Jump to content

74181: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
BOT--Reverting link addition(s) by 82.56.73.85 to revision 494567307 (http://ygg-it.tripod.com [tripod\.com])
Undid revision 501081085 by XLinkBot (talk)
Tag: reverting anti-vandal bot
Line 23: Line 23:
*[http://www.iona.edu/academic/artsscience/departments/computerscience/faculty/FacultyPublications/ccsce2003.pdf A Hardware Lab for the Computer Organization Course at Small Colleges] - Another example of how the 74181 is used today in a teaching environment.
*[http://www.iona.edu/academic/artsscience/departments/computerscience/faculty/FacultyPublications/ccsce2003.pdf A Hardware Lab for the Computer Organization Course at Small Colleges] - Another example of how the 74181 is used today in a teaching environment.
*[http://tams-www.informatik.uni-hamburg.de/applets/hades/webdemos/20-arithmetic/50-74181/demo-74182-ALU-CLA.html 74181 + 74182 demonstration] Java - based simulator
*[http://tams-www.informatik.uni-hamburg.de/applets/hades/webdemos/20-arithmetic/50-74181/demo-74182-ALU-CLA.html 74181 + 74182 demonstration] Java - based simulator
*APOLLO181 (by Gianluca.G, 2012): a homemade didactic processor made of TTL bipolar logics and memories, based upon the Bugbook® I and II chips, in particular on the 74181.
*[http://ygg-it.tripod.com APOLLO181 ] (by Gianluca.G, Italy 2012): a homemade didactic processor made of TTL logics and bipolar memories, based upon the Bugbook® I and II chips, in particular on the 74181.


==Computers==
==Computers==

Revision as of 10:30, 7 July 2012

The 74S181 4-bit ALU bitslice resting on a page from the datasheet.

The 74181 is a bit slice arithmetic logic unit (ALU), implemented as a 7400 series TTL integrated circuit. The first complete ALU on a single chip,[1] it was used as the arithmetic/logic core in the CPUs of many historically significant minicomputers and other devices.

The 74181 represents an evolutionary step between the CPUs of the 1960s, which were constructed using discrete logic gates, and today's single-chip CPUs or microprocessors. Although no longer used in commercial products, the 74181 is still referenced in computer organization textbooks and technical papers. It is also sometimes used in 'hands-on' college courses, to train future computer architects.

Specifications

The 74181 is a 7400 series medium-scale integration (MSI) TTL integrated circuit, containing the equivalent of 75 logic gates and most commonly packaged as a 24-pin DIP. The 4-bit wide ALU can perform all the traditional add / subtract / decrement operations with or without carry, as well as AND / NAND, OR / NOR, XOR, and shift. Many variations of these basic functions are available, for a total of 16 arithmetic and 16 logical operations on two four-bit words. Multiply and divide functions are not provided but can be performed in multiple steps using the shift and add or subtract functions. Shift is not an explicit function but can be derived from several available functions including (A+B) plus A, A plus AB[clarification needed].

The 74181 performs these operations on two four-bit operands generating a four-bit result with carry in 22 nanoseconds. The 74S181 performs the same operations in 11 nanoseconds, while the 74F181 performs the operations in 7 nanoseconds (typical).

Multiple 'slices' can be combined for arbitrarily large word sizes. For example, sixteen 74S181s and five 74S182 look ahead carry generators can be combined to perform the same operations on 64-bit operands in 28 nanoseconds. Although overshadowed by the performance of today's multi-gigahertz 64-bit microprocessors, this was quite impressive when compared to the sub megahertz clock speeds of the early four and eight bit microprocessors.

Significance

Although the 74181 is only an ALU and not a complete microprocessor it greatly simplified the development and manufacture of computers and other devices that required high speed computation during the late 1960s through the early 1980s, and is still referenced as a "classic" ALU design.[2]

Prior to the introduction of the 74181, computer CPUs occupied multiple circuit boards and even very simple computers could fill multiple cabinets. The 74181 allowed an entire CPU and in some cases, an entire computer to be constructed on a single large printed circuit board. The 74181 occupies a historically significant stage between older CPUs based on discrete logic functions spread over multiple circuit boards and modern microprocessors that incorporate all CPU functions in a single component. The 74181 was used in various minicomputers and other devices beginning in the late 1960s, but as microprocessors became more powerful the practice of building a CPU from discrete components fell out of favor and the 74181 was not used in any new designs.

Today

CPU designs based on the 74181 are not commercially viable today due the comparatively low price and high performance of microprocessors. However, the 74181 is still of interest in the teaching of computer organization and CPU design because it provides opportunities for hands-on design and experimentation that are rarely available to students.[3]

Computers

Many computer CPUs and subsystems were based on the 74181, including several historically significant models.

Other uses

See also

References

  1. ^ 'Computer Structures: Principles and Examples' C. Gordon Bell page 63: "The earliest and most famous chip, the 74181 arithmetic logic unit (ALU), provided up to 32 functions of two 4-bit variables."
  2. ^ Kestrel: Design of an 8-bit SIMD parallel processor Proc. 17th Conf. on Advanced Research in VLSI, September 15-17, 1997, page 11
  3. ^ A Minimal TTL Processor for Architecture Exploration, Proceedings of the 1994 ACM Symposium on Applied Computing "The study of computer architecture is often an abstract, paper exercise. Students cannot probe the inner workings of a single-chip microprocessor, and few discrete-logic machines are open to student inspection."
  4. ^ A Brief History of Computing page 6
  5. ^ a b ACM Queue, Simulators: Virtual Machines of the Past (and Future)
  6. ^ Computer History Museum - final demonstration of the Xerox 'Star' Computer
  7. ^ The ANALYTICAL ENGINE, Page 23, Volume 2, Number 2, October 1994 archive
  8. ^ "VAX-11/780, in Digital Computing Timeline, 1977". Digital Information Research Services, via Microsoft Research (research.microsoft.com). 30 April 1998. Retrieved 2007-11-02.
  9. ^ The ANALYTICAL ENGINE, Page 46, Volume 2, Number 3, May 1995 archive
  10. ^ Early PDP-11 peripherals
  11. ^ FPP-12 -- The PDP-12 Floating Point Unit
  12. ^ Wang 2200 CPU Microarchitecture
  13. ^ Wang 2200 Disk Channel Description

Manufacturer's data sheets: