Jump to content

Karl Pearson: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Sources: WTH is that?
remove "Sources" that were never used directly as a source for this page (just mentioned on websites that were) and combine remaining into "references" section.
Line 111: Line 111:


==References==
==References==
Most of the biographical information above is taken from the [http://www.ucl.ac.uk/Stats/department/pearson.html Karl Pearson page] at the Department of Statistical Sciences at University College London, which has been placed in the public domain. The main source for this page was ''A list of the papers and correspondence of Karl Pearson (1857-1936)'' held in the Manuscripts Room, University College London Library, compiled by M. Merrington, B. Blundell, S. Burrough, J. Golden and J. Hogarth and published by the Publications Office, University College London, 1983.
Most of the biographical information above is taken from the [http://www.ucl.ac.uk/Stats/department/pearson.html Karl Pearson page] at the Department of Statistical Sciences at University College London, which has been placed in the public domain. The main source for that page was ''A list of the papers and correspondence of Karl Pearson (1857-1936)'' held in the Manuscripts Room, University College London Library, compiled by M. Merrington, B. Blundell, S. Burrough, J. Golden and J. Hogarth and published by the Publications Office, University College London, 1983.

Additional information from [http://royalsociety.org/DServe/dserve.exe?dsqIni=Dserve.ini&dsqApp=Archive&dsqCmd=Show.tcl&dsqDb=Persons&dsqPos=3&dsqSearch=(((text)='karl')AND((text)='pearson')) entry for Karl Pearson in the Sackler Digital Archive of the Royal Society]

<references/>


==Resume of academic career==
==Resume of academic career==
Line 129: Line 133:
* Founded journal Annals of Eugenics, [[1925]]
* Founded journal Annals of Eugenics, [[1925]]
* Died [[April 27]] [[1936]]
* Died [[April 27]] [[1936]]

==Obituaries==
* Obituary Notices of Fellows of the Royal Society 1936-1938 vol 2 pp. 73-110, plate, by L. N. G. Filon

==Sources==
<references/>
* ''Bulloch's Roll''{{huh}}
* ''DNB''{{huh}}
* ''DSB''{{huh}}
* David C. Watt, ''Lionel Penrose, FRS (1898-1972) and Eugenics: Part One'', NR, 1998, vol. 52, pp. 137-151
* Sahotra Sarkar, ''J. B. S, Haldane and R. A. Fisher's Draft Life of Karl Pearson'', NR, 1995, vol. 49, pp. 119-124
* A. W. F. Edwards, ''R. A. Fisher on Karl Pearson'', NR, 1994, vol. 48, pp. 97-106, plate
* Meg Weston Smith, ''E. A. Milne and the Creation of Air Defence: Some Letters From an Unprincipled Brigand, 1916-1919'', NR, 1990, vol. 44, pp. 241-255
* Bernard Norton and E. S. Pearson, ''A Note on the Background to, and Refereeing of, R. A. Fisher's 1918 paper, "On the Correlation Between Relatives on the Supposition of Mendelian Inheritance"'', NR, 1976-77, vol. 31, pp. 151-62
*A. W. F. Edwards, ''From African exploration to the birth of eugenics. A life of Sir Francis Galton: from African exploration to the birth of eugenics, by N W Gillham'', NR, 2002, vol. 56, pp. 399-400
*''Karl Pearson: The scientific life in a statistical age'' by T. M. Porter', NR, 2005, vol. 59, pp. 92-93


==Publications==
==Publications==

Revision as of 22:58, 6 March 2008

Karl Pearson
Karl Pearson (né Carl Pearson)
Born(1857-03-27)March 27, 1857
DiedApril 27, 1936(1936-04-27) (aged 79)
Nationality British
Alma materCambridge University
University of Heidelberg
Known forPearson distribution
Pearson's r
Pearson's chi-square test
AwardsDarwin Medal (1898)
Scientific career
Fieldslawyer, Germanist, eugenicist, mathematician and statistician (primarily the latter)
InstitutionsUniversity College, London
Doctoral advisorFrancis Galton
Doctoral studentsPhilip Hall

Karl Pearson FRS (March 27 1857April 27 1936) established the discipline of mathematical statistics. [1] A sesquicentenary conference was held in London on 23 March 2007, to celebrate the 150th anniversary of his birth. [2]

In 1911 he founded the world's first university statistics department at University College London. He was a proponent of eugenics, and a protégé and biographer of Sir Francis Galton. He was also a socialist.

Family

Born to William Pearson and Fanny Smith, who had three children:

  • Arthur Beilby Pearson, later Arthur B. Pearson-Gee (1855-1896)
  • Carl Pearson, later known as Karl Pearson (1857-1936)
  • Amy (1859-????); married Ernest Hatton, QC in 1880)

William Pearson also sired an illegitimate son, Frederick Mockett [3]. (Recent research at UCL has verified this (Mockett info).

Pearson's mother, née Fanny Smith, came from a family of master mariners who sailed their own ships from Hull; his father read law at Edinburgh and was a successful barrister and Queen's Counsel (QC). William Pearson's father's family came from the North Riding of Yorkshire. The family grave is at Crambe, near York. Its motto, "ERIMUS" means "We shall be", and is also the motto of the Middlesbrough coat-of-arms (see Coat-of-arms, image of Pearson family graves).

The family were dissenters and of Quaker stock; his maternal grandfather was a Unitarian minister. In 1879 Carl rejected Christianity and adopted ‘Freethought’ as a nonreligious faith that was grounded in science, though he distinguished his views from a ‘Freethinker’ (i.e., a person who forms opinions about religion on the basis of reason without recourse to authority or established beliefs. [citation needed]

"Carl Pearson" inadvertently became "Karl Pearson" when he enrolled at the University of Heidelberg in 1879, which changed the spelling. He used both variants of his name until 1884 when he finally adopted Karl - supposedly also after Karl Marx[citation needed]; eventually he became universally known as "KP".

He was also an accomplished historian and Germanist. He spent much of the 1880's in Berlin, Vienna, Saig bei Lenzkirch, and Brixlegg. He wrote on Passion plays, religion, Goethe, Werther, as well as sex-related themes e.g. The Men and Women's Club.

In 1890 he married Maria Sharpe who was related to the Kenrick, Reid, Rogers and Sharpe families, late 18th century and 19th century non-conformists largely associated with north London; they included:

See: [4]

Karl and Maria Pearson had two daughters, Sigrid Loetitia Pearson and Helga Sharpe Pearson, and one son, Egon Sharpe Pearson. Egon Pearson became an eminent statistician himself, and created Neyman-Pearson statistics. He succeeded his father as head of the Applied Statistics Department at University College. [5]

Karl met Maria at The Men and Women's Club, which was co-founded by KP, and designed to permit free discussion among men and women. Maria Pearson died in 1928; the following year he married Margaret Child, a colleague at University College. The South African author Olive Schreiner was another active member of The Men and Women's Club, which according to Schreiner was

a discussion group which concentrated on "the status of moral judgement, moral change, fact and truth in the face of received opinion about the sexes". (Its) nominal leader ... Karl Pearson, two years younger than Schreiner, was a dynamic character to whom most of the group deferred. Schreiner, however, considered herself much more of his equal, and found his views intellectually stimulating. As the relationship deepened, Schreiner realised that she was looking for more than a platonic friendship. Pearson, however, remained oblivious to her passion. At one point Schreiner signed a letter "Your man-friend OS" in despair at his inability to interact on an emotional level.

Education and early work

Karl Pearson was educated privately at University College School, after which he went to King's College, Cambridge to study mathematics. He then spent part of 1879 and 1880 studying medieval and 16th century German literature at the universities of Berlin and Heidelberg – in fact, he became sufficiently knowledgeable in this field that he was offered a Germanics post at Kings College, Cambridge.

His next career move was to Inner Temple, where he read law until 1881 (although he never practised). After this, he returned to mathematics, deputizing for the mathematics professor at King's College London in 1881 and for the professor at University College London in 1883. In 1884, he was appointed to the Goldsmid Chair of Applied Mathematics and Mechanics at University College London. 1891 saw him also appointed to the professorship of Geometry at Gresham College; here he met Walter Frank Raphael Weldon, a zoologist who had some interesting problems requiring quantitative solutions. The collaboration, in biometry and evolutionary theory, was a fruitful one and lasted until Weldon died in 1906. Weldon introduced Pearson to Charles Darwin's cousin Francis Galton, who was interested in aspects of evolution such as heredity and eugenics. Pearson became Galton's protégé — his "statistical heir" as some have put it — at times to the verge of hero worship.

After Galton's death in 1911, Pearson embarked on producing his definitive biography—a three-volume tome of narrative, letters, genealogies, commentaries, and photographs—published in 1914, 1924, and 1930, with much of Pearson's own financing paying for their print runs. The biography, done "to satisfy myself and without regard to traditional standards, to the needs of publishers or to the tastes of the reading public", triumphed Galton's life, work, and personal heredity. He predicted that Galton, rather than Charles Darwin, would be remembered as the most prodigious grandson of Erasmus Darwin.

When Galton died, he left the residue of his estate to the University of London for a Chair in Eugenics. Pearson was the first holder of this chair—the Galton Chair of Eugenics, later the Galton Chair of Genetics[1]—in accordance with Galton's wishes. He formed the Department of Applied Statistics (with financial support from the Drapers' Company), into which he incorporated the Biometric and Galton laboratories. He remained with the department until his retirement in 1933, and continued to work until his death in 1936.

Einstein and Pearson's work

When the 23 year-old Albert Einstein started a study group, the Olympia Academy, with his two younger friends, Maurice Solovine and Conrad Habicht, he suggested that the first book to be read was Pearson's The Grammar of Science. This book covered several themes that were later to become part of the theories of Einstein and other scientists. Pearson asserted that the laws of nature are relative to the perceptive ability of the observer. Irreversibility of natural processes, he claimed, is a purely relative conception. An observer who travels at the exact velocity of light would see an eternal now, or an absence of motion. He speculated that an observer who traveled faster than light would see time reversal, similar to a cinema film being run backwards. Pearson also discussed antimatter, the fourth dimension, and wrinkles in time.

Pearson's relativity was based on idealism, in the sense of ideas or pictures in a mind. "There are many signs," he wrote, "that a sound idealism is surely replacing, as a basis for natural philosophy, the crude materialism of the older physicists." (Preface to 2nd Ed., The Grammar of Science) Further, he stated, "...science is in reality a classification and analysis of the contents of the mind...." "In truth, the field of science is much more consciousness than an external world." (Ibid., Ch. II, § 6) "Law in the scientific sense is thus essentially a product of the human mind and has no meaning apart from man." (Ibid., Ch. III, § 4)

Politics and eugenics

Aside from his professional life, Pearson was active as a prominent freethinker and socialist. He gave lectures on such issues as "the woman's question" (this was the era of the suffragist movement in the UK) and upon Karl Marx. His commitment to socialism and its ideals led him to refuse the offer of being created an OBE (Officer of the Order of the British Empire) in 1920, and also to refuse a Knighthood in 1935.However Pearson's views on eugenics would be considered to be racist by many in a modern environment. Pearson openly advocated "war" against "inferior races," and saw this as a logical implication of his scientific work on human measurement: "My view – and I think it may be called the scientific view of a nation," he wrote, "– is that of an organized whole, kept up to a high pitch of internal efficiency by insuring that its numbers are substantially recruited from the better stocks, and kept up to a high pitch of external efficiency by contest, chiefly by way of war with inferior races." He reasoned that, if August Weismann's theory of germ plasm is correct, then the nation is wasting money when it tries to improve people who come from poor stock. Weismann claimed that acquired characteristics could not be inherited. Therefore, training benefits only the trained generation. Their children will not exhibit the learned improvements and, in turn, will need to be improved. "No degenerate and feeble stock will ever be converted into healthy and sound stock by the accumulated effects of education, good laws, and sanitary surroundings. Such means may render the individual members of a stock passable if not strong members of society, but the same process will have to be gone through again and again with their offspring, and this in ever-widening circles, if the stock, owing to the conditions in which society has placed it, is able to increase its numbers." (Introduction, The Grammar of Science).

"History shows me one way, and one way only, in which a high state of civilization has been produced, namely, the struggle of race with race, and the survival of the physically and mentally fitter race. If you want to know whether the lower races of man can evolve a higher type, I fear the only course is to leave them to fight it out among themselves, and even then the struggle for existence between individual and individual, between tribe and tribe, may not be supported by that physical selection due to a particular climate on which probably so much of the Aryan's success depended . . ." (Karl Pearson, National Life from the Standpoint of Science [London, 1905])

Awards from professional bodies

Pearson achieved widespread recognition across a range of disciplines and his membership of, and awards from, various professional bodies reflects this:

  • 4 June 1896: elected FRS: Fellow of the Royal Society [6]
  • 1898: awarded the Darwin Medal
  • 1911: awarded the honorary degree of LLD from the University of St Andrews
  • 1911: awarded a DSc from University of London
  • 1920: offered (and refused) the OBE
  • 1932: awarded the Rudolf Virchow medal by the Berliner Anthropologische Gesellschaft
  • 1935: offered (and refused) a knighthood

He was also elected an Honorary Fellow of King's College Cambridge, the Royal Society of Edinburgh, University College London and the Royal Society of Medicine, and a Member of the Actuaries' Club.

Contributions to statistics

Pearson's work was all-embracing in the wide application and development of mathematical statistics, and encompassed the fields of biology, epidemiology, anthropometry, medicine and social history. In 1901, with Weldon and Galton, he founded the journal Biometrika whose object was the development of statistical theory. He edited this journal until his death. He also founded the journal Annals of Eugenics (now Annals of Human Genetics) in 1925. He published the Drapers' Company Research Memoirs largely to provide a record of the output of the Department of Applied Statistics not published elsewhere.

Pearson's thinking underpins many of the 'classical' statistical methods which are in common use today. Some of his main contributions are:

  1. Linear regression and correlation - Pearson was instrumental in the development of this theory. One of his classic data sets (originally collected by Galton) involves the regression of sons' height upon that of their fathers'. Pearson built a 3-dimensional model of this data set (which remains in the care of the Statistical Science Department) to illustrate the ideas. The Pearson product-moment correlation coefficient is named after him, and it was the first important effect size to be introduced into statistics.
  2. Classification of distributions - Pearson's work on classifying probability distributions forms the basis for a lot of modern statistical theory; in particular, the exponential family of distributions underlies the theory of generalized linear models.
  3. Pearson's chi-square test - A particular kind of chi-square test, a statistical test of significance.

See also

Pearson family memorial at Crambe, Yorkshire

References

Most of the biographical information above is taken from the Karl Pearson page at the Department of Statistical Sciences at University College London, which has been placed in the public domain. The main source for that page was A list of the papers and correspondence of Karl Pearson (1857-1936) held in the Manuscripts Room, University College London Library, compiled by M. Merrington, B. Blundell, S. Burrough, J. Golden and J. Hogarth and published by the Publications Office, University College London, 1983.

Additional information from entry for Karl Pearson in the Sackler Digital Archive of the Royal Society

  1. ^ Race, Intelligence and Bias in Academe by Roger Pearson Scott-Townsend Publishers, 1991, 304 pp.

Resume of academic career

  • Third Wrangler in Mathematics Tripos, Cambridge University, 1879
  • Studied medieval and sixteenth-century German literature, Berlin and Heidelberg Universities, 1879-1880
  • Read law, called to the Bar by Inner Temple, 1881
  • Delivered lectures on mathematics, philosophy and German literature at societies and clubs devoted to adult education
  • Deputised for the Professor of Mathematics, King's College London, 1881, and for the Professor of Mathematics at University College London, 1883
  • Formed the Men and Women's Club, with some others, to discuss equality between the sexes
  • Appointed to Goldsmid Chair of Applied Mathematics and Mechanics, University College London, 1884
  • Appointed Professor of Geometry, Gresham College, 1891
  • Collaborated with Walter Frank Raphael Weldon, Professor of Zoology and Comparative Anatomy, in biometry and evolutionary theory, 1891-1906
  • Elected Fellow of the Royal Society, 1896
  • Founded journal Biometrika with Weldon and Francis Galton founder of the School of Eugenics at University College London, 1901
  • Appointed first Galton Professor of Eugenics, University College London, 1911
  • Formed Department of Applied Statistics incorporating the Biometric Laboratory and Galton Laboratory, University College London
  • Founded journal Annals of Eugenics, 1925
  • Died April 27 1936

Publications

  • The New Werther (1880)
  • The Trinity, A Nineteenth Century Passion Play (1882)
  • The Trinity: a nineteenth century passion-play (E. Johnson, Cambridge, 1882)
  • A history of the theory of elasticity and of the strength of materials from Galilei to the present time (University Press, Cambridge, 1886-1893; editor)
  • The Ethic of Freethought (1886)
  • Die Fronica (1887)
  • The moral basis of socialism (W. Reeves, London, 1887)
  • The positive creed of freethought: with some remarks on the relation of freethought to socialism (W. Reeves, London, 1888)
  • Enthusiasm of the market place and of the study (1885)
  • The common sense of the exact sciences (Kegan Paul & Co, London, 1885; editor)
  • Matter and soul (1886)
  • The ethic of Freethought: a selection of essays and lectures (T. Fisher Unwin, London, 1888)
  • The Grammar of Science (1892), Dover Publications, 2004 edition, ISBN 0-486-49581-7
  • The grammar of science (1892)
  • The new university for London: a guide to its history and a criticism of its defects (T. Fisher Unwin, London, 1892)
  • On the dissection of asymmetrical frequency curves (1894)
  • Skew variation in homogeneous material (1895)
  • Reaction! A criticism of Mr Balfour's attack on rationalism (1895)
  • Regression, heredity and panmixia (1896)
  • The chances of death and other studies in evolution (E. Arnold, London, 1897)
  • On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to hove arisen from random sampling (1900)
  • National life from the stand-point of science An address delivered at Newcastle (A. & C. Black, London, 1901)
  • Mathematical contributions to the theory of evolution (1904)
  • A mathematical theory of random migration (1906)
  • Studies in national deterioration (1907)
  • A first study of the inheritance of vision and of the relative influence of heredity and environment on sight (London, 1909)
  • On a practical theory of elliptical and pseudo-elliptical arches, with special reference to the ideal masonry arch (with W. D. Reynolds and W. F. Stanton; 1909)
  • A second study of the statistics of pulmonary tuberculosis: marital infection (London, 1908; editor)
  • The groundwork of eugenics (1909)
  • The problem of practical eugenics(1909)
  • The treasury of human inheritance (Dulau & Co., London, 1909; editor)
  • Nature and nurture, the problem of the future: A presidential address (1910)
  • A preliminary study of extreme alcoholism in adults (with A. Barrington, London; 1910)
  • Supplement to the memoir (by Ethel Elderton) entitled: The influence of parental alcoholism on the physique and ability of the offspring: A reply to the Cambridge economists (1910)
  • A second study of the influence of parental alcoholism on the physique and ability of the offspring (1910)
  • A monograph on albinism in man (with Edward Nettleship and Charles Usher; 1911)
  • The academic aspect of the science of eugenics: A lecture delivered to undergraduates (1911)
  • Eugenics and public health: An address to public health officers (1912)
  • Tuberculosis, heredity and environment (1912)
  • Darwinism, medical progress and eugenics: The Cavendish lecture, an address to the medical profession (1912)
  • Social problems, their treatment, past, present, and future A lecture (1912)
  • On the correlation of fertility with social value: a cooperative study (1913)
  • On the handicapping of the first-born (1914)
  • Tables for statisticians and biometricians (London, 1914; editor)
  • Mendelism and the problem of mental defect (1914)
  • Tables for Statisticians and Biometricians (1914)
  • A statistical study of oral temperatures in school children, with special reference to parental, environmental, and class differences with M. H. Williams and Julia Bell (1914)
  • The life, letters and labours of Francis Galton (Cambridge University Press, Cambridge, 1914)
  • The life, letters and labours of Francis Galton (three volumes: 1914, 1924, 1930; available in full at Galton website)
  • On the torsion resulting from flexure in prisms with cross-sections of uni-axial symmetry only (with A. W. Young and Ethel Elderton; 1918)
  • A study of the long bones of the English skeleton (London, 1919)
  • Tracts for computers(London, 1919; editor)
  • On the construction of tables and on interpolation (London, 1920)
  • The science of man: its needs and its prospects (London, 1920)
  • Side lights on the evolution of man (London, 1921)
  • On the sesamoids of the knee-joint (Cambridge, 1922)
  • Tables of the incomplete G-function: computed by the staff of the Department of Applied Statistics, University College (London, 1922; editor)
  • Study of the data provided by a baby-clinic in a large manufacturing town (Cambridge, 1922)
  • Francis Galton, 1822-1922, a centenary appreciation (London, 1922)
  • Charles Darwin, 1809-1882, an appreciation(London, 1923)
  • On the relationship of health to the psychial and physical characters in school children (Cambridge, 1923)
  • Home conditions and eyesight: some recent misinterpretations of the problem of nurture and nature'
  • On the skull and portraits of George Buchanan (Oliver & Boyd, Edinburgh, London, 1926)
  • The right of the unborn child (Cambridge University Press, London, 1927)
  • The skull and portraits of Henry Stewart, Lord Darnley, and their bearing on the tragedy of Mary, Queen of Scots (1928)
  • Tables of the incomplete beta-function (The Proprietors of Biometrika, London, 1934; editor)
  • Tables of Incomplete Beta Function (1934)

Further reading

  • Porter, Theodore M. (2004): Karl Pearson: The Scientific Life in a Statistical Age, Princeton University Press.
  • Eisenhart, Churchill (1974): Dictionary of Scientific Biography, pp. 447–73. New York, 1974.
  • Filon, L. N. G. and Yule, G. U. (1936): Obituary Notices of the Royal Society of London, Vol. ii, No. 5, pp. 73–110.
  • Pearson, E. S. (1938): Karl Pearson: An appreciation of some aspects of his life and work. Cambridge University Press.

External links

  • O'Connor, John J.; Robertson, Edmund F., "Karl Pearson", MacTutor History of Mathematics Archive, University of St Andrews
  • Karl Pearson at the Mathematics Genealogy Project
  • John Aldrich's Karl Pearson: a Reader's Guide at the University of Southampton (contains many useful links to further sources of information).
  • Encyclopaedia Britannica Karl Pearson
  • Gavan Tredoux's Francis Galton site, galton.org, contains Pearson's biography of Francis Galton, and several other papers - in addition to nearly all of Galton's own published works.
  • Karl Pearson and the Origins of Modern Statistics at The Rutherford Journal.
  • Text on family grave at Crambe: ERIMUS (apparently this means "We shall be"), and is particularly associated with Middlesbrough and Pease: "Yarm has been; Stockton is; and we shall be".

Template:Persondata