. This made possible the axiomatization of analysis in terms of second order arithmetic (carried out systematically by Hilbert and Bernays).

From a modern perspective, though, the treatment is kind of misleading, because the real numbers are not in fact reduced to natural numbers, but rather to sets of natural numbers, a fundamentally richer and more complicated notion. A related problem is the discussion of

the more extreme philosophical position that all of mathematics should be derivable from logic and set theory, ultimately leading to Hilbert's program, Gödel's theorems and non-standard analysis.

where "logic" and "set theory" seem to be more or less conflated, suggesting, say, that the reals should be a purely logical, analytic notion, because sets are supposed to be. But in fact sets have, if anything, less claim to analyticity than do the reals. This, of course, is clear only in retrospect and there's no warrant to hold Weierstrass or Dedekind accountable for it, so from a historical perspective the treatment is probably correct. That doesn't save it from being potentially confusing to a contemporary reader. --Trovatore 18:11, 1 April 2006 (UTC)

WikiProject class rating[edit]

This article was automatically assessed because at least one WikiProject had rated the article as stub, and the rating on other projects was brought up to Stub class. BetacommandBot 03:47, 10 November 2007 (UTC)