Tin(II) sulfide
This article needs additional citations for verification. (September 2011) |
Names | |
---|---|
IUPAC name
Tin(II) sulfide
| |
Other names
Tin monosulfide
Herzenbergite | |
Identifiers | |
3D model (JSmol)
|
|
ECHA InfoCard | 100.013.863 |
EC Number |
|
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
SnS | |
Molar mass | 150.775 g/mol |
Appearance | dark brown solid |
Density | 5.22 g/cm3 |
Melting point | 882 °C (1,620 °F; 1,155 K) |
Boiling point | about 1230 ˚C |
Insoluble | |
Structure | |
GeS type (orthorhombic), oP8 | |
Pnma, No. 62 | |
a = 11.18 Å, b = 3.98 Å, c = 4.32 Å[2]
| |
asymmetric 3-fold (strongly distorted octahedral) | |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards
|
Irritant |
Related compounds | |
Other anions
|
Tin(II) oxide Tin selenide Tin telluride |
Other cations
|
Carbon monosulfide Silicon monosulfide Germanium monosulfide Lead(II) sulfide |
Related compounds
|
Tin(IV) sulfide Tributyl tin sulfide |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Tin(II) sulfide is a chemical compound of tin and sulfur. The chemical formula is SnS. Its natural occurrence concerns herzenbergite (α-SnS), a rare mineral. At elevated temperatures above 905 K, SnS undergoes a second order phase transition to β-SnS (space group: Cmcm, No. 63).[3] In recent years, it has become evident that a new polymorph of SnS exists based upon the cubic crystal system, known as π-SnS (space group: P213, No. 198).[4][5]
Synthesis
Tin(II) sulfide can be prepared by reacting tin with sulfur, or tin(II) chloride with hydrogen sulfide.
- Sn + S → SnS
- SnCl2 + H2S → SnS + 2 HCl
Properties
Tin(II) sulfide is a dark brown or black solid, insoluble in water, but soluble in concentrated hydrochloric acid. Tin(II) sulfide is insoluble in (NH4)2S. It has a layer structure similar to that of black phosphorus.[6] As per black phosphorus, tin(II) sulfide can be ultrasonically exfoliated in liquids to produce atomically thin semiconducting SnS sheets that have a wider optical band gap (>1.5 eV) compared to the bulk crystal.[7]
Photovoltaic applications
Tin(II) sulfide is an interesting potential candidate for next generation thin-film solar cells. Currently, both cadmium telluride and CIGS (copper indium gallium selenide) are used as p-type absorber layers, but they are formulated from toxic, scarce constituents.[8] Tin(II) sulfide, by contrast, is formed from cheap, earth abundant elements, and is nontoxic. This material also has a high optical absorption coefficient, p-type conductivity, and a mid range direct band gap of 1.3-1.4 eV, required electronic properties for this type of absorber layer.[9] Based on the a detailed balance calculation using the material bandgap, the power conversion efficiency of a solar cell utilizing a tin(II) sulfide absorber layer could be as high as 32%, which is comparable to crystalline silicon.[10] Finally, Tin(II) sulfide is stable in both alkaline and acidic conditions.[11] All aforementioned characteristics suggest tin(II) sulfide as an interesting material to be used as a solar cell absorber layer.
At present, tin(II) sulfide thin films for use in photovoltaic cells are still in the research phase of development with power conversion efficiencies currently less than 5%.[12] Barriers for use include a low open circuit voltage and an inability to realize many of the above properties due to challenges in fabrication, but tin(II) sulfide still remains a promising material if these technical challenges are overcome.[10]
References
- ^ Record of Tin(II) sulfide in the GESTIS Substance Database of the Institute for Occupational Safety and Health, accessed on 4/9/2007.
- ^ del Bucchia, S.; Jumas, J.C.; Maurin, M. (1981). "Contribution a l'etude de composes sulfures d'etain (II): Affinement de la structure de Sn S". Acta Crystallogr. B. 37 (10): 1903. doi:10.1107/s0567740881007528.
- ^ Wiedemeier, Heribert; von Schnering, Hans Georg (1978-01-01). "Refinement of the structures of GeS, GeSe, SnS and SnSe : Zeitschrift für Kristallographie". Zeitschrift für Kristallographie. 148 (3–4): 295–303. doi:10.1524/zkri.1978.148.3-4.295.
- ^ Rabkin, Alexander; Samuha, Shmuel; Abutbul, Ran E.; Ezersky, Vladimir; Meshi, Louisa; Golan, Yuval (2015-03-11). "New Nanocrystalline Materials: A Previously Unknown Simple Cubic Phase in the SnS Binary System". Nano Letters. 15 (3): 2174–2179. Bibcode:2015NanoL..15.2174R. doi:10.1021/acs.nanolett.5b00209. ISSN 1530-6984. PMID 25710674.
- ^ Abutbul, R. E.; Segev, E.; Zeiri, L.; Ezersky, V.; Makov, G.; Golan, Y. (2016-01-12). "Synthesis and properties of nanocrystalline π-SnS – a new cubic phase of tin sulphide". RSC Advances. 6 (7): 5848–5855. Bibcode:2016RSCAd...6.5848A. doi:10.1039/c5ra23092f. ISSN 2046-2069.
- ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1233. ISBN 978-0-08-037941-8.
- ^ Brent; et al. (2015). "Tin(II) Sulfide (SnS) Nanosheets by Liquid-Phase Exfoliation of Herzenbergite: IV–VI Main Group Two-Dimensional Atomic Crystals". J. Am. Chem. Soc. 137 (39): 12689–12696. doi:10.1021/jacs.5b08236. PMID 26352047.
- ^ Ginley, D.; Green, M.A. (2008). "Solar energy conversion towards 1 terawatt". MRS Bulletin. 33 (4): 355–364. doi:10.1557/mrs2008.71.
- ^ Andrade-Arvizu, Jacob A.; Courel-Piedrahita, Maykel; Vigil-Galán, Osvaldo (2015-04-14). "SnS-based thin film solar cells: perspectives over the last 25 years". Journal of Materials Science: Materials in Electronics. 26 (7): 4541–4556. doi:10.1007/s10854-015-3050-z. ISSN 0957-4522. S2CID 137524157.
- ^ a b Nair, P. K.; Garcia-Angelmo, A. R.; Nair, M. T. S. (2016-01-01). "Cubic and orthorhombic SnS thin-film absorbers for tin sulfide solar cells". Physica Status Solidi A. 213 (1): 170–177. Bibcode:2016PSSAR.213..170N. doi:10.1002/pssa.201532426. ISSN 1862-6319.
- ^ Sato, N.; Ichimura, E. (2003). "Characterization of electrical properties of SnS thin films prepared by the electrochemical deposition method". Proceedings of 3rd World Conference on Photovoltaic Energy Conversion. A.
- ^ Jaramillo, R.; Steinmann, V.; Yang, C.; Chakraborty, R.; Poindexter, J. R. (2015). "Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition". J. Vis. Exp. (99): e52705. doi:10.3791/52705. PMC 4542955. PMID 26067454.