Jump to content

Greenhouse and icehouse Earth: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
redirect Ice age -see talk
Undid revision 545024354 by William M. Connolley (talk) undelete article, per Talk!
Line 1: Line 1:
Over the geological [[history of the Earth]] the planet's climate has been fluctuating between two dominant states: the '''Greenhouse''' and the '''Icehouse''' {{cn|date=March 2013}}. These two climate sets generally last for long periods of time (many millions of years) and should not be confused with [[Glacial period|glacial]] and [[interglacial]] periods, which only occur during an Icehouse period and tend to last less than 1 million years. The Earth's climate is on a continuing, uneven cycle between the two states, the main factors involved in these changes in [[paleoclimate]] are believed to be the concentration of atmospheric [[carbon dioxide]], changes in the [[Earth's orbit]], and oceanic and [[orogenic]] changes due to [[Plate tectonics|tectonic plate dynamics]]. Greenhouse and Icehouse periods have profoundly shaped the [[evolution]] of life on Earth.
#redirect [[Ice age]]

==Greenhouse Earth==
A "Greenhouse Earth" or "Hothouse Earth" is a period in which there are no continental [[glacier]]s whatsoever on the planet, the levels of carbon dioxide and other [[greenhouse gas]]es (such as [[water vapor]] and [[methane]]) are high, and [[Sea surface temperature]]s (SSTs) range from 28 °C (82.4 °F) in the [[tropics]] and 0°C (32°F) in the [[polar region]]s.<ref>{{cite journal|last=Price|first=Gregory|coauthors=Paul J. Valdes, Bruce W. Sellwood|title=A comparison of GCM simulated Cretaceous 'greenhouse' and 'icehouse climates: implications for the sedimentary record|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|year=1998|volume=142|pages=123–138}}</ref>

==Icehouse Earth==
An "Icehouse Earth" is the earth as it experiences an [[ice age]]. Unlike a Greenhouse Earth, an Icehouse Earth has [[ice sheet]]s present, and these sheets wax and wane throughout times known as [[glacial periods]] and [[interglacial|interglacial period]]s. During an Icehouse Earth, greenhouse gases tend to be less abundant, and temperatures tend to be cooler globally. The Earth is currently in an icehouse stage;<ref>{{cite journal|last=Montanez|first=Isabel|coauthors=G.S. Soreghan|title=Earth's Fickle Climate: Lessons Learned from Deep-Time Ice Ages|journal=Geotimes|year=2006|month=March|volume=51|pages=24–27}}</ref> as ice sheets are present on both [[Geographical pole|pole]]s and brief periods which could be termed small ice ages have occurred in the past few centuries.<ref>{{cite book|last=Wigley|first=T.M.|title=Climate and History: Studies in past climates and their impact on Man|year=1982|publisher=Cambridge University Press|location=Cambridge|author=Thomas H. McGovern|authorlink=The Economics of Extinction in Norse Greenland|pages=404–424}}</ref>

Understanding what causes the icehouse effect and how it can change to a greenhouse state, and then back, is important to scientists, since human life has not existed within a greenhouse environment (unlike certain ancient species like the Crocodilians).

==Research==
The science of [[Paleoclimatology]] attempts to understand the history of greenhouse and icehouse conditions over geological time. Through the study of [[ice core]]s, [[dendrochronology]], [[ocean]] and [[lake]] [[sediment]]s ([[Varve]]), [[Palynology]] ([[fossil]]ized [[pollen]]) and [[isotope]] analysis (such as [[Radiometric dating]]), scientists can create models of past climate. From such models, scientists have determined that the atmospheric carbon dioxide of the earth could have been up at least 350 times higher than our modern day levels.<ref>{{cite journal|last=Montanez|first=Isabel|coauthors=G.S. Soreghan|title=Earth's Fickle Climate: Lessons Learned from Deep-Time Ice Ages|journal=Geotimes|year=2006|month=March|volume=51|pages=24–27}}</ref> One study has shown that atmospheric carbon dioxide levels during the [[Permian]] age rocked back and forth between 250 [[parts per million]] (which is close to present-day levels) up to 2,000 parts per million.<ref>{{cite web|last=University of California-Davis|title=A Bumpy Shift from Ice House to Greenhouse|url=http://www.sciencedaily.com/releases/ 2007/01/070104144854.htm|work=ScienceDaily|accessdate=4 November 2011}}</ref> Studies on lake sediments suggest that the "Hothouse" or "super-Greenhouse" [[Eocene]] was in a "permanent [[El Nino]] state" after the 10°C warming of the deep ocean and high latitude surface temperatures shut down the [[Pacific Ocean]]'s El Nino-[[Southern Oscillation]].<ref>{{cite journal|last=Huber|first=Matthew|coauthors=Rodrigo Caballero|title=Eocene El Nino: Evidence for Robust Tropical Dynamics in the "Hothouse"|journal=Science|date=7|year=2003|month=February|volume=299|pages=877–881|bibcode = 2003Sci...299..877H |doi = 10.1126/science.1078766 }}</ref> A theory was conducted for the [[Paleocene–Eocene Thermal Maximum]] on the sudden decrease of carbon isotopic composition of global inorganic carbon pool by 2.5 parts per million.<ref>{{cite journal|last=Higgins|first=John A.|coauthors=Daniel P. Schrag|title=Beyond Methane: Towards a theory for the Paleocene-Eocene Thermal Maximum|journal=Earth and Planetary Science Letters|year=2006|volume=245|pages=523–537|bibcode = 2006E&PSL.245..523H |doi = 10.1016/j.epsl.2006.03.009 }}</ref> A hypothesis noted for this negative drop of isotopes could be the increase of [[methane hydrate]]s, the trigger for which remains a mystery. This increase of methane in the atmosphere, which happens to be a potent, but short-lived greenhouse gas, increased the global temperatures by 6°C with the assistance of the less potent carbon dioxide.{{cn|date=June 2012}}

==Causes of Greenhouse Earth==
There are several theories as to how a Greenhouse Earth can come about. The geological record shows CO<sub>2</sub> and other greenhouse gases are abundant during this time. [[Tectonic movement]]s were extremely active during the more well known Greenhouse ages (such as 368 million years ago in the [[Paleozoic]] Era). Because of [[Divergent boundary|continental rifting]] ([[continental plate]]s moving away from each other) [[volcanic]] activity becomes more prominent, producing more CO<sub>2</sub> and heating up the Earth's atmosphere.<ref>{{cite journal|last=Norris|first=Richard D.|coauthors=Karen L. Bice, Elizabeth A. Magno, Paul A. Wilson|title=Jiggling the tropical thermostat in the Cretaceous hothouse|journal=Geology|year=2002|volume=30|pages=299–302|bibcode = 2002Geo....30..299N |doi = 10.1130/0091-7613(2002)030<0299:JTTTIT>2.0.CO;2 }}</ref> Earth is more commonly placed in a Greenhouse state throughout the epochs, and the Earth has been in this state for approximately 80% of its history, which makes understanding the direct causes somewhat difficult.<ref>{{cite journal|last=Plimer|first=Ian|title=The Past is the Key to the Present: Greenhouse and Icehouse over Time|journal=Institute of Public Affairs Review|year=2003|pages=9–13}}</ref>

==Causes of Icehouse Earth==
The causes of an Icehouse state are much debated, because not much is really known about the transition periods between greenhouse to icehouse climates and what could make the climate so different. One important aspect is clearly the decline of CO<sub>2</sub> in the atmosphere, possibly due to low volcanic activity.

Other important issues are the movement of the tectonic plates and the opening and closing of oceanic gateways.<ref>{{cite journal|last=Smith|first=Alan G.|coauthors=Kevin T. Pickering|title=Oceanic gateways as a critical factor to initiate icehouse Earth|journal=Journal of the Geological Society|year=2003|volume=160|pages=337–340|doi=10.1144/0016-764902-115}}</ref> These seem to play a crucial part in Icehouse Earths because they can bring forth cool waters from very deep water circulations that could assist in creating ice sheets or thermal isolation of areas. An examples of this occurring are the opening of the [[Tasmanian gateway]], 36.5 million years ago that separated [[Australia]] and [[Antarctica]] and which is believed to have set off the [[Cenozoic]] icehouse (Exon, Kennet and Malone),<ref>{{cite journal|last=Exon|first=N.|coauthors=J. Kennet, M. Malone|title=The Opening of the Tasmanian Gateway Drove Cenozoic Paleoclimate: Results of Leg 189|journal=JOIDES|year=2000|volume=26|pages=11–17}}</ref> and the creation of the [[Drake Passage]] 32.8 million years ago by the separation of [[South America]] and [[Antarctica]],<ref>{{cite journal|last=Latimer|first=J.C.|coauthors=G. M. Filipelli|title=Eocene to Miocene terrigenous inputs and export production; geochemical evidence from ODP Leg 177 Site 190|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|year=2002|volume=182|pages=151–164}}</ref> though it was believed by other scientists that this did not come into effect until around 23 million years ago.<ref>{{cite journal|last=Exon|first=N.|coauthors=J. Kennet, M. Malone|title=The Opening of the Tasmanian Gateway Drove Cenozoic Paleoclimate: Results of Leg 189|journal=JOIDES|year=2000|volume=26|pages=11–17}}</ref> The closing of the [[Isthmus of Panama]] and the [[Indonesian seaway]] approximately 3 or 4 million years ago may have been a major cause for our current Icehouse state.<ref>{{cite journal|last=Smith|first=Alan G.|coauthors=Kevin T. Pickering|title=Oceanic gateways as a critical factor to initiate icehouse Earth|journal=Journal of the Geological Society|year=2003|volume=160|pages=337–340|doi=10.1144/0016-764902-115}}</ref> For the icehouse climate, tectonic activity also creates mountains, which are produced by one continental plate colliding with another one and continuing forward. The revealed fresh [[soil]]s act as [[scrubber]]s of carbon dioxide, which can significantly affect the amount of this greenhouse gas in the atmosphere. An example of this being the collision between the [[Indian subcontinent]] and the [[Asia]]n continent, which created the [[Himalayas|Himalayan Mountains]] about 50 million years ago.

=== Glacial and Interglacial ===
Within Icehouse states, there are "glacial" and "interglacial" periods that cause ice sheets to build up or retreat. The causes for these glacial and interglacial periods are mainly variations in the movement of the earth around the [[Sun]].<ref>{{cite journal|last=Broecker|first=Wallace S.|coauthors=George H. Denton|title=What Drives Glacial Cycles|journal=Scientific American|year=1990|month=January|pages=49–56}}</ref> The astronomical components, discovered by the Serbian geophysicist [[Milutin Milanković]] and now known as [[Milankovitch cycles]], include the [[Axial tilt]] of the Earth, the [[orbital eccentricity]] (or shape of the [[orbit]]) and the [[precession]] (or wobble) of the [[Earth's rotation|Earth's spin]]. The tilt of the axis tends to fluctuate between 21.5 ° to 24.5 ° and back every 41,000 years on the vertical axis. This change actually affects the [[seasonality]] upon the earth, since more or less [[Insolation|solar radiation]] hits certain areas of the planet more often on a higher tilt, while less of a tilt would create a more even set of seasons worldwide. These changes can be seen in ice cores, which also contains information that shows that during glacial times (at the maximum extension of the ice sheets), the atmosphere had lower levels of carbon dioxide. This may be caused by the increase or redistribution of the [[acid]]/[[Base (chemistry)|base]] balance with [[bicarbonate]] and [[carbonate]] [[ion]]s that deals with [[alkalinity]]. During an Icehouse, only 20% of the time is spent in interglacial, or warmer times.<ref>{{cite journal|last=Broecker|first=Wallace S.|coauthors=George H. Denton|title=What Drives Glacial Cycles|journal=Scientific American|year=1990|month=January|pages=49–56}}</ref>

=== Snowball Earth ===
"[[Snowball Earth]]" is the complete opposite of Greenhouse Earth when it comes to climate, but technically, a Snowball Earth does not have continental ice sheets like during the Icehouse state. "The Great Infra-[[Cambrian]] Ice Age" has been claimed to be the host of such a world, and in 1964, the scientist [[W. Brian Harland]] brought forth his discovery of indications of glaciers in [[low latitudes]] (Harland and Rudwick). This became a problem for Harland because of the thought of the "Runaway Snowball Paradox" (a kind of [[Snowball effect]]) that, once the earth enters the route of becoming a Snowball Earth, it would never be able to leave that state. However in 1992 [[Joe Kirschvink]] brought up a solution to the paradox. It is believed that since the continents at this time were huddled at the low and mid-latitudes that there was a great cooling event by planetary [[albedo]], or reflection of the earth’s surface. Kirschvick explained that the way to get out of the snowball could be connected to carbon dioxide, since volcanic activity would not halt, and that the build up and lack of "[[scrubbing]]" of this carbon dioxide in the atmosphere, that the earth would return to a greenhouse state. Some scientists believe that the end of the snowball Earth caused an event known as the [[Cambrian Explosion]], which produced the beginnings of [[multi-cellular]] life.<ref>{{cite journal|last=Maruyama|first=S.|coauthors=M. Santosh|title=Models on Snowball Earth and Cambrian explosion: A synopsis|journal=Gondwana Research|year=2008|volume=14|pages=22–32}}</ref> However some biologists claim that a complete snowball Earth could not have happened since [[photosynthetic]] life would not have survived underneath many meters of ice without [[sunlight]]. However, it has been observed that, even under meters of thick ice around Antarctica, sunlight shows through. Most scientists{{Citation needed|date=April 2009}} today believe that a "hard" Snowball Earth, one completely covered by ice, is probably impossible. However, the idea of a "Slushball Earth", with points of openings near the [[equator]], is also possible.

Recent studies may have again complicated the idea of a Snowball Earth. In October, 2011, a team of French researchers announced that the carbon dioxide during the last speculated "Snowball Earth" may have been lower than originally stated, which provides a challenge in finding out how Earth was able to get out of its state and if it were a snowball or slushball.<ref>{{cite web|last=CNRS|first=Delegation Paris Michel-Ange|title=Snowball Earth's hypothesis challenged|url=http://www.sciencedaily.com/releases/2011/10/000102083450.htm|work=ScienceDaily|accessdate=24 November 2011}}</ref>

==Causes of transition==
During periods of transitions from greenhouse to icehouse, and vice versa, there has been much [[mass extinction]] across the planet ("99.99% of all life that has ever existed is extinct").<ref>{{cite journal|last=Plimer|first=Ian|title=The Past is the Key to the Present: Greenhouse and Icehouse over Time|journal=Institute of Public Affairs Review|year=2003|pages=9}}</ref> The [[Eocene]], which occurred between 53 and 49 million years ago, was the Earth's warmest temperature period for 100 million years.<ref>{{cite web|last=Herath|first=Anuradha K.|title=From Greenhouse to icehouse|url=http://www.astrobio.net./exclusive/3320/from-greenhouse-to-cehouse|work=Astrobio|accessdate=28October 2011}}</ref> However, this "super-greenhouse" soon became an icehouse by the late Eocene. It was believed that the decline of CO<sub>2</sub> caused this change, though there are possible [[positive feedback]]s, or added influence that contributes to the cooling.

The best record we have for a transition from an icehouse to a greenhouse period where plant life exists is during the [[Permian]] [[Epoch]] that occurred around 300 million years ago. In 40 million years a major transition took place, causing the Earth to change from a moist, icy planet where [[rainforest]]s covered the tropics, into a hot, dry, and windy location where little could survive. Professor Isabel Montanez of [[University of California, Davis]], who has researched this time period, found the climate to be "highly unstable" and "marked by dips and rises in carbon dioxide".<ref>{{cite web|last=University of California-Davis|title=A Bumpy Shift from Ice House to Greenhouse|url=http://www.sciencedaily.com/releases/ 2007/01/070104144854.htm|work=ScienceDaily|accessdate=4 November 2011}}</ref>

==The present day==
Currently, we are in an icehouse climate state. About 34 million years ago, we started our icehouse state, as ice sheets began to form in [[Antarctica]]; the ice sheets in the [[Arctic]] didn’t start forming until 2 million years ago.<ref>{{cite journal|last=Montanez|first=Isabel|coauthors=G.S. Soreghan|title=Earth's Fickle Climate: Lessons Learned from Deep-Time Ice Ages|journal=Geotimes|year=2006|month=March|volume=51|pages=24–27}}</ref> Some processes that may have led to our current icehouse may be connected to the development of the Himalayan Mountains and the opening of the [[Drake Passage]] between [[South America]] and Antarctica.<ref>{{cite journal|last=Plimer|first=Ian|title=The Past is the Key to the Present: Greenhouse and Icehouse over Time|journal=Institute of Public Affairs Review|year=2003|pages=9–13}}</ref> Scientists have been attempting to compare the past transitions between icehouse and greenhouse, and vice versa to understand where our planet is now heading.

Without the human influence on the greenhouse gas concentration we would be heading back towards a [[ice age|glacial]] period. Predicted changes in [[orbital forcing]] suggest that in absence of human-made [[global warming]] the next glacial period would begin at least 50,000 years from now<ref name=BergerLoutre>{{cite journal |author=Berger A, Loutre MF |title=Climate. An exceptionally long interglacial ahead? |journal=Science |volume=297 |issue=5585 |pages=1287–8 |year=2002 |month=August |pmid=12193773 |doi=10.1126/science.1076120 |url=http://www.sciencemag.org/cgi/content/full/297/5585/1287 }}</ref> (see [[Milankovitch cycles]]).

But due to the ongoing anthopogenic [[climate change]] we are heading now towards a greenhouse Earth period.<ref>{{cite journal|last=Montanez|first=Isabel|coauthors=G.S. Soreghan|title=Earth's Fickle Climate: Lessons Learned from Deep-Time Ice Ages|journal=Geotimes|year=2006|month=March|volume=51|pages=24–27}}</ref> Permanent ice is actually a rare phenomenon in the history of the Earth, occurring only during the 20% of the time that the planet is under an icehouse effect.<ref>{{cite journal|last=Plimer|first=Ian|title=The Past is the Key to the Present: Greenhouse and Icehouse over Time|journal=Institute of Public Affairs Review|year=2003|pages=9–13}}</ref>

==See also==
* [[Atmospheric circulation]]

==References==
{{Reflist|3}}

{{Greenhouse and Icehouse Earth}}

[[Category:Glaciology]]
[[Category:Climate history]]

Revision as of 14:30, 23 March 2013

Over the geological history of the Earth the planet's climate has been fluctuating between two dominant states: the Greenhouse and the Icehouse [citation needed]. These two climate sets generally last for long periods of time (many millions of years) and should not be confused with glacial and interglacial periods, which only occur during an Icehouse period and tend to last less than 1 million years. The Earth's climate is on a continuing, uneven cycle between the two states, the main factors involved in these changes in paleoclimate are believed to be the concentration of atmospheric carbon dioxide, changes in the Earth's orbit, and oceanic and orogenic changes due to tectonic plate dynamics. Greenhouse and Icehouse periods have profoundly shaped the evolution of life on Earth.

Greenhouse Earth

A "Greenhouse Earth" or "Hothouse Earth" is a period in which there are no continental glaciers whatsoever on the planet, the levels of carbon dioxide and other greenhouse gases (such as water vapor and methane) are high, and Sea surface temperatures (SSTs) range from 28 °C (82.4 °F) in the tropics and 0°C (32°F) in the polar regions.[1]

Icehouse Earth

An "Icehouse Earth" is the earth as it experiences an ice age. Unlike a Greenhouse Earth, an Icehouse Earth has ice sheets present, and these sheets wax and wane throughout times known as glacial periods and interglacial periods. During an Icehouse Earth, greenhouse gases tend to be less abundant, and temperatures tend to be cooler globally. The Earth is currently in an icehouse stage;[2] as ice sheets are present on both poles and brief periods which could be termed small ice ages have occurred in the past few centuries.[3]

Understanding what causes the icehouse effect and how it can change to a greenhouse state, and then back, is important to scientists, since human life has not existed within a greenhouse environment (unlike certain ancient species like the Crocodilians).

Research

The science of Paleoclimatology attempts to understand the history of greenhouse and icehouse conditions over geological time. Through the study of ice cores, dendrochronology, ocean and lake sediments (Varve), Palynology (fossilized pollen) and isotope analysis (such as Radiometric dating), scientists can create models of past climate. From such models, scientists have determined that the atmospheric carbon dioxide of the earth could have been up at least 350 times higher than our modern day levels.[4] One study has shown that atmospheric carbon dioxide levels during the Permian age rocked back and forth between 250 parts per million (which is close to present-day levels) up to 2,000 parts per million.[5] Studies on lake sediments suggest that the "Hothouse" or "super-Greenhouse" Eocene was in a "permanent El Nino state" after the 10°C warming of the deep ocean and high latitude surface temperatures shut down the Pacific Ocean's El Nino-Southern Oscillation.[6] A theory was conducted for the Paleocene–Eocene Thermal Maximum on the sudden decrease of carbon isotopic composition of global inorganic carbon pool by 2.5 parts per million.[7] A hypothesis noted for this negative drop of isotopes could be the increase of methane hydrates, the trigger for which remains a mystery. This increase of methane in the atmosphere, which happens to be a potent, but short-lived greenhouse gas, increased the global temperatures by 6°C with the assistance of the less potent carbon dioxide.[citation needed]

Causes of Greenhouse Earth

There are several theories as to how a Greenhouse Earth can come about. The geological record shows CO2 and other greenhouse gases are abundant during this time. Tectonic movements were extremely active during the more well known Greenhouse ages (such as 368 million years ago in the Paleozoic Era). Because of continental rifting (continental plates moving away from each other) volcanic activity becomes more prominent, producing more CO2 and heating up the Earth's atmosphere.[8] Earth is more commonly placed in a Greenhouse state throughout the epochs, and the Earth has been in this state for approximately 80% of its history, which makes understanding the direct causes somewhat difficult.[9]

Causes of Icehouse Earth

The causes of an Icehouse state are much debated, because not much is really known about the transition periods between greenhouse to icehouse climates and what could make the climate so different. One important aspect is clearly the decline of CO2 in the atmosphere, possibly due to low volcanic activity.

Other important issues are the movement of the tectonic plates and the opening and closing of oceanic gateways.[10] These seem to play a crucial part in Icehouse Earths because they can bring forth cool waters from very deep water circulations that could assist in creating ice sheets or thermal isolation of areas. An examples of this occurring are the opening of the Tasmanian gateway, 36.5 million years ago that separated Australia and Antarctica and which is believed to have set off the Cenozoic icehouse (Exon, Kennet and Malone),[11] and the creation of the Drake Passage 32.8 million years ago by the separation of South America and Antarctica,[12] though it was believed by other scientists that this did not come into effect until around 23 million years ago.[13] The closing of the Isthmus of Panama and the Indonesian seaway approximately 3 or 4 million years ago may have been a major cause for our current Icehouse state.[14] For the icehouse climate, tectonic activity also creates mountains, which are produced by one continental plate colliding with another one and continuing forward. The revealed fresh soils act as scrubbers of carbon dioxide, which can significantly affect the amount of this greenhouse gas in the atmosphere. An example of this being the collision between the Indian subcontinent and the Asian continent, which created the Himalayan Mountains about 50 million years ago.

Glacial and Interglacial

Within Icehouse states, there are "glacial" and "interglacial" periods that cause ice sheets to build up or retreat. The causes for these glacial and interglacial periods are mainly variations in the movement of the earth around the Sun.[15] The astronomical components, discovered by the Serbian geophysicist Milutin Milanković and now known as Milankovitch cycles, include the Axial tilt of the Earth, the orbital eccentricity (or shape of the orbit) and the precession (or wobble) of the Earth's spin. The tilt of the axis tends to fluctuate between 21.5 ° to 24.5 ° and back every 41,000 years on the vertical axis. This change actually affects the seasonality upon the earth, since more or less solar radiation hits certain areas of the planet more often on a higher tilt, while less of a tilt would create a more even set of seasons worldwide. These changes can be seen in ice cores, which also contains information that shows that during glacial times (at the maximum extension of the ice sheets), the atmosphere had lower levels of carbon dioxide. This may be caused by the increase or redistribution of the acid/base balance with bicarbonate and carbonate ions that deals with alkalinity. During an Icehouse, only 20% of the time is spent in interglacial, or warmer times.[16]

Snowball Earth

"Snowball Earth" is the complete opposite of Greenhouse Earth when it comes to climate, but technically, a Snowball Earth does not have continental ice sheets like during the Icehouse state. "The Great Infra-Cambrian Ice Age" has been claimed to be the host of such a world, and in 1964, the scientist W. Brian Harland brought forth his discovery of indications of glaciers in low latitudes (Harland and Rudwick). This became a problem for Harland because of the thought of the "Runaway Snowball Paradox" (a kind of Snowball effect) that, once the earth enters the route of becoming a Snowball Earth, it would never be able to leave that state. However in 1992 Joe Kirschvink brought up a solution to the paradox. It is believed that since the continents at this time were huddled at the low and mid-latitudes that there was a great cooling event by planetary albedo, or reflection of the earth’s surface. Kirschvick explained that the way to get out of the snowball could be connected to carbon dioxide, since volcanic activity would not halt, and that the build up and lack of "scrubbing" of this carbon dioxide in the atmosphere, that the earth would return to a greenhouse state. Some scientists believe that the end of the snowball Earth caused an event known as the Cambrian Explosion, which produced the beginnings of multi-cellular life.[17] However some biologists claim that a complete snowball Earth could not have happened since photosynthetic life would not have survived underneath many meters of ice without sunlight. However, it has been observed that, even under meters of thick ice around Antarctica, sunlight shows through. Most scientists[citation needed] today believe that a "hard" Snowball Earth, one completely covered by ice, is probably impossible. However, the idea of a "Slushball Earth", with points of openings near the equator, is also possible.

Recent studies may have again complicated the idea of a Snowball Earth. In October, 2011, a team of French researchers announced that the carbon dioxide during the last speculated "Snowball Earth" may have been lower than originally stated, which provides a challenge in finding out how Earth was able to get out of its state and if it were a snowball or slushball.[18]

Causes of transition

During periods of transitions from greenhouse to icehouse, and vice versa, there has been much mass extinction across the planet ("99.99% of all life that has ever existed is extinct").[19] The Eocene, which occurred between 53 and 49 million years ago, was the Earth's warmest temperature period for 100 million years.[20] However, this "super-greenhouse" soon became an icehouse by the late Eocene. It was believed that the decline of CO2 caused this change, though there are possible positive feedbacks, or added influence that contributes to the cooling.

The best record we have for a transition from an icehouse to a greenhouse period where plant life exists is during the Permian Epoch that occurred around 300 million years ago. In 40 million years a major transition took place, causing the Earth to change from a moist, icy planet where rainforests covered the tropics, into a hot, dry, and windy location where little could survive. Professor Isabel Montanez of University of California, Davis, who has researched this time period, found the climate to be "highly unstable" and "marked by dips and rises in carbon dioxide".[21]

The present day

Currently, we are in an icehouse climate state. About 34 million years ago, we started our icehouse state, as ice sheets began to form in Antarctica; the ice sheets in the Arctic didn’t start forming until 2 million years ago.[22] Some processes that may have led to our current icehouse may be connected to the development of the Himalayan Mountains and the opening of the Drake Passage between South America and Antarctica.[23] Scientists have been attempting to compare the past transitions between icehouse and greenhouse, and vice versa to understand where our planet is now heading.

Without the human influence on the greenhouse gas concentration we would be heading back towards a glacial period. Predicted changes in orbital forcing suggest that in absence of human-made global warming the next glacial period would begin at least 50,000 years from now[24] (see Milankovitch cycles).

But due to the ongoing anthopogenic climate change we are heading now towards a greenhouse Earth period.[25] Permanent ice is actually a rare phenomenon in the history of the Earth, occurring only during the 20% of the time that the planet is under an icehouse effect.[26]

See also

References

  1. ^ Price, Gregory (1998). "A comparison of GCM simulated Cretaceous 'greenhouse' and 'icehouse climates: implications for the sedimentary record". Palaeogeography, Palaeoclimatology, Palaeoecology. 142: 123–138. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  2. ^ Montanez, Isabel (2006). "Earth's Fickle Climate: Lessons Learned from Deep-Time Ice Ages". Geotimes. 51: 24–27. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  3. ^ Wigley, T.M. (1982). Climate and History: Studies in past climates and their impact on Man. Cambridge: Cambridge University Press. pp. 404–424. {{cite book}}: More than one of |author= and |last= specified (help)
  4. ^ Montanez, Isabel (2006). "Earth's Fickle Climate: Lessons Learned from Deep-Time Ice Ages". Geotimes. 51: 24–27. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  5. ^ University of California-Davis. 2007/01/070104144854.htm "A Bumpy Shift from Ice House to Greenhouse". ScienceDaily. Retrieved 4 November 2011. {{cite web}}: Check |url= value (help)
  6. ^ Huber, Matthew (7). "Eocene El Nino: Evidence for Robust Tropical Dynamics in the "Hothouse"". Science. 299: 877–881. Bibcode:2003Sci...299..877H. doi:10.1126/science.1078766. {{cite journal}}: Check date values in: |date= and |year= / |date= mismatch (help); Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  7. ^ Higgins, John A. (2006). "Beyond Methane: Towards a theory for the Paleocene-Eocene Thermal Maximum". Earth and Planetary Science Letters. 245: 523–537. Bibcode:2006E&PSL.245..523H. doi:10.1016/j.epsl.2006.03.009. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  8. ^ Norris, Richard D. (2002). "Jiggling the tropical thermostat in the Cretaceous hothouse". Geology. 30: 299–302. Bibcode:2002Geo....30..299N. doi:10.1130/0091-7613(2002)030<0299:JTTTIT>2.0.CO;2. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  9. ^ Plimer, Ian (2003). "The Past is the Key to the Present: Greenhouse and Icehouse over Time". Institute of Public Affairs Review: 9–13.
  10. ^ Smith, Alan G. (2003). "Oceanic gateways as a critical factor to initiate icehouse Earth". Journal of the Geological Society. 160: 337–340. doi:10.1144/0016-764902-115. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  11. ^ Exon, N. (2000). "The Opening of the Tasmanian Gateway Drove Cenozoic Paleoclimate: Results of Leg 189". JOIDES. 26: 11–17. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  12. ^ Latimer, J.C. (2002). "Eocene to Miocene terrigenous inputs and export production; geochemical evidence from ODP Leg 177 Site 190". Palaeogeography, Palaeoclimatology, Palaeoecology. 182: 151–164. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  13. ^ Exon, N. (2000). "The Opening of the Tasmanian Gateway Drove Cenozoic Paleoclimate: Results of Leg 189". JOIDES. 26: 11–17. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  14. ^ Smith, Alan G. (2003). "Oceanic gateways as a critical factor to initiate icehouse Earth". Journal of the Geological Society. 160: 337–340. doi:10.1144/0016-764902-115. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  15. ^ Broecker, Wallace S. (1990). "What Drives Glacial Cycles". Scientific American: 49–56. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  16. ^ Broecker, Wallace S. (1990). "What Drives Glacial Cycles". Scientific American: 49–56. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  17. ^ Maruyama, S. (2008). "Models on Snowball Earth and Cambrian explosion: A synopsis". Gondwana Research. 14: 22–32. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  18. ^ CNRS, Delegation Paris Michel-Ange. "Snowball Earth's hypothesis challenged". ScienceDaily. Retrieved 24 November 2011.
  19. ^ Plimer, Ian (2003). "The Past is the Key to the Present: Greenhouse and Icehouse over Time". Institute of Public Affairs Review: 9.
  20. ^ Herath, Anuradha K. "From Greenhouse to icehouse". Astrobio. Retrieved 28October 2011. {{cite web}}: Check date values in: |accessdate= (help)
  21. ^ University of California-Davis. 2007/01/070104144854.htm "A Bumpy Shift from Ice House to Greenhouse". ScienceDaily. Retrieved 4 November 2011. {{cite web}}: Check |url= value (help)
  22. ^ Montanez, Isabel (2006). "Earth's Fickle Climate: Lessons Learned from Deep-Time Ice Ages". Geotimes. 51: 24–27. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  23. ^ Plimer, Ian (2003). "The Past is the Key to the Present: Greenhouse and Icehouse over Time". Institute of Public Affairs Review: 9–13.
  24. ^ Berger A, Loutre MF (2002). "Climate. An exceptionally long interglacial ahead?". Science. 297 (5585): 1287–8. doi:10.1126/science.1076120. PMID 12193773. {{cite journal}}: Unknown parameter |month= ignored (help)
  25. ^ Montanez, Isabel (2006). "Earth's Fickle Climate: Lessons Learned from Deep-Time Ice Ages". Geotimes. 51: 24–27. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  26. ^ Plimer, Ian (2003). "The Past is the Key to the Present: Greenhouse and Icehouse over Time". Institute of Public Affairs Review: 9–13.