Jump to content

User:RazrRekr201: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
No edit summary
Line 73: Line 73:
{{Babel|en-5|vi-1}}
{{Babel|en-5|vi-1}}


==Tables structure==
== Table of selected mathematical constants ==

{{Main|List of mathematical constants}}
*'''[[Value (mathematics)|Value]]''' numerical of the constant and link to [[MathWorld]].
Abbreviations used:
*'''[[LaTeX]]''': Formula or series in TeX format.
: R – [[Rational number]], I – [[Irrational number]] (may be algebraic or transcendental), A – [[Algebraic number]] (irrational), T – [[Transcendental number]] (irrational)
*'''[[Formula]]''': For use in programs like Mathematica or Wolfram Alpha.
: Gen – [[Mathematics|General]], NuT – [[Number theory]], ChT – [[Chaos theory]], Com – [[Combinatorics]], Inf – [[Information theory]], Ana – [[Mathematical analysis]]
*'''[[OEIS]]''': On-Line Encyclopedia of Integer Sequences.
*'''[[Continued fraction]]''': In the simple form [to integer; frac1, frac2, frac3, ...], {{overline|overline}} if periodic.
*'''Year''': Discovery of the constant, or dates of the author.
*'''Web format''': Value in appropriate format for web browsers.
*'''[[Nº]]''': Number types.
** R – [[Rational number]]
** I – [[Irrational number]]
** A – [[Algebraic number]]
** T – [[Transcendental number]]
** C – [[Complex number]]

== Table of constants and functions ==

''You can choose the order of the list by clicking on the name, value, OEIS, etc..''


{| class="wikitable sortable"
{| class="wikitable sortable"
|- style="background:#a0e0a0;"
! Symbol || Value || Name || Field|| ''N'' || First described || # of known digits
|-
|-
! Value || Name ||Graphics||Symbol|| LaTeX || Formula ||Nº|| OEIS || Continued fraction||Year||Web format
| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">0</div>
|| = 0
|| [[0 (number)|Zero]]
|| '''[[Mathematics|Gen]]'''
| style="text-align:center;"| ''[[rational number|R]]''
| align=right | c.&nbsp;7th&ndash;5th century&nbsp;BC
| align=right | N/A
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">1</div>
<!--------------------------------------v---------------------------------------------->
|| = 1
|0,70444 22009 99165 59273
|| [[1 (number)|One]], Unity
||Carefree constant <sub>2</sub> <ref>{{cite book
|| '''[[Mathematics|Gen]]'''
|author= Steven Finch
| style="text-align:center;"| ''[[rational number|R]]''
|title= Unitarism and Infinitarism
| align=right |
|url= http://www.people.fas.harvard.edu/~sfinch/csolve/try.pdf
| align=right | N/A
|year= 2004
|editor= Harvard.edu
|page= 1
}}</ref>
|<br><br><br><br>
|bgcolor=#e0f0f0 align=center|<math>\mathcal{C}_2</math>
||<math> \underset{ p_n: \, {prime}}{\prod_{n = 1}^\infty \left(1 - \frac{1}{p_n(p_n+1)}\right)} </math>
||N[prod[n=1 to ∞] <br> {1 - 1/(prime(n)* <br> (prime(n)+1))}]
||
||{{OEIS2C|A065463}}
||[0;1,2,2,1,1,1,1,4,2,1,1,3,703,2,1,1,1,3,5,1,...]
||
||<small> 0.70444220099916559273660335032663721 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">{{mvar|i}}</div>
<!--------------------------------------- v ------------------------------------------->
|| = {{math|{{sqrt|–1}}}}
|1.84775 90650 22573 51225 <ref group=Mw>{{MathWorld|Self-AvoidingWalkConnectiveConstant|Self-Avoiding Walk Connective Constant}}</ref>
|| [[Imaginary unit]], unit imaginary number
||[[Connective constant]] <ref>{{cite book
|| '''[[Mathematics|Gen]]''', '''[[Mathematical analysis|Ana]]'''
|author= Mireille Bousquet-Mélou
| style="text-align:center;"| ''[[algebraic number|A]]''
|title= Two-dimensional self-avoiding walks
| align=right | 16th century
|url= http://www.labri.fr/perso/bousquet/Exposes/fpsac-saw.pdf
| align=right | N/A
|editor= CNRS, LaBRI, Bordeaux, France
}}</ref><ref>{{cite book
|author= Hugo Duminil-Copin and Stanislav Smirnov
|title= The connective constant of the honeycomb lattice √ (2 + √ 2)
|url= http://www.unige.ch/~smirnov/slides/slides-saw.pdf
|year= 2011
|editor= Universite de Geneve.
}}</ref>
|bgcolor=#ffffff align=center|[[Image:HEX-LATTICE-20.gif|100px]]
| bgcolor=#e0f0f0 align=center|<math>{\mu}</math>
||<math>\sqrt{2 + \sqrt{2}} \; = \lim_{n \rightarrow \infty} c_n^{1/n} </math>
as a root of the polynomial <math>: \; x ^ 4-4 x ^ 2 + 2=0</math>
||sqrt(2+sqrt(2))
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A179260}}
||[1;1,5,1,1,3,6,1,3,3,10,10,1,1,1,5,2,3,1,1,3,...]
||
||<small> 1.84775906502257351225636637879357657 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">{{pi}}</div>
<!------------------------------------------v------------------------------------------>
|| ≈ 3.14159 26535 89793 23846 26433 83279 50288
|0.30366 30028 98732 65859 <ref group=Mw>{{MathWorld|Gauss-Kuzmin-WirsingConstant|Gauss-Kuzmin-Wirsing Constant}}</ref>
|| [[Pi]], [[Archimedes]]' constant or [[Ludolph van Ceulen|Ludolph]]'s number
||Gauss-Kuzmin-Wirsing constant <ref>{{cite book
|| '''[[Mathematics|Gen]]''', '''[[Mathematical analysis|Ana]]'''
|author= W.A. Coppel
| style="text-align:center;"| ''[[transcendental number|T]]''
|title= Number Theory: An Introduction to Mathematics
| align=right | by c.&nbsp;2000&nbsp;BC
|page= 480
| align=right | 12,100,000,000,000<ref>[http://www.numberworld.org/misc_runs/pi-10t/details.html Pi Computation Record]</ref>
|year= 2000
|editor= Springer
|isbn= 978-0-387-89485-0
|url= http://books.google.com/books?id=We5FAAAAQBAJ&lpg=PA480&dq=0.303663&hl=es&pg=PA480#v=onepage&q=0.303663&f=false
}}</ref>
||
| bgcolor=#e0f0f0 align=center|<math>{\lambda}_{2}</math>
||<math>\lim_{n \to \infty}\frac{F_n(x) - \ln(1 - x)}{(-\lambda)^n} = \Psi(x),</math>
where <math>\Psi(x)</math> is an analytic function with <math>\Psi(0) \!=\! \Psi(1) \!=\! 0</math>.
||
||
||{{OEIS2C|A038517}}
||[0;3,3,2,2,3,13,1,174,1,1,1,2,2,2,1,1,1,2,2,1,...]
||1973
||<small> 0.30366300289873265859744812190155623 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">{{mvar|e}}</div>
<!------------------------------------------v----------------------------------------->
|| ≈ 2.71828 18284 59045 23536 02874 71352 66249
|1,57079 63267 94896 61923 <ref group=Mw>{{MathWorld|WallisFormula|Wallis Formula}}</ref>
||[[e (mathematical constant)|e]], Napier's constant, or Euler's number
||Favard constant K1 <br> [[Wallis product]] <ref>{{cite book
|| '''[[Mathematics|Gen]]''', '''[[Mathematical analysis|Ana]]'''
|author= James Stuart Tanton
| style="text-align:center;"| ''[[transcendental number|T]]''
|title= Encyclopedia of Mathematics
| align=right | 1618
|url= http://books.google.com/books?id=MfKKMSuthacC&pg=PA529&dq=wallis+product&hl=es&sa=X&ei=1OsYU-X4O8PnywPuz4CoBg&redir_esc=y#v=onepage&q=wallis%20product&f=false
| align=right | 100,000,000,000
|year= 2005
|publisher=
|isbn=9781438110080
|page= 529
}}</ref>
||[[Image:Wallis product-chart.png|100px]]
| bgcolor=#e0f0f0 align=center|<math>{\frac{\pi}{2}}</math>
||<math> \prod_{n=1}^{\infty} \left(\frac{4n^2}{4n^2 - 1}\right) = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots </math>
||Prod[n=1 to ∞] <br> {(4n^2)/(4n^2-1)}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A069196}}
||[1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,1,5,1...]
||1655
||<small> 1.57079632679489661923132169163975144 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">{{math|{{sqrt|2}}}}</div>
<!------------------------------------------v----------------------------------------->
|| ≈ 1.41421 35623 73095 04880 16887 24209 69807
|1,60669 51524 15291 76378 <ref group=Mw>{{MathWorld|Erdos-BorweinConstant|Erdos-Borwein Constant}}</ref>
|| [[Pythagoras]]' constant, [[square root of 2]]
||[[Erdős–Borwein constant]]<ref>{{cite book
|| '''[[Mathematics|Gen]]'''
|author= Robert Baillie
| style="text-align:center;"| ''[[algebraic number|A]]''
|title= Summing The Curious Series of Kempner and Irwin
| align=right | by c.&nbsp;800&nbsp;BC
|url= http://arxiv.org/pdf/0806.4410.pdf
| style="text-align:right;"| 137,438,953,444
|year= 2013
|editor= arxiv
|isbn=
|page= 9
}}</ref><ref>{{cite book
|author= Leonhard Euler
|title= Consideratio quarumdam serierum, quae singularibus proprietatibus sunt praeditae
|url= http://www.math.dartmouth.edu/~euler/pages/E190.html
|year= 1749
|page= 108
}}</ref>
||<br><br><br>
| bgcolor=#e0f0f0 align=center|<math>{E}_{\,B}</math>
||<math>\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\frac{1}{2^{mn}} =\sum_{n=1}^{\infty}\frac{1}{2^n-1} = \frac{1}{1} \! + \! \frac{1}{3} \! + \! \frac{1}{7} \! + \! \frac{1}{15} \! + \! ...</math>
||sum[n=1 to ∞]<br>{1/(2^n-1)}
|style="text-align:center;"|'''''[[Irrational number|I]]'''''
||{{OEIS2C|A065442}}
||[1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,...]
||1949
||<small> 1.60669515241529176378330152319092458 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">{{math|{{sqrt|3}}}}</div>
<!----------------------------------------------v------------------------------------------->
|| ≈ 1.73205 08075 68877 29352 74463 41505 87236
|1.61803 39887 49894 84820 <ref group=Mw>{{MathWorld|GoldenRatio|Golden Ratio}}</ref>
|| [[Theodorus of Cyrene|Theodorus]]' constant, [[square root of 3]]
||Phi, [[Golden ratio]] <ref>{{cite book
|| '''[[Mathematics|Gen]]'''
|author= Timothy Gowers, June Barrow-Green, Imre Leade
| style="text-align:center;"| ''[[algebraic number|A]]''
|title= The Princeton Companion to Mathematics
| align=right | by c.&nbsp;800&nbsp;BC
|url=https://books.google.es/books?id=ZOfUsvemJDMC&lpg=PA316&dq=1.618033988749894848&hl=es&pg=PA316#v=onepage&q=1.618033988749894848&f=false
|year= 2007
|editor= Princeton University Press
|isbn= 978-0-691-11880-2
|page= 316
}}</ref>
||[[Image:Animation GoldenerSchnitt.gif|100px]]
| bgcolor=#e0f0f0 align=center|<math>{\varphi}</math>
|| <math>\frac{1 + \sqrt{5}}{2} = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}} </math>
||(1+5^(1/2))/2
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A001622}}
||[0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]<br> = [0;{{overline|1}},...]
||-300 ~
||<small> 1.61803398874989484820458633436563812 </small>
|-

<!-----------------------------------------v---------------------------------------------->
|1.64493 40668 48226 43647 <ref group=Mw>{{MathWorld|RiemannZetaFunctionZeta2|Riemann Zeta Function Zeta 2}}</ref>
||Riemann Function Zeta(2)
||
||
| bgcolor=#e0f0f0 align=center|<math>{\zeta}(\,2)</math>
||<math> \frac{\pi^2}{6} = \sum_{n=1}^\infty\frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots</math>
||Sum[n=1 to ∞]<br>{1/n^2}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A013661}}
||[1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...]
||1826 <br> to <br> 1866
||<small> 1.64493406684822643647241516664602519 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">{{math|{{sqrt|5}}}}</div>
<!----------------------------------------------v------------------------------------------->
|| ≈ 2.23606 79774 99789 69640 91736 68731 27623
|1.73205 08075 68877 29352 <ref group=Mw>{{MathWorld|TheodorussConstant|Theodorus's Constant}}</ref>
|| [[square root of 5]]
||[[Theodorus constant]]<ref>{{cite book
|| '''[[Mathematics|Gen]]'''
|author= Vijaya AV
| style="text-align:center;"| ''[[algebraic number|A]]''
|title= Figuring Out Mathematics
| align=right | by c.&nbsp;800&nbsp;BC
|url= http://books.google.com/books?id=xAwukpHCqH0C&pg=PA15&dq=1.732050807&hl=es&sa=X&ei=FyQCU470K4a7ygOrw4HgBA&redir_esc=y#v=onepage&q=1.732050807&f=false
| style="text-align:right;"|
|year= 2007
|editor= Dorling Kindcrsley (India) Pvt. Lid.
|isbn= 978-81-317-0359-5
|page= 15
}}</ref>
||[[Image:Square root of 3 in cube.svg|100px]]
| bgcolor=#e0f0f0 align=center|<math>\sqrt{3} </math>
||<math> \sqrt[3]{3 \,\sqrt[3]{3 \, \sqrt[3]{3 \,\sqrt[3]{3 \,\sqrt[3]{3 \,\cdots}}}}} </math>
||(3(3(3(3(3(3(3) <br> ^1/3)^1/3)^1/3) <br> ^1/3)^1/3)^1/3) <br> ^1/3 ...
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A002194}}
||[1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...] <br> = [1;{{overline|1,2}},...]
||-465 <br> to <br> -398
||<small> 1.73205080756887729352744634150587237 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\gamma</math></div>
<!---------------------------------------------v---------------------------------------------->
|| ≈ 0.57721 56649 01532 86060 65120 90082 40243
|1.75793 27566 18004 53270 <ref group=Mw>{{MathWorld|NestedRadicalConstant|Nested Radical Constant}}</ref>
|| [[Euler–Mascheroni constant]]
||Kasner number
||'''[[Mathematics|Gen]]''', '''[[Number theory|NuT]]'''
||
||
| bgcolor=#e0f0f0 align=center|<math>{R}</math>
| align=right | 1735
||<math>\sqrt{1 + \sqrt{2 + \sqrt{3 + \sqrt{4 + \cdots}}}} </math>
| style="text-align:right;"| 14,922,244,771
|| Fold[Sqrt[#1+#2]<br> &,0,Reverse <br> [Range[20]]]
||
||{{OEIS2C|A072449}}
||[1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...]
||1878 <br> a <br> 1955
||<small> 1.75793275661800453270881963821813852 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\phi</math></div>
<!--------------------------------------------v------------------------------------------>
|| ≈ 1.61803 39887 49894 84820 45868 34365 63811
|2.29558 71493 92638 07403 <ref group=Mw>{{MathWorld|UniversalParabolicConstant|Universal Parabolic Constant}}</ref>
|| [[Golden ratio]]
||[[Universal parabolic constant]] <ref>{{cite book
|| '''[[Mathematics|Gen]]'''
|author= Steven Finch
| style="text-align:center;"| ''[[algebraic number|A]]''
|title= Errata and Addenda to Mathematical Constants
| align=right | by 3rd century BC
|page= 59
| style="text-align:right;"| 100,000,000,000
|year= 2014
|editor= Harvard.edu
|isbn=
|url= http://www.people.fas.harvard.edu/~sfinch/csolve/erradd.pdf
}}</ref>
||[[Image:Parabola animada.gif|100px]]
| bgcolor=#e0f0f0 align=center|<math> {P}_{\,2} </math>
||<math>\ln(1 + \sqrt2) + \sqrt2 \; = \; \operatorname{arcsinh}(1)+\sqrt{2}</math>
||ln(1+sqrt 2)+sqrt 2
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A103710}}
||[2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,7,2,1,...]
||
||<small> 2.29558714939263807403429804918949038 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\Lambda</math></div>
<!------------------------------------------v-------------------------------------------->
|| ≥ &ndash;2.7 • 10<sup>−9</sup>
|1.78657 64593 65922 46345 <ref group=Mw>{{MathWorld|SilvermanConstant|Silverman Constant}}</ref>
|| [[de Bruijn–Newman constant]]
||Silverman constant<ref>{{cite book
|| '''[[Number theory|NuT]]'''
|author= Steven Finch
|title= Series involving Arithmetric Functions
|url= http://www.people.fas.harvard.edu/~sfinch/csolve/arth.pdf
|year= 2007
|editor= Harvard.edu
|page= 1
}}</ref>
||<br><br><br><br>
|bgcolor=#e0f0f0 align=center|<math>{\mathcal{S}_{_{m}}}</math>
||<math> \sum_{n = 1}^\infty \frac {1}{\phi (n)\sigma_1(n)} = \underset{ p_n: \, {prime}}{ \prod_{n = 1}^\infty \left( 1 + \sum_{k = 1}^\infty \frac {1}{p_n^{2k} - p_n^{k-1}}\right)}</math> <br> <center> ø() = [[Euler's totient function]], σ<sub>1</sub>() = [[Divisor function]].</center>
||Sum[n=1 to ∞] <br> {1/[EulerPhi(n) <br> <small>DivisorSigma</small>(1,n)]}
||
||
||{{OEIS2C|A093827}}
| style="text-align:right;"| 1950?
||[1;1,3,1,2,5,1,65,11,2,1,2,13,1,4,1,1,1,2,5,4,...]
| style="text-align:right;"| none
||
||<small> 1.78657645936592246345859047554131575 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">''M''<sub>1</sub></div>
<!--------------------------------------------v------------------------------------------->
|| ≈ 0.26149 72128 47642 78375 54268 38608 69585
|2.59807 62113 53315 94029 <ref group=Mw>{{MathWorld|Twenty-VertexEntropyConstant|Twenty-Vertex Entropy Constant}}</ref>
|| [[Meissel–Mertens constant]]
||Area of the regular hexagon with side equal to 1 <ref>{{cite book
|| '''[[Number theory|NuT]]'''
|author= Nayar
|title= The Steel Handbook
|url= http://books.google.com/books?id=3QomboYUpVEC&lpg=PA953&dq=2.598076&hl=es&pg=PA953#v=onepage&q=2.598076&f=false
|year=
|editor= Tata McGraw-Hill Education.
|page= 953
}}</ref>
|bgcolor=#ffffff align=center|[[Image:Esagono.png|80px]]
|bgcolor=#e0f0f0 align=center|<math>\mathcal{A}_6</math>
||<math> \frac{3 \sqrt{3}}{2}\,l^2 </math>
||3 sqrt(3)/2
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A104956}}
||[2;1,1,2,20,2,1,1,4,1,1,2,20,2,1,1,4,1,1,2,20,...] <br> [2;{{overline|1,1,2,20,2,1,1,4}}]
||
||
||<small> 2.59807621135331594029116951225880855 </small>
| style="text-align:right;"| 1866<br/>1874
| style="text-align:right;"| 8,010
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\beta</math></div>
<!----------------------------------------v-------------------------------------------->
|| ≈ 0.28016 94990 23869 13303
|| [[Bernstein's constant]]<ref>{{MathWorld|urlname=BernsteinsConstant|title=Bernstein's Constant}}</ref>
|0.66131 70494 69622 33528 <ref group=Mw>{{MathWorld|Feller-TornierConstant|Feller-Tornier Constant}}</ref>
||Feller-Tornier <br> constant <ref>{{cite book
|| '''[[Mathematical analysis|Ana]]'''
|author= ECKFORD COHEN
|title= SOME ASYMPTOTIC FORMULAS IN THE THEORY OF NUMBERS
|url= http://www.ams.org/journals/tran/1964-112-02/S0002-9947-1964-0166181-5/S0002-9947-1964-0166181-5.pdf
|year= 1962
|editor= University of Tennessee
|page= 220
}}</ref>
||<br><br><br><br>
|bgcolor=#e0f0f0 align=center|<math>{\mathcal{C}_{_{FT}}}</math>
||<math>\underset{p_n: \, {prime}}{\frac{1}{2}\prod_{n = 1}^\infty \left(1-\frac{2}{p_n^2}\right){+}\frac{1}{2}} =\frac{3}{\pi^2}\prod_{n = 1}^\infty \left(1-\frac{1}{p_n^2-1}\right){+}\frac{1}{2}</math>
||[prod[n=1 to ∞] <br> {1-2/prime(n)^2}] <br> /2 + 1/2
|style="text-align:center;"|'''''[[Transcendental number|T]]''''' ?
||{{OEIS2C|A065493}}
||[0;1,1,1,20,9,1,2,5,1,2,3,2,3,38,8,1,16,2,2,...]
||1932
||<small> 0.66131704946962233528976584627411853 </small>
|-

<!-----------------------------------------v--------------------------------------------->
|1.46099 84862 06318 35815 <ref group=Mw>{{MathWorld|BaxtersFour-ColoringConstant|Baxter's Four-Coloring Constant}}</ref>
||Baxter's <br> Four-coloring <br> constant <ref>{{cite book
|author= Paul B. Slater
|title= A Hypergeometric Formula ...
|url= http://arxiv.org/pdf/1203.4498.pdf
|year= 2013
|editor= University of California
|page= 9
}}</ref>
|bgcolor=#ffffff align=center| Mapamundi [[Image:Four color world map.svg|100px]] Four-Coloring
|bgcolor=#e0f0f0 align=center|<math>\mathcal{C}^2</math>
||<math> \prod_{n = 1}^\infty \frac{(3n-1)^2}{(3n-2)(3n)} = \frac {3}{4\pi^2} \,\Gamma \left(\frac {1}{3}\right)^3 </math>
<center> Γ() = [[Gamma function]] </center>
||3×Gamma(1/3) <br> ^3/(4 pi^2)
||
||
||{{OEIS2C|A224273}}
||[1;2,5,1,10,8,1,12,3,1,5,3,5,8,2,1,23,1,2,161,...]
||1970
||<small> 1.46099848620631835815887311784605969 </small>
|-

<!-------------------------------------------v-------------------------------------------->
|1.92756 19754 82925 30426 <ref group=Mw>{{MathWorld|TetranacciConstant|Tetranacci Constant}}</ref>
||[[Generalizations of Fibonacci numbers#Tetranacci numbers|Tetranacci constant]]
<!---
<ref>{{cite book
|author=
|title=
|url=
|year=
|editor=
|page=
}}</ref>
--->
||<br><br>
|bgcolor=#e0f0f0 align=center|<math>\mathcal{T}</math>
||Positive root of <math>: \;\; x^4-x^3-x^2-x-1=0</math>
||Root[x+x^-4-2=0]
||
||
||{{OEIS2C|A086088}}
||[1;1,12,1,4,7,1,21,1,2,1,4,6,1,10,1,2,2,1,7,1,...]
||
||
||<small> 1.92756197548292530426190586173662216 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\lambda</math></div>
<!----------------------------------------------v---------------------------------------------->
|| ≈ 0.30366 30028 98732 65859 74481 21901 55623
|1.00743 47568 84279 37609 <ref group=Mw>{{MathWorld|PrinceRupertsCube|Prince Rupert's Cube}}</ref>
|| [[Gauss–Kuzmin–Wirsing constant]]
||[[:en:Prince Rupert's cube#Generalizations|DeVicci's tesseract constant]]
|| '''[[combinatorics|Com]]'''
<!---
<ref>{{cite book
|author=
|title=
|url=
|year=
|editor=
|page=
}}</ref>
--->
||[[Image:8-cell-orig.gif|100px]]
|bgcolor=#e0f0f0 align=center|<math>{f_{(3,4)}}</math>
||The largest cube that can pass through in an 4D hypercube.
Positive root of <math>: \;\; 4x^4{-}28x^3{-}7x^2{+}16x{+}16=0</math>
||Root[4*x^8-28*x^6 <br> -7*x^4+16*x^2+16 <br> =0]
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A243309}}
||[1;134,1,1,73,3,1,5,2,1,6,3,11,4,1,5,5,1,1,48,...]
||
||
||<small> 1.00743475688427937609825359523109914 </small>
| align=right | 1974
| align=right | 385
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\sigma</math></div>
<!----------------------------------------------v------------------------------------------->
|| ≈ 0.35323 63718 54995 98454
|1.70521 11401 05367 76428 <ref group=Mw>{{MathWorld|NivensConstant|Niven's Constant}}</ref>
|| [[Hafner–Sarnak–McCurley constant]]
||[[Niven's constant]] <ref>{{cite book
|| '''[[Number theory|NuT]]'''
|author= Ivan Niven
|title= Averages of exponents in factoring integers
|url= http://www.ams.org/journals/proc/1969-022-02/S0002-9939-1969-0241373-5/S0002-9939-1969-0241373-5.pdf
}}</ref>
||
||
| bgcolor=#e0f0f0 align=center|<math>{C}</math>
| align=right |1993
||<math>1+\sum_{n = 2}^\infty \left(1-\frac{1}{\zeta(n)} \right)</math>
||1+ Sum[n=2 to ∞]<br>{1-(1/Zeta(n))}
||
||
||{{OEIS2C|A033150}}
||[1;1,2,2,1,1,4,1,1,3,4,4,8,4,1,1,2,1,1,11,1,...]
||1969
||<small> 1.70521114010536776428855145343450816 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">''L''</div>
<!---------------------------------------------v------------------------------------------>
|| ≈ 0.5
|0.60459 97880 78072 61686 <ref group=Mw>{{MathWorld|CentralBinomialCoefficient|Central Binomial Coefficient}}</ref>
|| [[Landau's constants|Landau's constant]]
||Relationship among the area of an equilateral triangle and the inscribed circle.
|| '''[[Mathematical analysis|Ana]]'''
||[[Image:Fano plane.svg|100px]]
| bgcolor=#e0f0f0 align=center|<math> \frac{\pi}{3 \sqrt 3}</math>
||<br><math> \sum_{n = 1}^\infty \frac{1}{n{2n \choose n}} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{5} + \frac{1}{7} - \frac{1}{8} + \cdots</math> <center> [[Dirichlet series]] </center>
||Sum[1/(n <br>Binomial[2 n, n])<br>, {n, 1, ∞}]
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A073010}}
||[0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,6,6,...]
||
||
||<small> 0.60459978807807261686469275254738524 </small>
|-

<!--------------------------------------------v------------------------------------------->
|1.15470 05383 79251 52901 <ref group=Mw>{{MathWorld|HermiteConstants|Hermite Constants}}</ref>
|| [[:fr:Constante d'Hermite|Hermite Constant]] <ref>{{cite book
|author= Steven Finch
|title= Errata and Addenda to Mathematical Constants
|page=
|year= 2014
|editor= Harvard.edu
|isbn=
|url= http://www.people.fas.harvard.edu/~sfinch/csolve/erradd.pdf
}}</ref>
||
||
| bgcolor=#e0f0f0 align=center|<math> \gamma_{_{2}} </math>
| align=right | 1
||<math> \frac{2}{\sqrt{3}} = \frac{1}{\cos \, (\frac{\pi}{6})} </math>
||2/sqrt(3)
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||1+<br>{{OEIS2C|A246724}}
||[1;6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...] <br> [1;{{overline|6,2}}]
||
||<small> 1.15470053837925152901829756100391491 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">Ω</div>
<!---------------------------------------------v----------------------------------------->
|| ≈ 0.56714 32904 09783 87299 99686 62210 35555
|0.41245 40336 40107 59778 <ref group=Mw>{{MathWorld|Thue-MorseConstant|Thue-Morse Constant}}</ref>
|| [[Omega constant]]
||[[Prouhet–Thue–Morse constant]] <ref>{{cite book
|| '''[[Mathematical analysis|Ana]]'''
|author= Steven Finch
| style="text-align:center;"| ''[[transcendental number|T]]''
|title= Errata and Addenda to Mathematical Constants
|page= 53
|year= 2014
|editor= Harvard.edu
|isbn=
|url= http://www.people.fas.harvard.edu/~sfinch/csolve/erradd.pdf
}}</ref>
||[[Image:Thue-MorseRecurrence.gif|100px]]
| bgcolor=#e0f0f0 align=center|<math> \tau </math>
||<math> \sum_{n=0}^{\infty} \frac{t_n}{2^{n+1}} </math> &nbsp;&nbsp; where <math> {t_n} </math> is the [[Thue–Morse sequence]] &nbsp;and <br> Where <math> \tau(x) = \sum_{n=0}^{\infty} (-1)^{t_n} \, x^n = \prod_{n=0}^{\infty} ( 1 - x^{2^n} )</math>
||
||
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A014571}}
||[0;2,2,2,1,4,3,5,2,1,4,2,1,5,44,1,4,1,2,4,1,1,...]
||
||
||<small> 0.41245403364010759778336136825845528 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\lambda</math>, <math>\mu</math></div>
<!--------------------------------------------v---------------------------------------->
|| ≈ 0.62432 99885 43550 87099 29363 83100 83724
|0.58057 75582 04892 40229 <ref group=Mw>{{MathWorld|PellConstant|Pell Constant}}</ref>
|| [[Golomb–Dickman constant]]
||Pell Constant <ref>{{cite book
|| '''[[combinatorics|Com]], [[Number theory|NuT]]'''
|author= FRANZ LEMMERMEYER
|title= HIGHER DESCENT ON PELL CONICS. I. FROM LEGENDRE TO SELMER
|url= http://arxiv.org/pdf/math/0311309.pdf
|year= 2003
|editor= arxiv.org
|page= 13
}}</ref>
||<br><br><br>
| bgcolor=#e0f0f0 align=center|<math>{\mathcal{P}_{_{Pell}}}</math>
||<math>1- \prod_{n = 0}^\infty \left(1-\frac{1}{2^{2n+1}}\right) </math>
||N[1-prod[n=0 to ∞] <br> {1-1/(2^(2n+1)}]
|style="text-align:center;"|'''''[[Transcendental number|T]]''''' ?
||{{OEIS2C|A141848}}
||[0;1,1,2,1,1,1,1,14,1,3,1,1,6,9,18,7,1,27,1,1,...]
||
||
||<small> 0.58057755820489240229004389229702574 </small>
| align=right | 1930<br/> 1964
|-

<!----------------------------------------------v-------------------------------------------->
|0.66274 34193 49181 58097 <ref group=Mw>{{MathWorld|LaplaceLimit|Laplace Limit}}</ref>
||[[Laplace limit]] <ref>{{cite book
|author= Howard Curtis
|title= [[Orbital Mechanics for Engineering Students]]
|page= 159
|year= 2014
|editor= Elsevier
|isbn= 978-0-08-097747-8
}}</ref>
||[[Image:Laplace limit.png|100px]]
| bgcolor=#e0f0f0 align=center|<math>{\lambda}</math>
||<math> \frac{ x \; e^\sqrt{x^2+1}}{\sqrt{x^2+1}+1} = 1</math>
||(x e^sqrt(x^2+1))<br>/(sqrt(x^2+1)+1) <br> = 1
||
||
||{{OEIS2C|A033259}}
||[0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,1,1,2,1601,...]
||1782 ~
||<small> 0.66274341934918158097474209710925290 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|
<!-------------------------------------------v---------------------------------------------->
|| ≈ 0.64341 05463
|0.17150 04931 41536 06586 <ref group=Mw>{{MathWorld|Hall-MontgomeryConstant|Hall-Montgomery Constant}}</ref>
|| [[Cahen's constant]]
||Hall-Montgomery Constant <ref>{{cite book
|author= Andrew Granville and K. Soundararajan
|title= The spectrum of multiplicative functions
|page= 3
|year= 1999
|editor= Arxiv
|isbn=
|url= http://arxiv.org/pdf/math/9909190.pdf
}}</ref>
||
||
| style="text-align:center;"| ''[[transcendental number|T]]''
| bgcolor=#e0f0f0 align=center|<math> {{\delta}_{_{0}}} </math>
|| <math> 1 + \frac{\pi^2}{6} +2 \; \mathrm{Li}_2 \left(-\sqrt{e}\;\right)
| align=right | 1891
\quad \mathrm{Li}_2 \, \scriptstyle \text{= Dilogarithm integral} </math>
| align=right | 4000
||1 + Pi^2/6 + 2*PolyLog[2, -Sqrt[E]]
||
||{{OEIS2C|A143301}}
||[0;5,1,4,1,10,1,1,11,18,1,2,19,14,1,51,1,2,1,...]
||
||<small> 0.17150049314153606586043997155521210 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">''C''<sub>2</sub></div>
<!----------------------------------------------v------------------------------------------->
|| ≈ 0.66016 18158 46869 57392 78121 10014 55577
|1.55138 75245 48320 39226 <ref group=Mw>{{MathWorld|CalabisTriangle|Calabi's Triangle}}</ref>
|| [[Twin prime conjecture|Twin prime constant]]
||[[Calabi triangle]] constant <ref>{{cite book
|| '''[[Number theory|NuT]]'''
|author= John Horton Conway, Richard K. Guy
|title= The Book of Numbers
|page= 242
|year= 1995
|editor= Copernicus
|isbn= 0-387-97993-X
|url= http://books.google.com/books?id=0--3rcO7dMYC&lpg=PA206&dq=%22Calabi%20triangle%22&hl=es&pg=PA206#v=onepage&q=%22Calabi%20triangle%22&f=false
}}</ref>
||[[Image:Calabi triangle.svg|100px]]
| bgcolor=#e0f0f0 align=center|<math> {C_{_{CR}}} </math>
|| <math> {1 \over 3} + {(-23 + 3i \sqrt{237})^{\tfrac13} \over 3 \cdot 2^{\tfrac23}} + {11 \over 3 (2 (-23 + 3i \sqrt{237}))^{\tfrac13}} </math>
||FindRoot[ <br> 2x^3-2x^2-3x+2 <br> ==0, {x, 1.5}, <br><small> WorkingPrecision->40]</small>
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A046095}}
||[1;1,1,4,2,1,2,1,5,2,1,3,1,1,390,1,1,2,11,6,2,...]
||1946 ~
||<small> 1.55138752454832039226195251026462381 </small>
|-

<!------------------------------------------v--------------------------------------------->
|1.22541 67024 65177 64512 <ref group=Mw>{{MathWorld|GammaFunction|Gamma Function}}</ref>
||Gamma(3/4) <ref>{{cite book
|author= John Derbyshire
|title= Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics
|page= 147
|year= 2003
|editor= Joseph Henry Press
|isbn= 0-309-08549-7
|url=http://books.google.com/books?id=qsoqLNQUIJMC&lpg=PA147&ots=pJnh9sLt02&dq=1.2254167024&hl=es&pg=PA147#v=onepage&q=1.2254167024&f=false
}}</ref>
||<br><br><br>
| bgcolor=#e0f0f0 align=center|<math>\Gamma(\tfrac34)</math>
||<math>\left(-1+\frac{3}{4}\right)! = \left(-\frac{1}{4}\right)!</math>
||(-1+3/4)!
||
||
||{{OEIS2C|A068465}}
||[1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,8,3,...]
||
||
||<small> 1.22541670246517764512909830336289053 </small>
| style="text-align:right;"| 5,020
|-
|-

| style="background:#d0f0d0; text-align:center;"|
<!------------------------------------------v---------------------------------------------->
|| ≈ 0.66274 34193 49181 58097 47420 97109 25290
|1.20205 69031 59594 28539 <ref group=Mw>{{MathWorld|AperysConstant|Apery's Constant}}</ref>
||[[Laplace limit]]
||[[Apéry's constant]] <ref>{{cite book
|author= Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadelantl, William B. Jones.
|title= Handbook of Continued Fractions for Special Functions
|url= http://books.google.com/books?id=DQtpJaEs4NIC&lpg=PA188&ots=GiV4L5VymA&dq=1.202056903159594285399738&hl=es&pg=PA188#v=onepage&q=1.202056903159594285399738&f=false
|year= 2008
|publisher= Springer
|isbn= 978-1-4020-6948-2
|page= 188
}}</ref>
||[[Image:Apéry's constant.svg|100px]]
| bgcolor=#e0f0f0 align=center|<math>\zeta(3)</math>
||<math>\sum_{n=1}^\infty\frac{1}{n^3} = \frac{1}{1^3}+\frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \frac{1}{5^3} + \cdots= </math>
<math>\frac{1}{2} \sum_{n=1}^\infty \frac{H_n}{n^2} =
\frac{1}{2} \sum_{i=1}^\infty \sum_{j=1}^\infty \frac{1}{ij(i{+}j)}=
\!\!\int \limits_0^1 \!\!\int \limits_0^1 \!\!\int \limits_0^1 \frac{\mathrm{d}x \mathrm{d}y \mathrm{d}z}{1 - xyz} </math>
||Sum[n=1 to ∞]<br>{1/n^3}
|style="text-align:center;"|'''''[[Irrational number|I]]'''''
||{{OEIS2C|A010774}}
||[1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,7,1,1,7,11,...]
||1979
||<small> 1.20205690315959428539973816151144999 </small>
|-

<!----------------------------------------------v--------------------------------------->
|0.91596 55941 77219 01505 <ref group=Mw>{{MathWorld|CatalansConstant|Catalan's Constant}}</ref>
||[[Catalan's constant]]<ref>{{cite book
|author= Henri Cohen
|title= Number Theory: Volume II: Analytic and Modern Tools
|url=http://books.google.com/books?id=5Lp-tGZR25sC&pg=PA127&dq=0.91596559417721901505460351493238411&hl=es&sa=X&ei=s9UoU_ObB-WW0QWs6YDICQ&ved=0CDgQuwUwAA#v=onepage&q=0.91596559417721901505460351493238411&f=false
|year= 2000
|publisher= Springer
|isbn= 978-0-387-49893-5
|page= 127
}}</ref><ref>{{cite book
|author= H. M. Srivastava,Choi Junesang
|title= Series Associated With the Zeta and Related Functions
|url= http://books.google.com/books?id=NBcSzUlaWWAC&pg=PA29&dq=0.915965594177219015&hl=es&sa=X&ei=uVstU6GGAYLe7AbQ1YGgBg&ved=0CDEQ6AEwAA#v=onepage&q=0.915965594177219015&f=false
|year= 2001
|publisher= Kluwer Academic Publishers
|isbn= 0-7923-7054-6
|page= 30
}}</ref><ref>{{cite book
|author= E. Catalan
|title= Mémoire sur la transformation des séries, et sur quelques intégrales définies, Comptes rendus hebdomadaires des séances de l’Académie des sciences 59
|url= http://books.google.de/books?id=LXZFAAAAcAAJ&pg=PA618
|year= 1864
|publisher= Kluwer Academic éditeurs
|page= 618
}}</ref>
||<br><br><br>
| bgcolor=#e0f0f0 align=center|<math>{C}</math>
|| <math> \int_0^1 \!\! \int_0^1 \!\! \frac{1}{1{+}x^2 y^2}\, dx \,dy
= \! \sum_{n = 0}^\infty \! \frac{(-1)^n}{(2n{+}1)^2} \!
= \! \frac{1}{1^2}{-}\frac{1}{3^2}{+}{\cdots} </math>
||Sum[n=0 to ∞]<br>{(-1)^n/(2n+1)^2}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A006752}}
||[0;1,10,1,8,1,88,4,1,1,7,22,1,2,3,26,1,11,...]
||1864
||<small> 0.91596559417721901505460351493238411 </small>
|-

<!-------------------------------------------v------------------------------------------->
|0.78539 81633 97448 30961 <ref group=Mw>{{MathWorld|DirichletBetaFunction|Dirichlet Beta Function}}</ref>
||Beta(1) <ref>{{cite book
|author= Lennart Råde,Bertil
|title= Mathematics Handbook for Science and Engineering
|page= 423
|year= 2000
|editor= Springer-Verlag
|isbn= 3-540-21141-1
|url= http://books.google.com/books?id=zHEjWAgv7joC&lpg=PA423&dq=0.785398163&hl=es&pg=PA423#v=onepage&q=0.785398163&f=false
}}</ref>
||[[Image:Loglogisticcdf.svg|100px]]
| bgcolor=#e0f0f0 align=center|<math>{\beta}(1)</math>
||<math>\frac{\pi}{4} = \sum_{n = 0}^\infty \frac{(-1)^n}{2n+1} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots</math>
||Sum[n=0 to ∞]<br>{(-1)^n/(2n+1)}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A003881}}
||[0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...]
||1805 <br> to <br> 1859
||<small> 0.78539816339744830961566084581987572 </small>
|-

<!-------------------------------------------v----------------------------------------->
|0.00131 76411 54853 17810 <ref group=Mw>{{MathWorld|Heath-Brown-MorozConstant|Heath-Brown-Moroz Constant}}</ref>
||[[Heath-Brown–Moroz constant]]<ref>{{cite book
|author= J. B. Friedlander, A. Perelli, C. Viola, D.R. Heath-Brown, H.Iwaniec, J. Kaczorowski
|title= Analytic Number Theory
|url= http://books.google.com/books?id=NuDimaRIVVsC&lpg=PA29&dq=%22Heath-Brown%20and%20Moroz%22&hl=es&pg=PA29#v=onepage&q=%22Heath-Brown%20and%20Moroz%22&f=false
|year= 2002
|editor= Springer
|isbn= 978-3-540-36363-7
|page= 29
}}</ref>
||
||
| bgcolor=#e0f0f0 align=center|<math>{C_{_{HBM}}}</math>
||<math>\underset{p_n: \, {prime}}{\prod_{n = 1}^\infty \left(1-\frac{1}{p_n}\right)^7\left(1+\frac{7p_n+1}{p_n^2}\right)} </math>
||N[prod[n=1 to ∞] <br> {((1-1/prime(n))^7) <br> *(1+(7*prime(n)+1) <br> /(prime(n)^2))}]
|style="text-align:center;"|'''''[[Transcendental number|T]]''''' ?
||{{OEIS2C|A118228}}
||[0,0,1,3,1,7,6,4,1,1,5,4,8,5,3,1,7,8,1,0,9,8,1,...]
||
||
||<small> 0.00131764115485317810981735232251358 </small>
|-

<!-------------------------------------------v------------------------------------------->
|0.56755 51633 06957 82538
||Module of <br> Infinite <br> [[Tetration]] of ''i''
||
||
| bgcolor=#e0f0f0 align=center|<math>|{}^\infty {i} | </math>
||<math> \lim_{n \to \infty} \left | {}^n i \right | =\left | \lim_{n \to \infty} \underbrace{i^{i^{\cdot^{\cdot^{i}}}}}_n \right |</math>
||Mod(i^i^i^...)
||
||
||{{OEIS2C|A212479}}
||[0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...]
||
||<small> 0.56755516330695782538461314419245334 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\beta</math><sup>*</sup></div>
<!--------------------------------------------v----------------------------------------->
|| ≈ 0.70258
|0.78343 05107 12134 40705 <ref group=Mw>{{MathWorld|SophomoresDream|Sophomore's Dream}}</ref>
|| [[Embree–Trefethen constant]]
||[[Sophomore's dream]] <sub>1</sub> J.[[Johann Bernoulli|Bernoulli]] <ref>{{cite book
||'''[[Number theory|NuT]]'''
|author= William Dunham
|title= The Calculus Gallery: Masterpieces from Newton to Lebesgue
|url= http://books.google.com/books?id=QnXSqvTiEjYC&pg=PA51&lpg=PA51&dq=0.7834305107&source=bl&ots=9WOKLh10eD&sig=TlJGSUUYXOpHBTx_1Hm1uXiWDY0&hl=es&sa=X&ei=n9ZBU_uINYPt0gWH3YHIDg&redir_esc=y#v=onepage&q=0.7834305107&f=false
|year= 2005
|editor= Princeton University Press
|isbn= 978-0-691-09565-3
|page= 51
}}</ref>
||[[File:Socd 002.png|100px]]
| bgcolor=#e0f0f0 align=center|<math>{I}_{1}</math>
||<math>\int_0^1 \! x^{x}\,dx = \sum_{n = 1}^\infty \frac{(-1)^{n+1}}{n^n} = \frac{1}{1^1} - \frac{1}{2^2} + \frac{1}{3^3} - {\cdots} </math>
||Sum[n=1 to ∞] <br> {-(-1)^n /n^n}
||
||
||{{OEIS2C|A083648}}
||[0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,2,1,14,...]
||1697
||<small> 0.78343051071213440705926438652697546 </small>
|-

<!-------------------------------------------v------------------------------------------->
|1.29128 59970 62663 54040 <ref group=Mw>{{MathWorld|SophomoresDream|Sophomore's Dream}}</ref>
||[[Sophomore's dream]] <sub>2</sub> J.[[Johann Bernoulli|Bernoulli]] <ref>{{cite book
|author= Jean Jacquelin
|title= SOPHOMORE'S DREAM FUNCTION
|url= http://math.eretrandre.org/tetrationforum/attachment.php?aid=788
|year= 2010
|editor=
|isbn=
|page=
}}</ref>
||[[File:Socd 001.png|100px]]
| bgcolor=#e0f0f0 align=center|<math>{I}_{2}</math>
||<math> \int_0^1 \! \frac{1}{x^x}\, dx
= \sum_{n = 1}^\infty \frac{1}{n^n} = \frac{1}{1^1} + \frac{1}{2^2} + \frac{1}{3^3} + \frac{1}{4^4}+ \cdots</math>
||Sum[n=1 to ∞] <br> {1/(n^n)}
||
||
||{{OEIS2C|A073009}}
||[1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,2,4,...]
||1697
||<small> 1.29128599706266354040728259059560054 </small>
|-

<!-----------------------------------------v------------------------------------------->
|0.70523 01717 91800 96514 <ref group=Mw>{{MathWorld|Primorial|Primorial}}</ref>
||[[:de:Primorial#Eigenschaften|Primorial]] constant <br> <small> Sum of the product of inverse of primes </small><ref>{{cite book
|author= Simon Plouffe
|title= Sum of the product of inverse of primes
|url= http://www.plouffe.fr/simon/constants/primeprod.txt
}}</ref>
||
||
| bgcolor=#e0f0f0 align=center|<math>{P_\#}</math>
||<math> \underset{ p_n: \, {prime}}{\sum_{n = 1}^\infty \frac{1}{p_n\#} = \frac{1}{2} + \frac{1}{6} + \frac{1}{30} + \frac{1}{210} + ... = \sum_{k = 1}^\infty \prod_{n = 1}^k \frac {1}{p_n}} </math>
||Sum[k=1 to ∞] <br> (prod[n=1 to k] {1/prime(n)})
||
||{{OEIS2C|A064648}}
||[0;1,2,2,1,1,4,1,2,1,1,6,13,1,4,1,16,6,1,1,4,...]
||
||<small> 0.70523017179180096514743168288824851 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">K</div>
<!-----------------------------------------v------------------------------------------->
|| ≈ 0.76422 36535 89220 66299 06987 31250 09232
|0.14758 36176 50433 27417 <ref group=Mw>{{MathWorld|PlouffesConstants|Plouffe's Constants}}</ref>
|| [[Landau–Ramanujan constant]]
||[[Bailey–Borwein–Plouffe formula#The BBP formula for π|Plouffe's gamma constant]] <ref>{{cite book
|| '''[[Number theory|NuT]]'''
|author= Simon Plouffe
|title= The Computation of Certain Numbers Using a Ruler and Compass
|url= https://cs.uwaterloo.ca/journals/JIS/compass.html
|page= Vol. 1 (1998), Article 98.1.3
|year= 1998
|editor= Université du Québec à Montréal
}}</ref>
||[[File:Trigo-arctan-animation.gif|100px]]
| bgcolor=#e0f0f0 align=center|<math>{{C}}</math>
||<math> \frac{1}{\pi} \arctan {\frac{1}{2}}
= \frac{1}{\pi}\sum_{n=0}^\infty \frac {(-1)^n}{(2^{2n+1})(2n+1)}
</math><br><math>
= \frac{1}{\pi} \left( \frac {1}{2} - \frac {1}{3 \cdot 2^3} +\frac {1}{5 \cdot 2^5} -\frac {1}{7 \cdot 2^7} +\cdots
\right)</math>
||Arctan(1/2)/pi
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A086203}}
||[0;6,1,3,2,5,1,6,5,3,1,1,2,1,1,2,3,1,2,3,2,2,...]
||
||
||<small> 0.14758361765043327417540107622474052 </small>
|-

<!------------------------------------------v------------------------------------------>
|0.15915 49430 91895 33576 <ref group=Mw>{{MathWorld|PlouffesConstants|Plouffe's Constants}}</ref>
||Plouffe's A constant <ref>{{cite book
|author= John Srdjan Petrovic
|title= Advanced Calculus: Theory and Practice
|url= http://books.google.com/books?id=oUfBAQAAQBAJ&lpg=PA65&dq=0.1591549430&hl=es&pg=PA65#v=onepage&q=0.1591549430&f=false
|page= 65
|editor= CRC Press
|year= 2014
|isbn= 978-1-4665-6563-0
}}</ref>
||<br><br><br>
| bgcolor=#e0f0f0 align=center|<math>{A}</math>
||<math> \frac{1}{2 \pi} </math>
||1/(2 pi)
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A086201}}
||[0;6,3,1,1,7,2,146,3,6,1,1,2,7,5,5,1,4,1,2,42,...]
||
||
||<small> 0.15915494309189533576888376337251436 </small>
| style="text-align:right;"| 30,010
|-
|-

| style="background:#d0f0d0; text-align:center;"|
<!-----------------------------------------v------------------------------------------->
|| ≈ 0.80939 40205
|| [[Alladi–Grinstead constant]]<ref>{{MathWorld|urlname=Alladi-GrinsteadConstant|title=Alladi–Grinstead Constant}}</ref>
|0.29156 09040 30818 78013 <ref group=Mw>{{MathWorld|DominoTiling|Domino Tiling}}</ref>
||Dimer constant 2D, <br> [[Domino tiling]]<ref>{{cite book
|| '''[[Number theory|NuT]]'''
|author= Steven R. Finch
|title= Several Constants Arising in Statistical Mechanics
|url= http://arxiv.org/pdf/math/9810155.pdf
|page= 5
|year= 1999
}}</ref><ref>{{cite book
|author= Federico Ardila, Richard Stanley
|title= Several Constants Arising in Statistical Mechanics
|url= http://math.sfsu.edu/federico/Articles/teselaciones.pdf
|editor= Department of Mathematics, MIT, Cambridge
}}</ref>
||[[File:Dominoes tiling 8x8.svg|100px]]
| bgcolor=#e0f0f0 align=center|<math>{\frac{C}{\pi}}</math>
C=[[Catalan's constant|Catalan]]
||<math> \int\limits_{-\pi}^{\pi} \frac{\cosh^{-1}\left(\frac{\sqrt{\cos(t)+3}}{\sqrt2}\right)}{4\pi}\,dt </math>
||N[int[-pi to pi] {arccosh(sqrt(<br>cos(t)+3)/sqrt(2))<br>/(4*Pi)dt}]
||
||
||{{OEIS2C|A143233}}
||[0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...]
||
||
||<small> 0.29156090403081878013838445646839491 </small>
|-

<!--------------------------------------------v----------------------------------------->
|0.49801 56681 18356 04271 <br>
0.15494 98283 01810 68512 i
||[[Factorial]](''i'')<ref>{{cite book
|author= Andrija S. Radovic
|title= A REPRESENTATION OF FACTORIAL FUNCTION, THE NATURE OF CONSTAT AND A WAY FOR SOLVING OF FUNCTIONAL EQUATION F(x) = x . F(x - 1)
|url= http://www.andrijar.com/gamma/gammae.pdf
}}</ref>
||
| bgcolor=#e0f0f0 align=center|<math>{i}\,!</math>
||<math> \Gamma (1+i) = i \, \Gamma (i) = \int\limits_0^\infty \frac{t^i}{e^t} \mathrm{d} t</math>
||Integral_0^∞ <br> t^i/e^t dt
|style="text-align:center;"|'''''[[Complex number|C]]'''''
||{{OEIS2C|A212877}} <br> {{OEIS2C|A212878}}
||[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...] <br> - [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] ''i''
||
||
||<small> 0.49801566811835604271369111746219809 <br> - 0.15494982830181068512495513048388 ''i'' </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">''B''<sub>4</sub></div>
<!-----------------------------------------v-------------------------------------------->
|| ≈ 0.87058 83800
|2.09455 14815 42326 59148 <ref group=Mw>{{MathWorld|WallissConstant|Wallis's Constant}}</ref>
|| [[Brun's constant]] for prime quadruplets
|| '''[[Number theory|NuT]]'''
||[[John Wallis|Wallis]] Constant
||[[File:Wallis's Constant.png|100px]]
| bgcolor=#e0f0f0 align=center|<math> W </math>
||<math> \sqrt[3]{\frac{45-\sqrt{1929}}{18}}+\sqrt[3]{\frac{45+\sqrt{1929}}{18}}</math>
||(((45-sqrt(1929)) <br> /18))^(1/3)+ <br> (((45+sqrt(1929)) <br> /18))^(1/3)
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A007493}}
||[2;10,1,1,2,1,3,1,1,12,3,5,1,1,2,1,6,1,11,4,...]
||1616 <br> to <br> 1703
||<small> 2.09455148154232659148238654057930296 </small>
|-

<!-----------------------------------------v------------------------------------------->
|0.72364 84022 98200 00940 <ref group=Mw>{{MathWorld|SarnaksConstant|Sarnak's Constant}}</ref>
||Sarnak constant
||
||
| bgcolor=#e0f0f0 align=center|<math>{C_{sa} }</math>
||<math> \prod_{p>2} \Big(1 - \frac{p+2}{p^3}\Big) </math>
||N[prod[k=2 to ∞] <br> {1-(prime(k)+2) <br> /(prime(k)^3)}]
|style="text-align:center;"|'''''[[Transcendental number|T]]''''' ?
||{{OEIS2C|A065476}}
||[0;1,2,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,8,2,1,1,...]
||
||
||<small> 0.72364840229820000940884914980912759 </small>
|-

<!----------------------------------------v-------------------------------------------->
|0.63212 05588 28557 67840 <ref group=Mw>{{MathWorld|e|e}}</ref>
||[[Time constant]] <ref>{{cite book
|author= Kunihiko Kaneko,Ichiro Tsuda
|title= Complex Systems: Chaos and Beyond
|url= http://books.google.com/books?id=7lcINfgupggC&lpg=PA211&dq=0.63212&hl=es&pg=PA208#v=onepage&q=0.63212&f=false
|isbn= 3-540-67202-8
|page= 211
|year= 1997
}}</ref>
||[[File:Seq1.png|100px]]
| bgcolor=#e0f0f0 align=center|<math>{\tau}</math>
||<math> \lim_{n \to \infty} 1-\frac {!n}{n!}=\lim_{n \to \infty} P(n)= \int_{0}^{1}e^{-x}dx = 1{-}\frac{1}{e} = </math> <br>
<math> \sum \limits_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!} =
\frac{1}{1!}{-}\frac{1}{2!}{+}\frac{1}{3!}{-}\frac{1}{4!}{+}\frac{1}{5!}{-}\frac{1}{6!}{+}\cdots </math>
||lim_(n->∞) (1- !n/n!) <br> !n=subfactorial
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A068996}}
||[0;1,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...] <br> = [0;1,{{overline|1,1,2n}}], n∈ℕ
||
||
||<small> 0.63212055882855767840447622983853913 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">K</div>
<!-------------------------------------------v------------------------------------------>
|| ≈ 0.91596 55941 77219 01505 46035 14932 38411 </td>
|1.04633 50667 70503 18098
|| [[Catalan's constant]]
||Minkowski-Siegel mass constant <ref>{{cite book
|| '''[[combinatorics|Com]]'''
|author= Steven Finch
|title= Minkowski-Siegel Mass Constants
|page= 5
|year= 2005
|editor= Harvard University
|url= http://www.people.fas.harvard.edu/~sfinch/csolve/ms.pdf
}}</ref>
||
||
| bgcolor=#e0f0f0 align=center|<math> F_1 </math>
||<math> \prod_{n=1}^{\infty} \frac{n!}{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n \sqrt[12]{1+\tfrac1{n}}}</math>
||N[prod[n=1 to ∞] <br> n! /(sqrt(2*Pi*n) <br> *(n/e)^n *(1+1/n) <br> ^(1/12))]
||
||
||{{OEIS2C|A213080}}
| style="text-align:right;"| 15,510,000,000
||[1;21,1,1,2,1,1,4,2,1,5,7,2,1,20,1,1,1134,3,..]
||1867 <br> 1885 <br> 1935
||<small> 1.04633506677050318098095065697776037 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">B´<sub>L</sub></div>
<!------------------------------------------v------------------------------------------->
|| = 1
|5.24411 51085 84239 62092 <ref group=Mw>{{MathWorld|LemniscateConstant|Lemniscate Constant}}</ref>
|| [[Legendre's constant]]
||Lemniscate Constant <ref>{{cite book
|| '''[[Number theory|NuT]]'''
|author=
| style="text-align:center;"| ''[[Rational number|R]]''
|title= Evaluation of the complete elliptic integrals by the agm method
|url= http://www2.mae.ufl.edu/~uhk/AGM-2012.pdf
|isbn=
|editor= University of Florida, Department of Mechanical and Aerospace Engineering
|page=
|year=
}}</ref>
||<center>[[File:Lemniscate of Bernoulli.gif|80px]]</center>
| bgcolor=#e0f0f0 align=center|<math>2\varpi</math>
||<math>\frac{[\Gamma(\tfrac14)]^2}{\sqrt{2 \pi}} =
4\int^1_0 \frac{dx}{\sqrt{(1-x^2)(2-x^2)}} </math>
||Gamma[ 1/4 ]^2 <br> /Sqrt[ 2 Pi ]
||
||
|{{OEIS2C|A064853}}
| style="text-align:right;"| N/A
||[5;4,10,2,1,2,3,29,4,1,2,1,2,1,2,1,4,9,1,4,1,2,...]
||1718
||<small> 5.24411510858423962092967917978223883 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\Lambda</math></div>
<!--------------------------------------------v----------------------------------------->
|| ≈ 1.09868 58055
|| [[Lengyel's constant]]<ref>{{MathWorld|urlname=LengyelsConstant|title=Lengyel's Constant}}</ref>
|0.66170 71822 67176 23515 <ref group=Mw>{{MathWorld|RobbinsConstant|Robbins Constant}}</ref>
||[[Robbins constant]] <ref>{{cite book
|| '''[[combinatorics|Com]]'''
|author= Steven R. Finch
|title= Mathematical Constants
|page= 479
|year= 2003
|editor= Cambridge University Press
|isbn= 3-540-67695-3
|url= http://books.google.com/books?id=Pl5I2ZSI6uAC&pg=PA556&dq=Goh-Schmutz&hl=es&sa=X&ei=db-kUvPWHrCo0AXA8YHgCQ&ved=0CDgQ6AEwAA#v=onepage&q=Schmutz&f=false
}}</ref>
||
||
|bgcolor=#e0f0f0 align=center|<math>\Delta(3)</math>
| align=right | 1992
||<math> \frac{4 \! + \! 17\sqrt2 \! -6 \sqrt3 \! -7\pi}{105} \! + \! \frac{\ln(1 \! + \! \sqrt2)}{5} \! + \! \frac{2\ln(2 \! + \! \sqrt3)}{5} </math>
||(4+17*2^(1/2)-6 <br> *3^(1/2)+21*ln(1+ <br> 2^(1/2))+42*ln(2+ <br> 3^(1/2))-7*Pi)/105
|
||{{OEIS2C|A073012}}
||[0;1,1,1,21,1,2,1,4,10,1,2,2,1,3,11,1,331,1,4,...]
||1978
||<small> 0.66170718226717623515583113324841358 </small>
|-

<!---------------------------------------v---------------------------------------------->
|1.30357 72690 34296 39125 <ref group=Mw>{{MathWorld|ConwaysConstant|Conway's Constant}}</ref>
||[[Conway constant]] <ref>{{cite book
|author= Facts On File, Incorporated
|title= Mathematics Frontiers
|url= http://books.google.com/books?id=gmCSpNhXMooC&lpg=PA45&dq=Conway%20Constant&hl=es&pg=PA45#v=onepage&q=Conway%20Constant&f=false
|isbn= 978-0-8160-5427-5
|page= 46
|year= 1997
}}</ref>
||[[File:Conway constant.png|100px]]
| bgcolor=#e0f0f0 align=center|<math>{\lambda}</math>
||<math> \begin{smallmatrix}
x^{71}\quad\ -x^{69}-2x^{68}-x^{67}+2x^{66}+2x^{65}+x^{64}-x^{63}-x^{62}-x^{61}-x^{60}\\
-x^{59}+2x^{58}+5x^{57}+3x^{56}-2x^{55}-10x^{54}-3x^{53}-2x^{52}+6x^{51}+6x^{50}\\
+x^{49}+9x^{48}-3x^{47}-7x^{46}-8x^{45}-8x^{44}+10x^{43}+6x^{42}+8x^{41}-5x^{40}\\
-12x^{39}+7x^{38}-7x^{37}+7x^{36}+x^{35}-3x^{34}+10x^{33}+x^{32}-6x^{31}-2x^{30}\\
-10x^{29}-3x^{28}+2x^{27}+9x^{26}-3x^{25}+14x^{24}-8x^{23}\quad\ -7x^{21}+9x^{20}\\
+3x^{19}\!-4x^{18}\!-10x^{17}\!-7x^{16}\!+12x^{15}\!+7x^{14}\!+2x^{13}\!-12x^{12}\!-4x^{11}\!-2x^{10}\\
+5x^{9}+x^{7}\quad\ -7x^{6}+7x^{5}-4x^{4}+12x^{3}-6x^{2}+3x-6\ =\ 0 \quad\quad\quad
\end{smallmatrix}</math>
||
||
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A014715}}
||[1;3,3,2,2,54,5,2,1,16,1,30,1,1,1,2,2,1,14,1,...]
||1987
||<small> 1.30357726903429639125709911215255189 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">K</div>
<!-------------------------------------------v------------------------------------------>
|| ≈ 1.13198 824
|1.18656 91104 15625 45282 <ref group=Mw>{{MathWorld|LevyConstant|Levy Constant}}</ref>
|| [[Viswanath's constant]]
||[[Khinchin–Lévy constant]]<ref>{{cite book
|| '''[[Number theory|NuT]]'''
|author= Aleksandr I͡Akovlevich Khinchin
|title= Continued Fractions
|url= http://books.google.com/books?id=R7Fp8vytgeAC&pg=PA66
|isbn= 978-0-486-69630-0
|editor= Courier Dover Publications
|page= 66
|year= 1997
}}</ref>
||<br><br><br>
| bgcolor=#e0f0f0 align=center|<math>{\beta}</math>
||<math>\frac {\pi^2}{12\,\ln 2}</math>
||pi^2 /(12 ln 2)
||
||{{OEIS2C|A100199}}
||[1;5,2,1,3,1,1,28,18,16,3,2,6,2,6,1,1,5,5,9,...]
||1935
||<small> 1.18656911041562545282172297594723712 </small>
|-

<!------------------------------------------v------------------------------------------->
|0.83564 88482 64721 05333
||[[:ja:ベイカーの定理|Baker constant]] <ref>{{cite book
|author= Jean-Pierre Serre
|title= Travaux de Baker
|page= 74
|year= 1969–1970
|publisher= NUMDAM, Séminaire N. Bourbaki.
|url= http://archive.numdam.org/ARCHIVE/SB/SB_1969-1970__12_/SB_1969-1970__12__73_0/SB_1969-1970__12__73_0.pdf}}</ref>
||[[File:Baker constant.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>\beta_3</math>
||<math>\int^1_0 \frac{{\mathrm{d} t}}{1 + t^3}=\sum_{n = 0}^\infty \frac{(-1)^n}{3n+1}= \frac{1}{3}\left(\ln 2+\frac{\pi}{\sqrt{3}}\right)</math>
||Sum[n=0 to ∞] <br> {((-1)^(n))/(3n+1)}
||
||
||{{OEIS2C|A113476}}
||[0;1,5,11,1,4,1,6,1,4,1,1,1,2,1,3,2,2,2,2,1,3,...]
||
||
||<small> 0.83564884826472105333710345970011076 </small>
| style="text-align:right;"| 8
|-
|-

| style="background:#d0f0d0; text-align:center;"| <div style="font-size:125%;"><math>\zeta (3)</math></div>
<!------------------------------------------v------------------------------------------->
|| ≈ 1.20205 69031 59594 28539 97381 61511 44999
|23.10344 79094 20541 6160 <ref group=Mw>{{MathWorld|KempnerSeries|Kempner Series}}</ref>
|| [[Apéry's constant]]
||[[:de:Kempner-Reihe|Kempner Serie]](0) <ref>{{cite book
|author= Julian Havil
|title= Gamma: Exploring Euler's Constant
|url=http://books.google.com/books?id=7-sDtIy8MNIC&lpg=PA31&dq=Gamma%3A%20Exploring%20Euler's%20Constant%2C%20Julian%20Havil%2C%20Kempner&hl=es&pg=PA31#v=onepage&q=Gamma:%20Exploring%20Euler's%20Constant,%20Julian%20Havil,%20Kempner&f=false
|year= 2003
|publisher= Princeton University Press
|isbn= 9780691141336
|page= 31
}}</ref>
||
||
| style="text-align:center;"| ''[[irrational number|I]]''
| bgcolor=#e0f0f0 align=center|<math>{K_0}</math>
||<math>1{+}\frac12{+}\frac13{+}\cdots{+}\frac19{+}\frac1{11}{+}\cdots{+}\frac1{19}{+}\frac1{21}{+}\cdots{+}\,\text{etc.}</math>
| align=right | 1979
<math>{+}\frac1{99}{+}\frac1{111}{+}\cdots{+}\frac1{119}{+}\frac1{121}{+}\cdots\;\;
| align=right | 15,510,000,000
\overset {Excluding \; all}{ \underset{ containing \; 0.}{\scriptstyle denominators} }
</math>
||1+1/2+1/3+1/4+1/5<br>+1/6+1/7+1/8+1/9<br>+1/11+1/12+1/13<br>+1/14+1/15+...
||
||{{OEIS2C|A082839}}
||[23;9,1,2,3244,1,1,5,1,2,2,8,3,1,1,6,1,84,1,...]
||
||<small> 23.1034479094205416160340540433255981 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\theta</math></div>
<!----------------------------------------------v--------------------------------------->
|| ≈ 1.30637 78838 63080 69046 86144 92602 60571
|0.98943 12738 31146 95174 <ref group=Mw>{{MathWorld|LebesgueConstants|Lebesgue Constants}}</ref>
|| [[Mills' constant]]
||[[Lebesgue constant (interpolation)|Lebesgue constant]] <ref>{{cite book
||'''[[Number theory|NuT]]'''
|author= Horst Alzer
|title= Journal of Computational and Applied Mathematics, Volume 139, Issue 2
|url= http://ac.els-cdn.com/S0377042701004265/1-s2.0-S0377042701004265-main.pdf?_tid=c20cf466-f4bf-11e3-bd9c-00000aacb362&acdnat=1402859198_57de7868bcc50086f092c66898ec6a33
|year= 2002
|publisher= Elsevier
|isbn=
|pages= 215–230
}}</ref>
||[[File:Fourier synthesis.svg|100px]]
| bgcolor=#e0f0f0 align=center|<math>{C_1}</math>
||<math>\lim_{n\to\infty}\!\! \left(\!{L_n{-}\frac{4}{\pi^2}\ln(2n{+}1)}\!\!\right)\!{=}
\frac{4}{\pi^2}\!\left({\sum_{k=1}^\infty \!\frac{2\ln k}{4k^2{-}1}}
{-}\frac{\Gamma'(\tfrac12)}{\Gamma(\tfrac12)}\!\!\right)</math>
||4/pi^2*[(2 <br> Sum[k=1 to ∞] <br> {ln(k)/(4*k^2-1)}) <br> -poligamma(1/2)]
||
||
||{{OEIS2C|A243277}}
| align=right | 1947
||[0;1,93,1,1,1,1,1,1,1,7,1,12,2,15,1,2,7,2,1,5,...]
| align=right | 6850
||?
||<small> 0.98943127383114695174164880901886671 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\rho</math></div>
<!------------------------------------------v------------------------------------------->
|| ≈ 1.32471 79572 44746 02596 09088 54478 09734
|0.19452 80494 65325 11361 <ref group=Mw>{{MathWorld|DuBoisReymondConstants|Du Bois Reymond Constants}}</ref>
|| [[Plastic number|Plastic constant]]
||[[:es:Constante Du Bois Reymond|2nd du Bois-Reymond constant]] <ref>{{cite book
|| '''[[Number theory|NuT]]'''
|author= Steven R. Finch
| style="text-align:center;"| ''[[algebraic number|A]]''
|title= Mathematical Constants
| align=right | 1928
|url=
| style="text-align:right;"|
|year= 2003
|publisher= Cambridge University Press
|isbn= 3-540-67695-3
|page= 238
}}</ref>
||
| bgcolor=#e0f0f0 align=center|<math>{C_2}</math>
||<math>\frac{e^2-7}{2} = \int_0^\infty \left|{\frac{d}{dt}\left(\frac{\sin t}{t}\right)^n}\right|\,dt-1 </math>
||(e^2-7)/2
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A062546}}
||[0;5,7,9,11,13,15,17,19,21,23,25,27,29,31,...]<br> = [0;{{overline|2p+3}}], p∈ℕ
||
||<small> 0.19452804946532511361521373028750390 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\mu</math></div>
<!--------------------------------------------v----------------------------------------->
|| ≈ 1.45136 92348 83381 05028 39684 85892 02744
|0.78853 05659 11508 96106 <ref group=Mw>{{MathWorld|LuerothsConstant|Lüroth's Constant}}</ref>
|| [[Ramanujan–Soldner constant]]
||Lüroth constant<ref>{{cite book
|| '''[[Number theory|NuT]]'''
|author= Steven Finch
| style="text-align:center;"| ''[[Irrational number|I]]''
|title= Continued Fraction Transformation III
|url= http://www.people.fas.harvard.edu/~sfinch/csolve/kz3.pdf
|isbn=
|publisher= Harvard University
|page= 5
|year= 2007
}}</ref>
||<center>[[File:Constante de Lüroth.svg|35px]]</center>
| bgcolor=#e0f0f0 align=center|<math>C_L</math>
||<math>\sum_{n = 2}^\infty \frac{\ln\left(\frac{n}{n-1}\right)}{n}</math>
||Sum[n=2 to ∞] <br> log(n/(n-1))/n
||
|{{OEIS2C|A085361}}
||[0;1,3,1,2,1,2,4,1,127,1,2,2,1,3,8,1,1,2,1,16,...]
||
||
||<small> 0.78853056591150896106027632216944432 </small>
| style="text-align:right;"| 75,500
|-
|-

| style="background:#d0f0d0; text-align:center;"|
<!-------------------------------------------v------------------------------------------>
|| ≈ 1.45607 49485 82689 67139 95953 51116 54356
|| [[Backhouse's constant]]<ref>{{MathWorld|urlname=BackhousesConstant|title=Backhouse's Constant}}</ref>
|1.18745 23511 26501 05459 <ref group=Mw>{{MathWorld|FoiasConstant|Foias Constant}}</ref>
||[[Foias constant]] <sub>α</sub> <ref>{{cite book
|author= Andrei Vernescu
|title= Gazeta Matematica€ Seria a revista€ de cultur€ Matematica Anul XXV(CIV)Nr. 1, Constante de tip Euler generalizate€
|url= http://ssmr.ro/gazeta/gma/2007/gma-1-2007.pdf
|year= 2007
|publisher=
|isbn=
|page= 14
}}</ref>
||<br><br><br>
|bgcolor=#e0f0f0 align=center|<math>F_\alpha</math>
||<math> x_{n+1} = \left( 1 + \frac{1}{x_n} \right)^n\text{ for }n=1,2,3,\ldots </math>
Foias constant is the unique real number such that if x1 = α then the sequence diverges to ∞. When ''x''<sub>1</sub>&nbsp;=&nbsp;''&alpha;'', <math>\, \lim_{n\to\infty} x_n \tfrac{\log n}{n} = 1 </math>
||
||
|
||{{OEIS2C|A085848}}
||[1;5,2,1,81,3,2,2,1,1,1,1,1,6,1,1,3,1,1,4,3,2,...]
||2000
||<small> 1.18745235112650105459548015839651935 </small>
|-

<!------------------------------------------v------------------------------------------->
|2.29316 62874 11861 03150 <ref group=Mw>{{MathWorld|FoiasConstant|Foias Constant}}</ref>
||[[Foias constant]] <sub>β</sub>
||[[File:Foias constant.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>F_\beta</math>
||<math> x^{x+1} = (x+1)^x</math>
||x^(x+1) <br> = (x+1)^x
|
||{{OEIS2C|A085846}}
||[2;3,2,2,3,4,2,3,2,130,1,1,1,1,1,6,3,2,1,15,1,...]
||2000
||<small> 2.29316628741186103150802829125080586 </small>
|-

<!--------------------------------------------v----------------------------------------->
|0.82246 70334 24113 21823 <ref group=Mw>{{MathWorld|Nielsen-RamanujanConstants|Nielsen-Ramanujan Constants}}</ref>
||Nielsen-[[Ramanujan]] constant <ref>{{cite book
|author= Mauro Fiorentini
|title= Nielsen – Ramanujan (costanti di)
|url= http://bitman.name/math/article/872
}}</ref>
||<br><br><br>
| bgcolor=#e0f0f0 align=center|<math>\frac{{\zeta}(2)}{2}</math>
||<math> \frac{\pi^2}{12} = \sum_{n=1}^\infty\frac{(-1)^{n+1}}{n^2} = \frac{1}{1^2} {-} \frac{1}{2^2} {+} \frac{1}{3^2} {-} \frac{1}{4^2} {+} \frac{1}{5^2} {-} \cdots </math>
||Sum[n=1 to ∞]<br>{((-1)^(n+1))/n^2}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A072691}}
||[0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,1,1,1,4...]
||1909
||<small> 0.82246703342411321823620758332301259 </small>
<!-- 0.90689968211710892529703912882107786<br>sqrt(C) = Pi/(2*sqrt(3)) = {{OEIS2C|A093766}} -->
|-

<!------------------------------------------v------------------------------------------->
|0.69314 71805 59945 30941 <ref group=Mw>{{MathWorld|NaturalLogarithmof2|Natural Logarithm of 2}}</ref>
||[[Natural logarithm of 2]] <ref>{{cite book
|author= Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadeland, William B. Jones
|title= Handbook of Continued Fractions for Special Functions
|url= http://books.google.com/books?id=DQtpJaEs4NIC&lpg=PA182&dq=0.6931471805599&hl=es&pg=PA182#v=onepage&q=0.6931471805599&f=false
|year= 2008
|publisher= Springer
|isbn= 978-1-4020-6948-2
|page= 182
}}</ref>
||[[File:Alternating Harmonic Series.PNG|100px]]
| bgcolor=#e0f0f0 align=center|<math>Ln(2)</math>
||<math> \sum_{n=1}^\infty \frac{1}{n 2^n} =
\sum_{n=1}^\infty \frac{({-}1)^{n+1}}{n}
= \frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+{\cdots} </math>
||Sum[n=1 to ∞]<br>{(-1)^(n+1)/n}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A002162}}
||[0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,1,1,1,2,1,1,...]
||1550 <br> to <br> 1617
||<small> 0.69314718055994530941723212145817657 </small>
|-

<!-------------------------------------------v------------------------------------------>
|0.47494 93799 87920 65033 <ref group=Mw>{{MathWorld|WeierstrassConstant|Weierstrass Constant}}</ref>
||[[Weierstrass]] constant <ref>{{cite book
|author= Eric W. Weisstein
|title= CRC Concise Encyclopedia of Mathematics, Second Edition
|url= http://books.google.com/books?id=aFDWuZZslUUC&pg=PA3184&dq=%22Weierstrass+Constant%22&hl=es&sa=X&ei=lGFMU_eWIKTg7QbX9oGAAg&redir_esc=y#v=onepage&q=%22Weierstrass%20Constant%22&f=false
|year= 2003
|publisher= CRC Press
|isbn= 1-58488-347-2
|page= 151
}}</ref>
||<br><br><br>
| bgcolor=#e0f0f0 align=center|<math>\sigma(\tfrac12)</math>
||<math> \frac{e^{\frac{\pi}{8}}\sqrt{\pi}}{4*2^{3/4} {(\frac {1}{4}!)^2}}</math>
||(E^(Pi/8) Sqrt[Pi])<br> /(4 2^(3/4) (1/4)!^2)
||
||
||{{OEIS2C|A094692}}
||[0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,4,8,6...]
||1872 ?
||<small> 0.47494937998792065033250463632798297 </small>
|-

<!------------------------------------------v------------------------------------------->
|0.57721 56649 01532 86060 <ref group=Mw>{{MathWorld|Euler-MascheroniConstant|Euler-Mascheroni Constant}}</ref>
||[[Euler-Mascheroni constant]]
||[[File:Euler-Mas.jpg|100px]]
| bgcolor=#e0f0f0 align=center|<math>{\gamma}</math>
||<math> \sum_{n=1}^\infty \sum_{k=0}^\infty \frac{(-1)^k}{2^n+k}
= \sum_{n=1}^\infty \left(\frac{1}{n} -\ln \left(1+\frac{1}{n}\right)\right) </math> <br>
<math>= \int_{0}^{1} -\ln \left(\ln \frac{1}{x}\right)\, dx = -\Gamma'(1) = -\Psi(1)</math>
||sum[n=1 to ∞]<br>|sum[k=0 to ∞]<br>{((-1)^k)/(2^n+k)}
||
||
||{{OEIS2C|A001620}}
||[0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,...]
||1735
||<small> 0.57721566490153286060651209008240243 </small>
<!-- 0.42278433509846713939348790991759757<br> ''1-γ'' = {{OEIS2C|A153810}} -->
|-

<!--------------------------------------------v----------------------------------------->
|1.38135 64445 18497 79337
||Beta, Kneser-Mahler polynomial constant<ref>{{cite book
|author= P. HABEGGER
|title= MULTIPLICATIVE DEPENDENCE AND ISOLATION I
|page= 2
|year= 2003
|publisher= Institut für Mathematik, Universit¨at Basel, Rheinsprung Basel, Switzerland
|url= http://www.math.uni-frankfurt.de/~habegger/multdep1.pdf}}</ref>
||
||
|bgcolor=#e0f0f0 align=center|<math>\beta</math>
||<math> e^{^{\textstyle{\frac{2}{\pi}} \displaystyle{\int_0^{\frac{\pi}{3}}} \textstyle{t \tan t\ dt}}} =
e^{^{\displaystyle{\,\int_{\frac{-1}{3}}^{\frac{1}{3}}} \textstyle{\,\ln \lfloor 1+e^{2 \pi i t}} \rfloor dt}}</math>
||<small> e^((PolyGamma(1,4/3) <br> - PolyGamma(1,2/3) <br> +9)/(4*sqrt(3)*Pi)) </small>
|
||{{OEIS2C|A242710}}
||[1;2,1,1,1,1,1,4,1,139,2,1,3,5,16,2,1,1,7,2,1,...]
||1963
||<small> 1.38135644451849779337146695685062412 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|
<!--------------------------------------------v----------------------------------------->
|| ≈ 1.46707 80794
|| [[Porter's constant]]<ref>{{MathWorld|urlname=PortersConstant|title=Porter's Constant}}</ref>
|1.35845 62741 82988 43520 <ref group=Mw>{{MathWorld|GoldenSpiral|Golden Spiral}}</ref>
|| '''[[Number theory|NuT]]'''
||[[Golden Spiral]]
||[[File:FakeRealLogSpiral.svg|100px]]
| bgcolor=#e0f0f0 align=center|<math> c </math>
||<math> \varphi ^ \frac{2}{\pi} = \left(\frac{1 + \sqrt{5}}{2}\right)^{\frac{2}{\pi}}</math>
||GoldenRatio^(2/pi)
||
||
|{{OEIS2C|A212224}}
| align=right | 1975
||[1;2,1,3,1,3,10,8,1,1,8,1,15,6,1,3,1,1,2,3,1,1,...]
||
||
||<small> 1.35845627418298843520618060050187945 </small>
<!-- 0.30634896253003312211567570119977068<br>''ln''(c) = (2/pi)ln(phi) = {{OEIS2C|A212225}} -->
|-
|-

| style="background:#d0f0d0; text-align:center;"|
<!--------------------------------------------v----------------------------------------->
|| ≈ 1.53960 07178
|| [[Lieb's square ice constant]]<ref>{{MathWorld|urlname=LiebsSquareIceConstant|title=Lieb's Square Ice Constant}}</ref>
|0.57595 99688 92945 43964 <ref group=Mw>{{MathWorld|StephensConstant|Stephen's Constant}}</ref>
||[[Euler product#Notable constants|Stephens constant]] <ref>{{cite book
|| '''[[combinatorics|Com]]'''
|author= Steven Finch
| style="text-align:center;"| ''[[algebraic number|A]]''
|title= Class Number Theory
| align=right | 1967
|pages= 8
|year= 2005
|publisher= Harvard University
|url= http://www.people.fas.harvard.edu/~sfinch/csolve/clss.pdf
}}</ref>
||
||
| bgcolor=#e0f0f0 align=center|<math> C_S </math>
||<math> \prod_{n = 1}^\infty \left(1 - \frac{p}{p^3-1}\right) </math>
||Prod[n=1 to ∞] <br> {1-hprime(n) <br> /(hprime(n)^3-1)}
|style="text-align:center;"|'''''[[Transcendental number|T]]''''' ?
|{{OEIS2C|A065478}}
||[0;1,1,2,1,3,1,3,1,2,1,77,2,1,1,10,2,1,1,1,7,...]
||?
||<small> 0.57595996889294543964316337549249669 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">''E''<sub>B</sub></div>
<!---------------------------------------------v---------------------------------------->
|| ≈ 1.60669 51524 15291 76378 33015 23190 92458
|0.73908 51332 15160 64165 <ref group=Mw>{{MathWorld|DottieNumber|Dottie Number}}</ref>
|| [[Erdős–Borwein constant]]
||[[Fixed point (mathematics)|Dottie number]] <ref>{{cite book
|| '''[[Number theory|NuT]]'''
|author= James Stewart
| style="text-align:center;"| ''[[Irrational number|I]]''
|title= Single Variable Calculus: Concepts and Contexts
|url= http://books.google.com/books?id=eztUxtCfNXoC&lpg=PP1&dq=Single%20Variable%20Calculus%3A%20Concepts%20and%20Contexts%20%20Escrito%20por%20James%20Stewart&hl=es&pg=PA314#v=onepage&q=Single%20Variable%20Calculus:%20Concepts%20and%20Contexts%20%20Escrito%20por%20James%20Stewart&f=false
|isbn= 978-0-495-55972-6
|publisher= Brooks/Cole
|page= 314
|year= 2010
}}</ref>
||[[File:Dottie number.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>d</math>
||<math> \lim_{x\to \infty} \cos^x(c) = \lim_{x\to \infty} \underbrace{\cos(\cos(\cos(\cdots(\cos(c)))))}_x</math>
||cos(c)=c
||
||
|{{OEIS2C|A003957}}
||[0;1,2,1,4,1,40,1,9,4,2,1,15,2,12,1,21,1,17,...]
||?
||<small> 0.73908513321516064165531208767387340 </small>
|-

<!-----------------------------------------v-------------------------------------------->
|0.67823 44919 17391 97803 <ref group=Mw>{{MathWorld|EulerProduct|Euler Product}}</ref>
||[[Euler product#Notable constants|Taniguchi constant]] <ref>{{cite book
|author= Steven Finch
|title= Class Number Theory
|page= 8
|year= 2005
|publisher= Harvard University
|url= http://www.people.fas.harvard.edu/~sfinch/csolve/clss.pdf
}}</ref>
||
||
|bgcolor=#e0f0f0 align=center|<math> C_T </math>
||<math> \prod_{n = 1}^\infty \left(1 - \frac{3}{{p_n}^3}+\frac{2}{{p_n}^4}+\frac{1}{{p_n}^5}-\frac{1}{{p_n}^6}\right) </math>
<center><math>\scriptstyle p_{n}= \, \text{prime} </math></center>
||Prod[n=1 to ∞] {1 <br/> -3/ithprime(n)^3 <br/> +2/ithprime(n)^4 <br/> +1/ithprime(n)^5 <br/> -1/ithprime(n)^6}
|style="text-align:center;"|'''''[[Transcendental number|T]]''''' ?
|{{OEIS2C|A175639}}
||[0;1,2,9,3,1,2,9,11,1,13,2,15,1,1,1,2,4,1,1,1,...]
||?
||<small> 0.67823449191739197803553827948289481 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|
<!------------------------------------------v------------------------------------------->
|| ≈ 1.70521 11401 05367 76428 85514 53434 50816
|1.85407 46773 01371 91843 <ref group=Mw>{{MathWorld|LemniscateCase|Lemniscate Case}}</ref>
|| [[Niven's constant]]
||Gauss' Lemniscate constant<ref>{{cite book
||'''[[Number theory|NuT]]'''
|author= Steven R. Finch
|title= Mathematical Constants
|url=http://books.google.com/books?id=Pl5I2ZSI6uAC&pg=PA421&lpg=PA421&dq=Gauss%27+lemniscate+constant&source=bl&ots=K0qH3-ky5d&sig=asQRT-YqtApD-8HamOcLokgy9Hs&hl=es&sa=X&ei=I0wmU9f9EoOH0AXty4CwBw&redir_esc=y#v=onepage&q=Gauss%27%20lemniscate%20constant&f=false
|year= 2003
|publisher= Cambridge University Press
|isbn= 3-540-67695-3
|page= 421
}}</ref>
||[[File:Lemniscate Building.gif|100px]]
|bgcolor=#e0f0f0 align=center|<math> L \text{/}\sqrt{2}</math>
||<math>\int\limits_0^\infty \frac{{\mathrm{d} x}}{\sqrt{1 + x^4}}
= \frac {1}{4\sqrt{\pi}} \,\Gamma \left(\frac {1}{4}\right)^2
= \frac{4 \left(\frac {1}{4}!\right)^2} {\sqrt{\pi}}</math>
<center><math>\scriptstyle \Gamma() \text{= Gamma function} </math></center>
||pi^(3/2)/(2 Gamma(3/4)^2)
||
||
|{{OEIS2C|A093341}}
| align=right | 1969
||[1;1,5,1,5,1,3,1,6,2,1,4,16,3,112,2,1,1,18,1,...]
||
||
||<small> 1.85407467730137191843385034719526005 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">''B''<sub>2</sub></div>
<!------------------------------------------v------------------------------------------->
|| ≈ 1.90216 05823
|1.75874 36279 51184 82469
|| [[Brun's constant]] for twin primes
||Infinite product constant, with Alladi-Grinstead <ref>{{cite book
|| '''[[Number theory|NuT]]'''
|author= Steven R. Finch
|title= Mathematical Constants
|url= http://my.safaribooksonline.com/book/math/9781107266582/2-constants-associated-with-number-theory/210_sierpinskis_constant
|year= 2003
|publisher= Cambridge University Press
|isbn= 3-540-67695-3
|page= 122
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math> Pr_1</math>
||<math> \prod_{n = 2}^\infty \Big(1 + \frac{1}{n}\Big)^\frac{1}{n}</math>
||Prod[n=2 to inf] {(1+1/n)^(1/n)}
||
||
||{{OEIS2C|A242623}}
| style="text-align:right;"| 1919
||[1;1,3,6,1,8,1,4,3,1,4,1,1,1,6,5,2,40,1,387,2,...]
| style="text-align:right;"| 10
||1977
||<small> 1.75874362795118482469989684865589317 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">''P''<sub>2</sub></div>
<!--------------------------------------------v----------------------------------------->
|| ≈ 2.29558 71493 92638 07403 42980 49189 49039
|1.86002 50792 21190 30718
|| [[Universal parabolic constant]]
||[[Spiral of Theodorus]] <ref>{{cite book
|| '''[[Mathematics|Gen]]'''
|author= Jorg Waldvogel
| style="text-align:center;"| ''[[transcendental number|T]]''
|title= Analytic Continuation of the Theodorus Spiral
|pages= 16
|year= 2008
|url= http://www.sam.math.ethz.ch/~joergw/Papers/theopaper.pdf
}}</ref>
||[[File:Spiral of Theodorus.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math> \partial </math>
||<math> \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3} + \sqrt{n}} =
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} (n+1)}</math>
||Sum[n=1 to ∞] <br/> {1/(n^(3/2) <br/> +n^(1/2))}
||
||
||{{OEIS2C|A226317}}
||[1;1,6,6,1,15,11,5,1,1,1,1,5,3,3,3,2,1,1,2,19,...]
||-460 <br> to <br> -399
||<small> 1.86002507922119030718069591571714332 </small>
|-

<!-------------------------------------------v------------------------------------------>
|2.79128 78474 77920 00329
||[[Nested radical]] S<sub>5</sub>
||
||
|bgcolor=#e0f0f0 align=center|<math> S_{5} </math>
||<math>\displaystyle \frac{\sqrt{21}+1}{2} =
\scriptstyle \, \sqrt{5+\sqrt{5+\sqrt{5+\sqrt{5+\sqrt{5+\cdots}}}}}\; </math>
<math> = 1+ \, \scriptstyle \sqrt{5-\sqrt{5-\sqrt{5-\sqrt{5-\sqrt{5-\cdots}}}}}\; </math>
||(sqrt(21)+1)/2
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||[http://oeis.org/A222134 A222134]
||[2;1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,...]<br>[2;{{overline|1,3}}]
||?
||<small> 2.79128784747792000329402359686400424 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\alpha</math></div>
<!-------------------------------------------v------------------------------------------>
|| ≈ 2.50290 78750 95892 82228 39028 73218 21578
|0.70710 67811 86547 52440 <br> +0.70710 67811 86547 524 i <ref group=Mw>{{MathWorld|i|i}}</ref>
|| [[Feigenbaum constant]]
||[[Square root]] of ''i'' <ref>{{cite book
|| '''[[chaos theory|ChT]]'''
|author= Robert Kaplan,Ellen Kaplan
|title= The Art of the Infinite: The Pleasures of Mathematics
|year= 2014
|page= 238
|editor= Oxford University Press, Bloomsburv Press
|isbn= 978-1-60819-869-6
|url= http://books.google.com/books?id=KXdvAAAAQBAJ&lpg=PA238&dq=0.707106781&hl=es&pg=PA238#v=onepage&q=0.707106781&f=false
}}</ref>
||[[File:Imaginary2Root.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math> \sqrt{i} </math>
||<math> \sqrt[4]{-1} = \frac{1+i}{\sqrt{2}} = e^ \frac{i\pi}{4} =
\cos\left (\frac{\pi}{4} \right ) + i\sin\left ( \frac{\pi}{4} \right ) </math>
||(1+i)/(sqrt 2)
|style="text-align:center;"|'''''[[Complex number|C]] [[Algebraic number|A]]'''''
||{{OEIS2C|A010503}}
||[0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..] <br>= [0;1,{{overline|2}},...] <br> [0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..] ''i'' <br>= [0;1,{{overline|2}},...] ''i''
||?
||<small> 0.70710678118654752440084436210484903 </small> <br/> <small> + 0.70710678118654752440084436210484 ''i'' </small>
|-

<!----------------------------------------------v--------------------------------------->
|0.80939 40205 40639 13071 <ref group=Mw>{{MathWorld|Alladi-GrinsteadConstant|Alladi-Grinstead Constants}}</ref>
||Alladi–Grinstead constant <ref>{{cite book
|author= Steven R. Finch
|title= Mathematical Constants
|url= http://books.google.com/?id=Pl5I2ZSI6uAC&pg=PA121&lpg=PA121&dq=0.8093940205#v=onepage&q=0.8093940205&f=false
|year= 2003
|publisher= Cambridge University Press
|isbn= 3-540-67695-3
|page= 121
}}</ref>
||
||
|bgcolor=#e0f0f0 align=center|<math>{\mathcal{A}_{AG}}</math>
||<math> e^{-1+\sum \limits_{k=2}^\infty \sum \limits_{n=1}^\infty \frac{1}{n k^{n+1}}} = e^{-1-\sum \limits_{k=2}^\infty \frac{1}{k} \ln \left( 1-\frac{1}{k}\right)} </math>
||<small> e^{(sum[k=2 to ∞] <br/> |sum[n=1 to ∞] <br/> {1/(n k^(n+1))})-1} </small>
||
||
||{{OEIS2C|A085291}}
||[0;1,4,4,17,4,3,2,5,3,1,1,1,1,6,1,1,2,1,22,...]
||1977
||<small> 0.80939402054063913071793188059409131 </small>
|-

<!----------------------------------------------v--------------------------------------->
|2.58498 17595 79253 21706 <ref group=Mw>{{MathWorld|SierpinskiConstant|Sierpinski Constant}}</ref>
||[[Sierpiński's constant]] <ref>{{cite book
|author= Eric W. Weisstein
|title= CRC Concise Encyclopedia of Mathematics, Second Edition
|pages= 1356
|year= 2002
|publisher= CRC Press
|url= http://books.google.com/books?id=aFDWuZZslUUC&pg=PA2685&dq=1.584962500&hl=es&sa=X&ei=Db6rUaP9Aq-M7Ab9sYHADA&redir_esc=y#v=onepage&q=1.584962500&f=false
}}</ref>
||[[File:Random Sierpinski Triangle animation.gif|100px]]
|bgcolor=#e0f0f0 align=center|<math> {K} </math>
||<math>\pi\left(2\gamma+\ln\frac{4\pi^3}{\Gamma(\tfrac{1}{4})^4}\right) =
\pi (2 \gamma + 4 \ln\Gamma(\tfrac{3}{4}) - \ln\pi) </math>
<math> = \pi \left(2 \ln 2+3 \ln \pi + 2 \gamma - 4 \ln \Gamma (\tfrac{1}{4})\right)</math>
||-Pi Log[Pi]+2 Pi <br/> EulerGamma<br/>+4 Pi Log<br/>[Gamma[3/4]]
||
||
||{{OEIS2C|A062089}}
||[2;1,1,2,2,3,1,3,1,9,2,8,4,1,13,3,1,15,18,1,...]
||1907
||<small> 2.58498175957925321706589358738317116 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">''K''</div>
<!------------------------------------------v------------------------------------------->
|| ≈ 2.58498 17595 79253 21706 58935 87383 17116
|1.73245 47146 00633 47358 <ref group=Ow>[http://oeis.org/wiki/Euler%E2%80%93Mascheroni_constant Reciprocal of the Euler–Mascheroni constant]</ref>
|| [[Sierpiński's constant]]
||Reciprocal of the Euler–Mascheroni constant
||
||
|bgcolor=#e0f0f0 align=center|<math>\frac {1}{\gamma}</math>
||<math> \left(\int_{0}^{1} -\log \left(\log \frac{1}{x}\right)\, dx\right)^{-1} = \sum_{n=1}^\infty (-1)^n (-1+\gamma)^n </math>
||1/Integrate_ <br/> {x=0 to 1} <br/> -log(log(1/x))
||
||
||{{OEIS2C|A098907}}
||[1;1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,...]
||
||
||<small> 1.73245471460063347358302531586082968 </small>
|-

<!--------------------------------------------v----------------------------------------->
|1.43599 11241 76917 43235 <ref group=Mw>{{MathWorld|LebesgueConstants|Lebesgue Constants}}</ref>
||[[Lebesgue constant (interpolation)]] <ref>{{cite book
|author= Chebfun Team
|title= Lebesgue functions and Lebesgue constants
|url= http://www.mathworks.com/matlabcentral/fileexchange/23972-chebfun/content/chebfun/examples/approx/html/LebesgueConst.html
|year= 2010
|publisher= MATLAB Central
|isbn=
|page=
}}</ref><ref>{{cite book
|author= Simon J. Smith
|title= Lebesgue constants in polynomial interpolation
|url= http://www.emis.de/journals/AMI/2006/smith
|year= 2005
|publisher= La Trobe University, Bendigo, Australia
|isbn=
|page=
}}</ref>
||[[File:Fourier series integral identities.gif|100px]]
|bgcolor=#e0f0f0 align=center|<math>{L_1}</math>
||<math> \prod_{\begin{smallmatrix}i=0\\ j\neq i\end{smallmatrix}}^{n} \frac{x-x_i}{x_j-x_i}
= \frac {1}{\pi} \int_0^{\pi} \frac {\lfloor \sin{\frac{3 t}{2}}\rfloor}{\sin{\frac{t}{2}}}\, dt = \frac {1}{3} + \frac {2 \sqrt{3}}{\pi} </math>
||1/3 + 2*sqrt(3)/pi
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A226654}}
||[1;2,3,2,2,6,1,1,1,1,4,1,7,1,1,1,2,1,3,1,2,1,1,...]
||1902 ~
||<small> 1.43599112417691743235598632995927221 </small>
|-

<!----------------------------------------------v--------------------------------------->
|3.24697 96037 17467 06105 <ref group=Mw>{{MathWorld|SilverConstant|Silver Constant}}</ref>
||Silver root <br/> Tutte–Beraha constant <ref>{{cite book
|author= D. R. Woodall
|title= CHROMATIC POLYNOMIALS OF PLANE TRIANGULATIONS
|page= 5
|year= 2005
|editor= University of Nottingham
|url= https://www.maths.nottingham.ac.uk/personal/drw/PG/cp.hndt.pdf
}}</ref>
||
||
|bgcolor=#e0f0f0 align=center|<math> \varsigma </math>
||<math> 2+2 \cos \frac {2\pi} 7 = \textstyle 2+\frac{2+\sqrt[3]{7 + 7 \sqrt[3]{7 + 7 \sqrt[3]{\, 7 + \cdots}}}}{1+\sqrt[3]{7 + 7 \sqrt[3]{7 + 7 \sqrt[3]{\, 7 + \cdots}}}}</math>
||2+2 cos(2Pi/7)
<!---2+(2+(7+7(7+7(7+7(7+7(7)^1/3)^1/3)^1/3)^1/3)^1/3)/(1+(7+7(7+7(7+7(7+7(7)^1/3)^1/3)^1/3)^1/3)^1/3)--->
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A116425}}
||[3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...]
||
||<small> 3.24697960371746706105000976800847962 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|
<!--------------------------------------------v----------------------------------------->
|| ≈ 2.68545 20010 65306 44530 97148 35481 79569
|1.94359 64368 20759 20505 <ref group=Mw>{{MathWorld|TotientSummatoryFunction|Totient Summatory Function}}</ref>
|| [[Khinchin's constant]]
||[[Euler's totient function|Euler Totient <br/> constant]] <ref>{{cite book
||'''[[Number theory|NuT]]'''
|author= Benjamin Klopsch
|title= NOTE DI MATEMATICA: Representation growth and representation zeta functions of groups
|url= http://poincare.unile.it/adv2013/NOTE_VOL_33.pdf
|year= 2013
|publisher= Universita del Salento
|ISSN= 1590–0932
|page= 114
}}</ref><ref>{{cite book
|author= Nikos Bagis
|title= Some New Results on Prime Sums (3 The Euler Totient constant)
|url= http://carma.newcastle.edu.au/jon/Preprints/Papers/Submitted%20Papers/Elliptic%20moments/Papers/bagis.pdf
|year=
|publisher= Aristotle University of Thessaloniki
|isbn=
|page= 8
}}</ref>
||[[File:EulerPhi100.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>ET </math>
||<math> \underset {p \text{= primes}}
{\prod_{p} \Big(1 + \frac{1}{p(p-1)}\Big)} = \frac {\zeta(2)\zeta(3)}{\zeta(6)}=\frac {315 \zeta(3)}{2\pi^4} </math>
||zeta(2)*zeta(3)<br/>/zeta(6)
||
||
||{{OEIS2C|A082695}}
| align=right | 1934
||[1;1,16,1,2,1,2,3,1,1,3,2,1,8,1,1,1,1,1,1,1,32,...]
| align=right | 7350
||1750
||<small> 1.94359643682075920505707036257476343 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;">''F''</div>
<!--------------------------------------------v----------------------------------------->
|| ≈ 2.80777 02420 28519 36522 15011 86557 77293
|1.49534 87812 21220 54191
|| [[Fransén–Robinson constant]]
||Fourth root of five <ref>{{cite book
|| '''[[Mathematical analysis|Ana]]'''
|author= Robinson, H.P.
|title= MATHEMATICAL CONSTANTS.
|url= http://www.escholarship.org/uc/item/2t95c0bp
|year= 1971–2011
|publisher= Lawrence Berkeley National Laboratory
|isbn=
|page= 40
}}</ref>
||
||
|bgcolor=#e0f0f0 align=center|<math>\sqrt[4]{5} </math>
||<math> \sqrt[5]{5 \,\sqrt[5]{5 \, \sqrt[5]{5 \,\sqrt[5]{5 \,\sqrt[5]{5 \,\cdots}}}}} </math>
||(5(5(5(5(5(5(5) <br/> ^1/5)^1/5)^1/5) <br/> ^1/5)^1/5)^1/5) <br/> ^1/5 ...
|style="text-align:center;"|'''''[[Irrational number|I]]'''''
||{{OEIS2C|A011003}}
||[1;2,53,4,96,2,1,6,2,2,2,6,1,4,1,49,17,2,3,2,...]
||
||
||<small> 1.49534878122122054191189899414091339 </small>
|-

<!------------------------------------------v------------------------------------------->
|0.87228 40410 65627 97617 <ref group=Mw>{{MathWorld|FordCircle|Ford Circle}}</ref>
||Area of [[Ford circle]] <ref>{{cite book
|author= Annmarie McGonagle
|title= A New Parameterization for Ford Circles
|pages=
|year= 2011
|publisher= Plattsburgh State University of New York
|url= http://www.plattsburgh.edu/files/686/files/Mcgonaglevol%205p34-44.pdf
}}</ref>
||[[File:Circumferències de Ford.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math> A_{CF} </math>
||<math>
\sum_{q\ge 1} \sum_{ (p, q)=1 \atop 1 \le p < q }\pi \left( \frac{1}{2 q^2} \right)^2
\underset {\zeta() \text{= Riemann Zeta Function}}
{= \frac{\pi}{4} \frac{\zeta(3)}{\zeta(4)}
= \frac{45}{2} \frac{\zeta(3)}{\pi^3}}
</math>
||pi Zeta(3) /(4 Zeta(4))
||
||
||
||[0;1,6,1,4,1,7,5,36,3,29,1,1,10,3,2,8,1,1,1,3,...]
||
||<small> 0.87228404106562797617519753217122587 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|
<!---------------------------------------------v---------------------------------------->
|| ≈ 3.27582 29187 21811 15978 76818 82453 84386
|1.08232 32337 11138 19151 <ref group=Mw>{{MathWorld|RiemannZetaFunction|Riemann Zeta Function}}</ref>
|| [[Lévy's constant]]
||Zeta(4) <ref>{{cite book
|| '''[[Number theory|NuT]]'''
|author= V. S. Varadarajan
|title= Euler Through Time: A New Look at Old Themes
|url= http://books.google.com/books?id=CYyKTREGYd0C&pg=PA60&dq=1.08232323371113819&hl=es&sa=X&ei=PP__UrTNH6vA7AaTroHoDw&redir_esc=y#v=onepage&q=1.08232323371113819&f=false
|year= 2000
|publisher= AMS
|isbn= 0-8218-3580-7
|page=
}}</ref>
||<br><br><br>
|bgcolor=#e0f0f0 align=center|<math>\zeta(4)</math>
||<math> \frac{\pi^4}{90} = \sum_{n=1}^\infty\frac{{1}}{n^4} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \frac{1}{5^4} + ... </math>
||Sum[n=1 to ∞]<br/>{1/n^4}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A013662}}
||[1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,23,...]
||?
||<small> 1.08232323371113819151600369654116790 </small>
|-

<!---------------------------------------------v---------------------------------------->
|1.56155 28128 08830 27491
<!--- The [[Triangular number#Triangular roots and tests for triangular numbers|Triangular root]] of 2--->
||[[Square triangular number|Triangular root]] of 2.<ref>{{cite book
|author= Leonhard Euler, Joseph Louis Lagrange
|title= Elements of Algebra, Volumen 1
|url= http://books.google.com/books?id=hqI-AAAAYAAJ&pg=PA334&dq=%22triangular+root%22&hl=es&sa=X&ei=8tf3UtSGM8zT7Aag2YGgDw&redir_esc=y#v=onepage&q=%22triangular%20root%22&f=false
|year= 1810
|publisher= J. Johnson and Company
|isbn=
|page= 333
}}</ref>
||[[File:Números triangulares.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>{R_2}</math>
||<math>\frac{\sqrt{17}-1}{2} = \,\scriptstyle \sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+\cdots}}}}}} \,\, -1 </math>
<math> = \,\scriptstyle \sqrt{4-\sqrt{4-\sqrt{4-\sqrt{4-\sqrt{4-\sqrt{4-\cdots}}}}}} \textstyle </math>
||(sqrt(17)-1)/2
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A222133}}
||[1;1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,...] <br> [1;{{overline|1,1,3}}]
||
||
||<small> 1.56155281280883027491070492798703851 </small>
|-

<!-------------------------------------------v------------------------------------------>
|9.86960 44010 89358 61883
||Pi Squared
||<br><br><br>
|bgcolor=#e0f0f0 align=center|<math>{\pi} ^2</math>
||<math>6\, \zeta(2) = 6 \sum_{n=1}^\infty \frac{1}{n^2} = \frac{6}{1^2} + \frac{6}{2^2} + \frac{6}{3^2} + \frac{6}{4^2}+ \cdots</math>
||6 Sum[n=1 to ∞]<br/>{1/n^2}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||[http://oeis.org/A002388 A002388]
||[9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,1,3,...]
||
||
||<small> 9.86960440108935861883449099987615114 </small>
|-

<!---------------------------------------------v---------------------------------------->
|1.32471 79572 44746 02596 <ref group=Mw>{{MathWorld|PlasticConstant|Plastic Constant}}</ref>
||[[Plastic number]] <ref>{{cite book
|author= Ian Stewart
|title= Professor Stewart's Cabinet of Mathematical Curiosities
|url= http://books.google.com/books?id=oW6Xeo8EmDgC&pg=PT120&dq=%22Plastic+number%22&hl=es&sa=X&ei=FereUv76CoS74AS4tYDoAQ&ved=0CEIQ6AEwAg#v=onepage&q=%22Plastic%20number%22&f=false
|year= 1996
|publisher= Birkhäuser Verlag
|isbn= 978-1-84765-128-0
|page=
}}</ref>
||[[File:Nombre plastique.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>{\rho}</math>
||<math>\sqrt[3]{1 + \! \sqrt[3]{1 + \! \sqrt[3]{1 + \cdots}}} = \textstyle \sqrt[3]{\frac{1}{2}+ \! \sqrt{\frac{23}{108}}}+ \! \sqrt[3]{\frac{1}{2}- \! \sqrt{\frac{23}{108}}}</math>
||<small>(1+(1+(1+(1+(1+(1 <br/> )^(1/3))^(1/3))^(1/3))<br/>^(1/3))^(1/3))^(1/3) </small>
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A060006}}
||[1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,2,...]
||1929
||<small> 1.32471795724474602596090885447809734 </small>
|-

<!------------------------------------------v------------------------------------------->
|2.37313 82208 31250 90564
||Lévy <sub>2</sub> constant <ref>{{cite book
|author= H.M. Antia
|title= Numerical Methods for Scientists and Engineers
|url= http://books.google.com/books?id=YzXsZgjyFA4C&pg=PA220&dq=1.772453850905516&hl=es&sa=X&ei=MbMnUuOzBcvT7AbdyoHoBA&ved=0CDIQ6AEwAA#v=onepage&q=1.772453850905516&f=false
|year= 2000
|publisher= Birkhäuser Verlag
|isbn= 3-7643-6715-6
|page= 220
}}</ref>
||<br><br><br>
|bgcolor=#e0f0f0 align=center|<math>2\,ln\,\gamma </math>
||<math>\frac{\pi^2}{6ln(2)} </math>
||Pi^(2)/(6*ln(2))
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A174606}}
||[2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...]
||1936
||<small> 2.37313822083125090564344595189447424 </small>
|-

<!------------------------------------------v------------------------------------------->
|0.85073 61882 01867 26036 <ref group=Mw>{{MathWorld|PaperFoldingConstant|Paper Folding Constant}}</ref>
||[[Regular paperfolding sequence]] <ref>{{cite book
|author= Francisco J. Aragón Artacho, David H. Baileyy, Jonathan M. Borweinz, Peter B. Borwein
|title= Tools for visualizing real numbers.
|url= http://carma.newcastle.edu.au/jon/tools1.pdf
|year= 2012
|publisher=
|isbn=
|page= 33
}}</ref><ref>{{cite book
|author=
|title= Papierfalten
|url= http://www.jgiesen.de/Divers/PapierFalten/PapierFalten.pdf
|year= 1998
|publisher=
|isbn=
|page=
}}</ref>
||[[File:Miura-ori.gif|100px]]
|bgcolor=#e0f0f0 align=center|<math>{P_f}</math>
||<math> \sum_{n=0}^{\infty} \frac {8^{2^n}}{2^{2^{n+2}}-1} =
\sum_{n=0}^{\infty} \cfrac {\tfrac {1}{2^{2^n}}} {1-\tfrac{1}{2^{2^{n+2}}}} </math>
||<small> N[Sum[n=0 to ∞]</small> <br/> {8^2^n/(2^2^ <br/> (n+2)-1)},37]
||
||
||{{OEIS2C|A143347}}
||[0;1,5,1,2,3,21,1,4,107,7,5,2,1,2,1,1,2,1,6,...]
||
||<small> 0.85073618820186726036779776053206660 </small>
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\psi</math></div>
<!------------------------------------------v------------------------------------------->
|| ≈ 3.35988 56662 43177 55317 20113 02918 92717
|| [[Reciprocal Fibonacci constant]]<ref>{{MathWorld|urlname=ReciprocalFibonacciConstant|title=Reciprocal Fibonacci Constant}}</ref>
|1.15636 26843 32269 71685 <ref group=Mw>{{MathWorld|PaperFoldingConstant|Paper Folding Constant}}</ref>
||Cubic recurrence constant <ref>{{cite journal
|title= The generalized-Euler-constant function γ(z) and a generalization of Somos's quadratic recurrence constant
|year= 2008
|first1= Jonathan |last1=Sondow
|first2= Petros|last2= Hadjicostas
|doi= 10.1016/j.jmaa.2006.09.081
|journal= Journal of Mathematical Analysis and Applications
|volume= 332
|pages= 292–314
|arxiv=math/0610499
}}</ref><ref>{{cite book
|author= J. Sondow.
|title= Generalization of Somos Quadratic
|url= http://arxiv.org/pdf/math/0610499.pdf
}}</ref>
||<br><br><br>
|bgcolor=#e0f0f0 align=center|<math>{\sigma_3}</math>
||<math>\prod_{n=1}^\infty n^{{3}^{-n}} = \sqrt[3] {1 \sqrt[3] {2 \sqrt[3]{3 \cdots}}} = 1^{1/3} \; 2^{1/9} \; 3^{1/27} \cdots </math>
||prod[n=1 to ∞]<br/>{n ^(1/3)^n}
||
||{{OEIS2C|A123852}}
||[1;6,2,1,1,8,13,1,3,2,2,6,2,1,2,1,1,1,10,33,...]
||
||<small> 1.15636268433226971685337032288736935 </small>
|-

<!-------------------------------------------v------------------------------------------>
|1.26185 95071 42914 87419 <ref group=Mw>{{MathWorld|KochSnowflake|Koch Snowflake}}</ref>
||Fractal dimension of the [[Koch snowflake]] <ref>{{cite book
|author= Chan Wei Ting ...
|title= Moire patterns + fractals
|pages= 16
|url= http://www.math.nus.edu.sg/aslaksen/gem-projects/maa/0304-2-02-Moire_Patterns_and_Fractals.pdf
}}</ref>
||[[File:Koch snowflake05.ogv|100px]]
|bgcolor=#e0f0f0 align=center|<math>{C_k}</math>
||<math> \frac{\log 4}{\log 3} </math>
||log(4)/log(3)
|style="text-align:center;"|'''''[[Irrational number|I]]'''''
||[http://oeis.org/A100831 A100831]
||[1;3,1,4,1,1,11,1,46,1,5,112,1,1,1,1,1,3,1,7,...]
||
||<small> 1.26185950714291487419905422868552171 </small>
|-

<!-------------------------------------------v------------------------------------------>
|6.58088 59910 17920 97085
||Froda constant<ref>{{cite book
|author= Christoph Zurnieden
|title= Descriptions of the Algorithms
|url= http://pragmath.sourceforge.net/algorithms.pdf
|year= 2008
|publisher=
|isbn=
|page=
}}</ref>
||<br><br>
|bgcolor=#e0f0f0 align=center|<math>2^{\,e} </math>
||<math>2^e </math>
||2^e
||
||
||[6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...]
||
||<small> 6.58088599101792097085154240388648649 </small>
|-

<!-----------------------------------------v-------------------------------------------->
|0.26149 72128 47642 78375 <ref group=Mw>{{MathWorld|MertensConstant|Mertens Constant}}</ref>
||[[Meissel-Mertens constant]] <ref>{{cite book
|author= Julian Havil
|title= Gamma: Exploring Euler's Constant
|url=http://books.google.com/?id=7-sDtIy8MNIC&pg=PA161&dq=Khinchin%27s+constant#v=onepage&q=Khinchin%27s%20constant&f=false
|year= 2003
|publisher= Princeton University Press
|isbn= 9780691141336
|page= 64
}}</ref>
||[[File:Meissel–Mertens constant definition.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>{M}</math>
||<math>\lim_{n \rightarrow \infty } \!\! \left(
\sum_{p \leq n} \frac{1}{p} \! - \ln(\ln(n))\! \right) \!\! =
\underset{\!\!\!\! \gamma: \, \text{Euler constant} ,\,\,
p: \, \text{prime}}{\! \gamma \! + \!\! \sum_{p} \!\left( \!
\ln \! \left( \! 1 \! - \! \frac{1}{p} \! \right)
\!\! + \! \frac{1}{p} \! \right)}</math>
||gamma+ <br> Sum[n=1 to ∞] <br> {ln(1-1/prime(n)) <br> +1/prime(n)}
|style="text-align:center;"|'''''[[Transcendental number|T]]''''' ?
||{{OEIS2C|A077761}}
||[0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,296,...]
||1866 <br> & <br> 1873
||<small> 0.26149721284764278375542683860869585 </small>
|-

<!------------------------------------------v------------------------------------------->
|4.81047 73809 65351 65547
||John constant <ref>{{cite book
|author= Steven R. Finch
|title= Mathematical Constants
|url= http://books.google.com/?id=Pl5I2ZSI6uAC&pg=PA466&lpg=PA466&dq=4.810477#v=onepage&q=4.810477&f=false
|year= 2003
|publisher= Cambridge University Press
|isbn= 3-540-67695-3
|page= 466
}}</ref>
||
| bgcolor=#e0f0f0 align=center|<math> \gamma </math>
||<math>\sqrt[i]{i} = i^{-i} = (i^i)^{-1} = (((i)^i)^i)^i = e^{\frac{\pi}{2}} = \sqrt{\sum_{n=0}^\infty \frac{\pi^{n}}{n!}}</math>
||e^(π/2)
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A042972}}
||[4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,2,...]
||
||<small> 4.81047738096535165547303566670383313 </small>
|-

<!-----------------------------------------v-------------------------------------------->
| -0.5 <br/> ± 0.86602 54037 84438 64676 '''''i'''''
||[[Cube Root]] of 1 <ref>{{cite book
|author= James Stuart Tanton
|title= Encyclopedia of Mathematics
|page= 458
|year= 2007
|publisher=
|isbn= 0-8160-5124-0
|url= http://books.google.com/?id=MfKKMSuthacC&pg=PA358&dq=%22Root+of+unity%22#v=onepage&q=%22Root%20of%20unity%22&f=false
}}</ref>
||[[File:3rd roots of unity.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>\sqrt[3]{1}</math>
||<math> \begin{cases} \ \ 1 \\ -\frac{1}{2}+\frac{\sqrt{3}}{2}i \\ -\frac{1}{2}-\frac{\sqrt{3}}{2}i. \end{cases} </math>
||1, <br/> E^(2i pi/3), <br/> E^(-2i pi/3)
|style="text-align:center;"|'''''[[Complex number|C]]'''''
||{{OEIS2C|A010527}}
||- [0,5] <br> ± [0;1,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...] i <br> - [0,5] <br> ± [0; 1, {{overline|6, 2}}] i
||
||<small> - 0.5 <br/> ± 0.8660254037844386467637231707529 '''''i''''' </small>
|-

<!---------------------------------------------v---------------------------------------->
|<small> 0.11000 10000 00000 00000 0001 </small> <ref group=Mw>{{MathWorld|LiouvillesConstant|Liouville's Constant}}</ref>
||[[Liouville number]] <ref>{{cite book
|author= Calvin C. Clawson
|title= Mathematical Traveler: Exploring the Grand History of Numbers
|url= http://books.google.com/?id=E3Eu3sV_anUC&pg=PA187&dq=Liouville+number+0.11000100000000000000000100#v=onepage&q=Liouville%20number%200.11000100000000000000000100&f=false
|year= 2003
|publisher= Perseus
|isbn= 0-7382-0835-3
|page= 187
}}</ref>
||<br><br><br>
|bgcolor=#e0f0f0 align=center|<math>\text{£}_{Li}</math>
||<math> \sum_{n=1}^\infty \frac{1}{10^{n!}} = \frac {1}{10^{1!}} + \frac{1}{10^{2!}} + \frac{1}{10^{3!}} + \frac{1}{10^{4!}} + \cdots</math>
||Sum[n=1 to ∞] <br/> {10^(-n!)}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A012245}}
||[1;9,1,999,10,9999999999999,1,9,999,1,9]
||
||<small> 0.11000100000000000000000100... </small>
|-

<!-----------------------------------------v-------------------------------------------->
|0.06598 80358 45312 53707 <ref group=Mw>{{MathWorld|PowerTower|Power Tower}}</ref>
||Lower limit of [[Tetration]] <ref>{{cite book
|author= Jonathan Sondowa, Diego Marques
|title= Algebraic and transcendental solutions of some exponential equations
|url= http://ami.ektf.hu/uploads/papers/finalpdf/AMI_37_from151to164.pdf
|year= 2010
|publisher= Annales Mathematicae et Informaticae
|isbn=
|page=
}}</ref>
||[[File:Infinite power tower.svg|80px]]
|bgcolor=#e0f0f0 align=center|<math>{e}^{-e}</math>
||<math>\left(\frac {1}{e}\right)^e</math>
||1/(e^e)
||
||{{OEIS2C|A073230}}
||[0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...]
||
||<small> 0.06598803584531253707679018759684642 </small>
|-

<!----------------------------------------v--------------------------------------------->
|1.83928 67552 14161 13255
||Tribonacci constant<ref>{{cite book
|author= T. Piezas.
|title= Tribonacci constant & Pi
|url= https://sites.google.com/site/tpiezas/0012
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math> {\phi_{}}_3 </math>
||<math>\textstyle \frac{1+\sqrt[3]{19+3\sqrt{33}}+\sqrt[3]{19-3\sqrt{33}}}{3} = \scriptstyle \, 1+ \left(\sqrt[3]{\tfrac12 + \sqrt[3]{\tfrac12 + \sqrt[3]{\tfrac12 + ...}}}\right)^{-1}</math>
||(1/3)*(1+(19+3 <br/> *sqrt(33))^(1/3) <br/> +(19-3 <br/> *sqrt(33))^(1/3))
<!--- 1+1/(((((((1/2)^(1/3)+1/2)^(1/3)+1/2)^(1/3)+1/2)^(1/3)+1/2)^(1/3)+1/2)^(1/3)) --->
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A058265}}
||[1;1,5,4,2,305,1,8,2,1,4,6,14,3,1,13,5,1,7,...]
||
||<small> 1.83928675521416113255185256465328660 </small>
|-

<!--------------------------------------------v----------------------------------------->
|0.36651 29205 81664 32701
||Median of the [[Gumbel distribution]] <ref>{{cite book
|author= Steven Finch
|title= Addenda to Mathematical Constants
|url= http://www.people.fas.harvard.edu/~sfinch/csolve/erradd.pdf
}}</ref>
||[[File:GumbelDichteF.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>{ll_2}</math>
||<math>-\ln(\ln(2)) </math>
||-ln(ln(2))
||
||[http://oeis.org/A074785 A074785]
||[0;2,1,2,1,2,6,1,6,6,2,2,2,1,12,1,8,1,1,3,1,...]
||
||<small> 0.36651292058166432701243915823266947 </small>
|-

<!----------------------------------------------v--------------------------------------->
|36.46215 96072 07911 7709
||Pi^pi <ref>{{cite book
|author= Renzo Sprugnoli.
|title= Introduzione alla Matematica
|url= http://www.dsi.unifi.it/~resp/media.pdf
|year=
|publisher=
|isbn=
|page=
}}</ref>
||<br><br>
|bgcolor=#e0f0f0 align=center|<math>\pi ^\pi</math>
||<math>\pi ^\pi</math>
||pi^pi
||
||{{OEIS2C|A073233}}
||[36;2,6,9,2,1,2,5,1,1,6,2,1,291,1,38,50,1,2,...]
||
||<small> 36.4621596072079117709908260226921236 </small>
|-

<!---------------------------------------------v---------------------------------------->
|0.53964 54911 90413 18711
||Ioachimescu constant <ref>{{cite book
|author= Chao-Ping Chen
|title= Ioachimescu's constant
|url= http://ajmaa.org/RGMIA/papers/v13n1/chen.pdf
|year=
|publisher=
|isbn=
|page=
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>2+\zeta(\tfrac12)</math>
||<math>{2{-}(1{+}\sqrt{2})\sum_{n=1}^\infty \frac{(-1)^{n+1}}{\sqrt{n}}} = \gamma + \sum_{n=1}^\infty \frac{(-1)^{2n} \; \gamma_n}{2^n n!} </math>
||''γ'' +N[<br/>sum[n=1 to ∞] <br/> {((-1)^(2n) <br/> gamma_n)<br/>/(2^n n!)}]
||
||2-<br/>{{OEIS2C|A059750}}
||[0;1,1,5,1,4,6,1,1,2,6,1,1,2,1,1,1,37,3,2,1,...]
||
||<small> 0.53964549119041318711050084748470198 </small>
|-

<!-----------------------------------------v-------------------------------------------->
|15.15426 22414 79264 1897 <ref group=Mw>{{MathWorld|PowerTower|Power Tower}}</ref>
||[[Escaping set|Exponential reiterated constant]] <ref>{{cite book
|author= R. A. Knoebel.
|title= Exponentials Reiterated
|url= http://www.maa.org/sites/default/files/pdf/upload_library/22/Chauvenet/Knoebelchv.pdf
|year=
|publisher= Maa.org
|isbn=
|page=
}}</ref>
||[[File:Exp-esc.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>e^e</math>
||<math> \sum_{n=0}^\infty \frac{e^n}{n!} = \lim_{n \to \infty} \left(\frac {1+n}{n} \right)^{n^{-n}(1+n)^{1+n}} </math>
||Sum[n=0 to ∞]<br/>{(e^n)/n!}
||
||{{OEIS2C|A073226}}
||[15;6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,6,7,...]
||
||<small> 15.1542622414792641897604302726299119 </small>
|-

<!-------------------------------------------v------------------------------------------>
|0.64624 54398 94813 30426 <ref group=Mw>{{MathWorld|Masser-GramainConstant|Masser-Gramain Constant}}</ref>
||Masser–Gramain constant <ref>{{cite book
|author= Eric W. Weisstein
|title= CRC Concise Encyclopedia of Mathematics, Second Edition
|url= http://books.google.com/?id=aFDWuZZslUUC&pg=PA1861&lpg=PA1861&dq=masser+gramain+constant#v=onepage&q=masser%20gramain%20constant&f=false
|year= 2003
|publisher= CRC Press
|isbn= 1-58488-347-2
|page= 1688
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{C}</math>
||<math> \gamma {\beta}(1) \! + \! {\beta}'(1) \! = \pi \! \left(-\!\ln \Gamma(\tfrac14)+\tfrac34 \pi+\tfrac12 \ln 2+\tfrac12 \gamma \right) </math>
<math> = \pi \! \left(-\!\ln (\tfrac14 !)+\tfrac34 \ln \pi -\tfrac32 \ln 2+\tfrac12 \, \gamma \right) </math> <math>\scriptstyle \gamma = \text{Euler–Mascheroni constant}= 0.5772156649\ldots</math>
<math>\scriptstyle \beta() = \text{Beta function} , \quad \scriptstyle \Gamma() = \text{Gamma function}</math>
||<small> Pi/4*(2*Gamma <br/>+ 2*Log[2]<br/> + 3*Log[Pi]- 4 <br/> Log[Gamma[1/4]]) </small>
||
||{{OEIS2C|A086057}}
||[0;1,1,1,4,1,3,2,3,9,1,33,1,4,3,3,5,3,1,3,4,...]
||
||<small> 0.64624543989481330426647339684579279 </small>
|-

<!------------------------------------------v------------------------------------------->
|1.11072 07345 39591 56175 <ref group=Mw>{{MathWorld|Bifoliate|Bifoliate}}</ref>
||The ratio of a square and circle circumscribed <ref>{{cite book
|author= Richard J.Mathar.
|title= Table of Dirichlet L-series and Prime Zeta
|url= http://arxiv.org/pdf/1008.2547v1.pdf
|year=
|publisher= Arxiv
|isbn=
|page=
}}</ref>
||[[File:Circumscribed2.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>\frac{\pi}{2\sqrt 2}</math>
||<math>\sum_{n = 1}^\infty \frac{({-}1)^{\lfloor \frac{n-1}{2}\rfloor}}{2n+1} = \frac{1}{1} + \frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \frac{1}{11} - {\cdots}</math>
||sum[n=1 to ∞]<br/>{(-1)^(floor(<br/>(n-1)/2))<br/>/(2n-1)}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A093954}}
||[1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...]
||
||<small> 1.11072073453959156175397024751517342 </small>
|-

<!----------------------------------------------v--------------------------------------->
|1.45607 49485 82689 67139 <ref group=Mw>{{MathWorld|BackhousesConstant|Backhouse's Constant}}</ref>
||[[Backhouse's constant]] <ref>{{cite book
|author= Eric W. Weisstein
|title= CRC Concise Encyclopedia of Mathematics, Second Edition
|url= http://books.google.com/?id=aFDWuZZslUUC&pg=PA151&dq=Backhouse+constant#v=onepage&q=%22Backhouse%20constant%22&f=false
|year= 2003
|publisher= CRC Press
|isbn= 1-58488-347-2
|page= 151
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{B}</math>
||<math>\lim_{k \to \infty}\left | \frac{q_{k+1}}{q_k} \right \vert \quad \scriptstyle \text {where:} \displaystyle \;\; Q(x)=\frac{1}{P(x)}= \! \sum_{k=1}^\infty q_k x^k </math>
<math> P(x) = \sum_{k=1}^\infty \underset{p_k\text{ prime}}{p_k x^k} = 1+2x+3x^2+5x^3+\cdots</math>
||1/( FindRoot[0 == 1 + Sum[x^n Prime[n], {n, 10000}], {x, {1}})
||
||{{OEIS2C|A072508}}
||[1;2,5,5,4,1,1,18,1,1,1,1,1,2,13,3,1,2,4,16,...]
||1995
||<small> 1.45607494858268967139959535111654355 </small>
|-

<!--------------------------------------------v----------------------------------------->
|1.85193 70519 82466 17036 <ref group=Mw>{{MathWorld|Wilbraham-GibbsConstant|Wilbraham-Gibbs Constant}}</ref>
||Gibbs constant <ref>{{cite book
|author= Dave Benson
|title= Music: A Mathematical Offering
|url= http://books.google.com/?id=Ko1NsIq4qLIC&pg=PA53&dq=1.8519370#v=onepage&q=1.8519370&f=false
|year= 2006
|publisher= Cambridge University Press
|isbn= 978-0-521-85387-3
|page= 53
}}</ref>
||[[File:Sine integral.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>{Si(\pi)}</math> <br/> [[Sin integral]]
||<math> \int_0^{\pi} \frac {\sin t}{t}\, dt =
\sum \limits_{n=1}^\infty (-1)^{n-1} \frac{\pi^{2n-1}}{(2n-1)(2n-1)!} </math> <br/>
<math> = \pi- \frac{\pi^3}{3\cdot3!} + \frac{\pi^5}{5\cdot5!} - \frac{\pi^7}{7\cdot7!} + \cdots </math>
||SinIntegral[Pi]
||
||{{OEIS2C|A036792}}
||[1;1,5,1,3,15,1,5,3,2,7,2,1,62,1,3,110,1,39,...]
||
||<small> 1.85193705198246617036105337015799136 </small>
|-

<!--------------------------------------------v----------------------------------------->
|0.23571 11317 19232 93137 <ref group=Mw>{{MathWorld|Copeland-ErdosConstant|Copeland-Erdos Constant}}</ref>
||[[Copeland–Erdős constant]] <ref>{{cite book
|author= Yann Bugeaud
|title= Distribution Modulo One and Diophantine Approximation
|url= http://books.google.com/?id=NeEpoAf7k0IC&pg=PA87&dq=0.235711131719232931#v=onepage&q=0.235711131719232931&f=false
|year= 2012
|publisher= Cambridge University Press
|isbn=978-0-521-11169-0
|page= 87
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{\mathcal{C}_{CE}}</math>
||<math>\sum _{n=1}^\infty \frac{p_n} {10^{n + \sum \limits_{k=1}^n \lfloor \log_{10}{p_k} \rfloor }}</math>
||<small> sum[n=1 to ∞] <br/> {prime(n) /(n+(10^ <br/> sum[k=1 to n]{floor <br/> (log_10 prime(k))}))} </small>
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A033308}}
||[0;4,4,8,16,18,5,1,1,1,1,7,1,1,6,2,9,58,1,3,...]
||
||<small> 0.23571113171923293137414347535961677 </small>
|-

<!-----------------------------------------v-------------------------------------------->
|1.52362 70862 02492 10627 <ref group=Mw>{{MathWorld|DragonCurve|Dragon Curve}}</ref>
||Fractal dimension of the boundary of the [[dragon curve]] <ref>{{cite book
|author= Angel Chang y Tianrong Zhang
|title= On the Fractal Structure of the Boundary of Dragon Curve
|url= http://poignance.coiraweb.com/math/Fractals/Dragon/Bound.html
|year=
|publisher=
|isbn=
|page=
}}</ref>
||[[File:Fractal dragon curve.jpg|100px]]
|bgcolor=#e0f0f0 align=center|<math>{C_d}</math>
||<math>\frac{\log\left(\frac{1+\sqrt[3]{73-6\sqrt{87}}+\sqrt[3]{73+6\sqrt{87}}}{3}\right)}
{\log(2)}</math>
||(log((1+(73-6 sqrt(87))^1/3+ (73+6 sqrt(87))^1/3)<br/>/3))/ log(2)))
||
||
||[1;1,1,10,12,2,1,149,1,1,1,3,11,1,3,17,4,1,...]
||
||<small> 1.52362708620249210627768393595421662 </small>
|-

<!-------------------------------------------v------------------------------------------>
|1.78221 39781 91369 11177 <ref group=Mw>{{MathWorld|GrothendiecksConstant|Grothendieck's Constant}}</ref>
||Grothendieck constant <ref>{{cite book
|author= Joe Diestel
|title= Absolutely Summing Operators
|url= http://books.google.com/?id=pHqyRSdgVTsC&pg=PA29&lpg=PA29&dq=1.782+GROTHENDIECK#v=onepage&q=1.782%20GROTHENDIECK&f=false
|year= 1995
|publisher= Cambridge University Press
|isbn= 0-521-43168-9
|page= 29
}}</ref>
||<br><br><br>
|bgcolor=#e0f0f0 align=center|<math>{K_{R}}</math>
||<math> \frac {\pi}{2 \log(1+\sqrt{2})} </math>
||pi/(2 log(1+sqrt(2)))
||
||{{OEIS2C|A088367}}
||[1;1,3,1,1,2,4,2,1,1,17,1,12,4,3,5,10,1,1,3,...]
||
||<small> 1.78221397819136911177441345297254934 </small>
|-

<!---------------------------------------------v---------------------------------------->
|1.58496 25007 21156 18145 <ref group=Mw>{{MathWorld|PascalsTriangle|Pascal's Triangle}}</ref>
||[[Hausdorff dimension]], [[Sierpinski triangle]] <ref>{{cite book
|author= Eric W. Weisstein
|title= CRC Concise Encyclopedia of Mathematics, Second Edition
|url= http://books.google.com/?id=aFDWuZZslUUC&pg=PA2685&dq=1.584962500#v=onepage&q=1.584962500&f=false
|year= 2002
|publisher= CRC Press
|isbn= 1-58488-347-2
|page= 1356
}}</ref>
||[[File:SierpinskiTriangle-ani-0-7.gif|100px]]
|bgcolor=#e0f0f0 align=center|<math>{log_2 3}</math>
||<math>\frac {\log 3}{\log 2} = \frac{\sum_{n=0}^\infty \frac{1}{2^{2n+1}(2n+1)}}{\sum_{n=0}^\infty \frac{1}{3^{2n+1}(2n+1)}} = \frac{\frac{1}{2}+\frac{1}{24}+\frac{1}{160}+\cdots}{\frac{1}{3}+\frac{1}{81}+\frac{1}{1215}+\cdots} </math>
||<small>( Sum[n=0 to ∞] {1/<br/>(2^(2n+1) (2n+1))})/ <br/> (Sum[n=0 to ∞] {1/<br/>(3^(2n+1) (2n+1))})</small>
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A020857}}
||[1;1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...]
||
||<small> 1.58496250072115618145373894394781651 </small>
|-

<!-------------------------------------------v------------------------------------------>
|1.30637 78838 63080 69046 <ref group=Mw>{{MathWorld|MillsConstant|Mills Constant}}</ref>
||[[Mills' constant]] <ref>{{cite book
|author= Laith Saadi
|title= Stealth Ciphers
|url= http://books.google.com/?id=Mll0WZAjdyEC&pg=PT170&dq=%22Mills%27+constant%22#v=onepage&q=%22Mills%27%20constant%22&f=false
|year= 2004
|publisher= Trafford Publishing
|isbn= 978-1-4120-2409-9
|page= 160
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{\theta}</math>
||<math> \lfloor A^{3^{n}} \rfloor</math>
||Nest[ NextPrime[#^3] &, 2, 7]^(1/3^8)
||
||{{OEIS2C|A051021}}
||[1;3,3,1,3,1,2,1,2,1,4,2,35,21,1,4,4,1,1,3,2,...]
||1947
||<small> 1.30637788386308069046861449260260571 </small>
|-

<!----------------------------------------v--------------------------------------------->
|2.02988 32128 19307 25004 <ref group=Mw>{{MathWorld|FigureEightKnot|Figure Eight Knot}}</ref>
||Figure eight knot hyperbolic volume <ref>{{cite book
|author= Jonathan Borwein,David Bailey
|title= Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st Century
|url= http://books.google.com/?id=ysDiE0Enn4oC&pg=PA56&lpg=PA56&dq=2.029883212819307250042405108549#v=onepage&q=2.029883212819307250042405108549&f=false
|year= 2008
|publisher= A K Peters, Ltd.
|isbn= 978-1-56881-442-1
|page= 56
}}</ref>
||[[File:Blue Figure-Eight Knot.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>{V_{8}}</math>
||<math> 2 \sqrt{3}\, \sum_{n=1}^\infty \frac{1}{n
{2n \choose n}} \sum_{k=n}^{2n-1} \frac{1}{k} =
6 \int \limits_{0}^{\pi / 3}
\log \left( \frac{1}{2 \sin t} \right) \, dt = </math>
<math>\scriptstyle
\frac{\sqrt{3}}{{9}}\, \sum \limits_{n=0}^\infty
\frac{(-1)^n}{27^n}\,\left\{\!
\frac{{18}}{(6n+1)^2} - \frac{{18}}{(6n+2)^2} -
\frac{{24}}{(6n+3)^2} -
\frac{{6}}{(6n+4)^2} +
\frac{{2}}{(6n+5)^2}\!\right\}
</math>
||6 integral[0 to pi/3]<br/> {log(1/(2 sin (n)))}
||
||{{OEIS2C|A091518}}
||[2;33,2,6,2,1,2,2,5,1,1,7,1,1,1,113,1,4,5,1,...]
||
||<small> 2.02988321281930725004240510854904057 </small>
|-

<!------------------------------------------v------------------------------------------->
|262 53741 26407 68743 <br> .99999 99999 99250 073 <ref group=Mw>{{MathWorld|RamanujanConstant|Ramanujan Constant}}</ref>
||[[Complex multiplication|Hermite–Ramanujan constant]]<ref>{{cite book
|author= L. J. Lloyd James Peter Kilford
|title= Modular Forms: A Classical and Computational Introduction
|url= http://books.google.com/?id=txPhITLO1YoC&pg=PA107&dq=262537412640768743.99999999999925#v=onepage&q=262537412640768743.99999999999925&f=false
|year= 2008
|publisher= Imperial College Press
|isbn= 978-1-84816-213-6
|page= 107
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{R}</math>
||<math> e^{\pi\sqrt{163}}</math>
||e^(π sqrt(163))
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A060295}}
||<small>[262537412640768743;1,1333462407511,1,8,1,1,5,...]</small>
||1859
||<small> 262537412640768743.999999999999250073 </small>
|-

<!---------------------------------------------v---------------------------------------->
|1.74540 56624 07346 86349 <ref group=Mw>{{MathWorld|KhinchinHarmonicMean|KhinchinHarmonicMean}}</ref>
||Khinchin [[harmonic mean]] <ref>{{cite book
|author=
|title= Continued Fractions from Euclid till Present
|url= http://algo.inria.fr/seminars/sem98-99/vardi1-2.html#Finch95b
|year= 1998
|publisher= IHES, Bures sur Yvette
|isbn=
|page=
}}</ref>
||[[File:Plot harmonic mean.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>{K_{-1}}</math>
||<math> \frac {\log 2} {\sum \limits_{n=1}^\infty \frac {1}{n}
\log\bigl(1{+}\frac{1}{n(n+2)}\bigr)} = \lim_{n \to \infty} \frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}}</math>
''a''<sub>1</sub> ... ''a''<sub>''n''</sub> are elements of a [[continued fraction]] [''a''<sub>0</sub>; ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a''<sub>''n''</sub>]
||(log 2)/<br/>(sum[n=1 to ∞] <br/>{1/n log(1+<br/>1/(n(n+2))}
||
||{{OEIS2C|A087491}}
||[1;1,2,1,12,1,5,1,5,13,2,13,2,1,9,1,6,1,3,1,...]
||
||<small> 1.74540566240734686349459630968366106 </small>
|-

<!-------------------------------------------v------------------------------------------>
|1.64872 12707 00128 14684 <ref group=Ow>[http://oeis.org/wiki/Sqrt(e) Sqrt(e)]</ref>
||[[Square root]] of the [[number e]] <ref>{{cite book
|author= Julian Havil
|title= The Irrationals: A Story of the Numbers You Can't Count On
|url= http://books.google.com/?id=BoqXQ87C-04C&pg=PA98&dq=1.6487212707#v=onepage&q=1.6487212707&f=false
|year= 2012
|publisher= Princeton University Press
|isbn= 978-0-691-14342-2
|page= 98
}}</ref>
||<br><br><br>
|bgcolor=#e0f0f0 align=center|<math>\sqrt {e}</math>
||<math>\sum_{n = 0}^\infty \frac{1}{2^n n!} = \sum_{n = 0}^\infty \frac{1}{(2n)!!} = \frac{1}{1}+\frac{1}{2}+\frac{1}{8}+\frac{1}{48}+\cdots</math>
||Sum[n=0 to ∞]<br/>{1/(2^n n!)}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A019774}}
||[1;1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,...] <br> = [1;1,{{overline|1,1,4p+1}}], p∈ℕ
||
||<small> 1.64872127070012814684865078781416357 </small>
|-

<!--------------------------------------------v----------------------------------------->
|1.01734 30619 84449 13971 <ref group=Mw>{{MathWorld|RiemannZetaConstant|Riemann Zeta Constant}}</ref>
||Zeta(6) <ref>{{cite book
|author= Lennart R©Æde,Bertil Westergren
|title= Mathematics Handbook for Science and Engineering
|url=
|year= 2004
|publisher= Springer-Verlag
|isbn= 3-540-21141-1
|page= 194
}}</ref>
||[[File:Zeta.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>\zeta(6)</math>
||<math>\frac{\pi^6}{945} \! = \! \prod_{n=1}^\infty \! \underset{p_n: \text{ prime}}{ \frac{1}{{1-p_n}^{-6}}} = \frac{1}{1 \! -\! 2^{-6}} \! \cdot \! \frac{1}{1 \! - \! 3^{-6}} \! \cdot \! \frac{1}{1 \! - \! 5^{-6}} \cdots</math>
||Prod[n=1 to ∞]<br/>{1/(1-ithprime<br/>(n)^-6)}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A013664}}
||[1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...]
||
||<small> 1.01734306198444913971451792979092052 </small>
|-

<!----------------------------------------v--------------------------------------------->
|0.10841 01512 23111 36151 <ref group=Mw>{{MathWorld|TrottConstant|Trott Constant}}</ref>
||Trott constant <ref>{{cite book
|author= Michael Trott
|title= Finding Trott Constants
|url= http://www.mathematica-journal.com/issue/v10i2/contents/Corner10-2/Corner10-2.pdf
|year=
|publisher= Wolfram Research
|isbn=
|page=
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>\mathrm{T}_1</math>
||<math> \textstyle [1, 0, 8, 4, 1, 0, 1, 5, 1, 2, 2, 3, 1, 1, 1, 3, 6,...]</math> <br/>
<math> \tfrac 1{1+\tfrac 1{0+\tfrac 1{8+\tfrac 1{4+\tfrac 1{1+\tfrac 1{0+1{/\cdots}}}}}}} </math>
||Trott Constant
||
||{{OEIS2C|A039662}}
||[0;9,4,2,5,1,2,2,3,1,1,1,3,6,1,5,1,1,2,...]
||
||<small> 0.10841015122311136151129081140641509</small>
|-

<!------------------------------------------v------------------------------------------->
|0.00787 49969 97812 3844 <ref group=Mw>{{MathWorld|ChaitinsConstant|Chaitin's Constant}}</ref>
||[[Chaitin constant]] <ref>{{cite book
|author= David Darling
|title= The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes
|url= http://books.google.com/?id=HrOxRdtYYaMC&pg=PA63&dq=%22Chaitin+constant%22#v=onepage&q=%22Chaitin%20constant%22&f=false
|year= 2004
|publisher= Wiley & Sons inc.
|isbn= 0-471-27047-4
|page= 63
}}</ref>
||<center>[[File:ProgramTree.svg|40px]]</center>
|bgcolor=#e0f0f0 align=center|<math>\Omega </math>
||<center><math>\sum_{p \in P} 2^{-|p|}
\overset {p: \text{ Halted program}}{
\underset{ P:\text{ Domain of all programs that stop.}}
{\scriptstyle {|p|}:\text{Size in bits of program }p}}</math>
<br>See also: [[Halting problem]]</center>
||
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A100264}}
||[0; 126, 1, 62, 5, 5, 3, 3, 21, 1, 4, 1]
||1975
||0.0078749969978123844
|-

<!-----------------------------------------v-------------------------------------------->
|0.83462 68416 74073 18628 <ref group=Mw>{{MathWorld|GausssConstant|Gauss's Constant}}</ref>
||[[Gauss constant]] <ref>{{cite book
|author= Keith B. Oldham,Jan C. Myland,Jerome Spanier
|title= An Atlas of Functions: With Equator, the Atlas Function Calculator
|url= http://books.google.com/?id=UrSnNeJW10YC&pg=PA647&dq=%22Gauss%27s+constant%22#v=onepage&q=%22atlas%20is%20the%20Gauss%27s%20constant%22&f=false
|year= 2009
|publisher= Springer
|isbn= 978-0-387-48806-6
|page= 15
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{G}</math>
|| <math> \frac{1}{\mathrm{agm}(1, \sqrt{2})} = \frac{4 \sqrt{2} \,(\tfrac14 !)^2}{\pi ^{3/2}}= \frac{2}{\pi}\int_0^1\frac{dx}{\sqrt{1 - x^4}}</math>
AGM = [[Arithmetic–geometric mean]]
||(4 sqrt(2)((1/4)!)^2)<br/>/pi^(3/2)
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A014549}}
||[0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...]
||
||<small> 0.83462684167407318628142973279904680 </small>
|-

<!---------------------------------------v---------------------------------------------->
|1.45136 92348 83381 05028 <ref group=Mw>{{MathWorld|SoldnersConstant|Soldner's Constant}}</ref>
||[[Ramanujan–Soldner constant]]<ref>{{cite book
|author= Johann Georg Soldner
|title= Théorie et tables d’une nouvelle fonction transcendante
|language= fr
|url= http://books.google.de/books?id=g4Q_AAAAcAAJ&pg=PA42
|year= 1809
|editor= Lindauer, München
|page= 42
}}</ref><ref>{{cite book
|author= Lorenzo Mascheroni
|title= Adnotationes ad calculum integralem Euleri
|language= latin
|url= http://books.google.com/books?id=XkgDAAAAQAAJ&hl=de&pg=RA1-PA17
|year= 1792
|editor= Petrus Galeatius, Ticini
|page= 17
}}</ref>
||[[File:Integrallogrithm.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>{\mu}</math>
||<math> \mathrm{li}(x) = \int\limits_0^x \frac{dt}{\ln t} = 0
{\color{White}{......}} </math> li = [[Logarithmic integral]] <br/>
<math> \mathrm{li}(x)\;=\;\mathrm{Ei}(\ln{x})
{\color{White}{........}} </math> Ei = [[Exponential integral]]
||FindRoot[li(x) = 0]
|style="text-align:center;"|'''''[[Irrational number|I]]'''''
||{{OEIS2C|A070769}}
||[1;2,4,1,1,1,3,1,1,1,2,47,2,4,1,12,1,1,2,2,1,...]
||1792 <br> to <br> 1809
||<small> 1.45136923488338105028396848589202744 </small>
|-

<!-------------------------------------------v------------------------------------------>
|0.64341 05462 88338 02618 <ref group=Mw>{{MathWorld|CahensConstant|Cahen's Constant}}</ref>
||[[Cahen's constant]] <ref>{{cite book
|author= Yann Bugeaud
|title= Series representations for some mathematical constants
|url= http://books.google.com/?id=iAg8FL5jKSgC&pg=PA72&dq=%22cahen+constant%22#v=onepage&q=%22cahen%20constant%22&f=false
|year= 2004
|publisher=
|isbn= 0-521-82329-3
|page= 72
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>\xi _{2}</math>
||<math> \sum_{k=1}^{\infty} \frac{(-1)^{k}}{s_k-1} = \frac{1}{1} - \frac{1}{2} + \frac{1}{6} - \frac{1}{42} + \frac{1}{1806} {\,\pm \cdots} </math>
<small> Where s<sub>k</sub> is the kth term of ''[[Sylvester's sequence]]'' 2, 3, 7, 43, 1807, ...</small>
<br/> Defined as: <math>\, \, S_0= \, 2 , \,\, S_k= \, 1+\prod \limits_{n=0}^{k-1} S_n\text{ for}\;k>0 </math>
||
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A080130}}
||[0; 1, 1, 1, 4, 9, 196, 16641, 639988804, ...]
||1891
|<small> 0.64341054628833802618225430775756476 </small>
|-

<!------------------------------------------v------------------------------------------->
|1.41421 35623 73095 04880 <ref group=Mw>{{MathWorld|PythagorassConstant|Pythagoras's Constant}}</ref>
||[[Square root of 2]], [[Pythagoras]] constant.<ref>{{cite book
|author= Calvin C Clawson
|title= Mathematical sorcery: revealing the secrets of numbers
|url= http://books.google.com/?id=sPRbZACsXogC&pg=PA293&dq=pi+nested+radical#v=snippet&q=%22Again%20we%20have%20an%20amazing%20expression.%22&f=false
|year= 2001
|publisher=
|isbn= 978 0 7382 0496-3
|page= IV
}}</ref>
||[[File:Square root of 2 triangle.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>\sqrt{2}</math>
||<math>\! \prod_{n=1}^\infty \! \left( 1 \! + \! \frac{(-1)^{n+1}}{2n-1} \right) \! = \! \left(1 \! + \! \frac{1}{1}\right) \! \left(1 \! - \! \frac{1}{3} \right) \! \left(1 \! + \! \frac{1}{5} \right) \cdots </math>
||prod[n=1 to ∞] <br/> {1+(-1)^(n+1) <br/> /(2n-1)}
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A002193}}
||[1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...]<br> = [1;{{overline|2}}...]
||
||<small> 1.41421356237309504880168872420969808 </small>
|-

<!------------------------------------------v------------------------------------------->
|1.77245 38509 05516 02729 <ref group=Mw>{{MathWorld|Carlson-LevinConstant|Carlson-Levin Constant}}</ref>
||Carlson–Levin constant <ref>{{cite book
|author= H.M. Antia
|title= Numerical Methods for Scientists and Engineers
|url= http://books.google.com/?id=YzXsZgjyFA4C&pg=PA220&dq=1.772453850905516#v=onepage&q=1.772453850905516&f=false
|year= 2000
|publisher= Birkhäuser Verlag
|isbn= 3-7643-6715-6
|page= 220
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{\Gamma}(\tfrac12)</math>
||<math>\sqrt{\pi} = \left(-\frac{1}{2}\right)! = \int_{-\infty }^{\infty } \frac {1}{e^{x^2}} \, dx = \int_{0 }^{1} \frac {1}{\sqrt{-\ln x}} \, dx </math>
||sqrt (pi)
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A002161}}
||[1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...]
||
||<small> 1.77245385090551602729816748334114518 </small>
|-

<!--------------------------------------------v----------------------------------------->
|1.05946 30943 59295 26456 <ref group=Ow>[http://oeis.org/wiki/2#Roots_and_powers_of_2 Roots and powers of 2]</ref>
||Musical interval between each half tone <ref>{{cite book
|author= Bart Snapp
|title= Numbers and Algebra
|url= http://www.math.osu.edu/~snapp.14/1165/NumbersAlgebra.pdf
|year= 2012
}}</ref><ref>{{cite book
|author= George Gheverghese Joseph
|title= The Crest of the Peacock: Non-European Roots of Mathematics
|url= http://books.google.com/?id=ymud91nTc9YC&pg=PA295&dq=1.059463094359295264561825#v=onepage&q=1.059463094359295264561825&f=false
|year= 2011
|publisher= Princeton University Press
|isbn= 978-0-691-13526-7
|page= 295
}}</ref>
||[[Image:Rast scale.svg|100px]]
[[Image:YB0214 Clavier tempere.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>\sqrt[12]{2}</math>
||<math> \scriptstyle 440\, Hz. \textstyle 2^\frac{1}{12} \, 2^\frac{2}{12} \, 2^\frac{3}{12} \, 2^\frac{4}{12} \, 2^\frac{5}{12} \, 2^\frac{6}{12} \, 2^\frac{7}{12} \, 2^\frac{8}{12} \, 2^\frac{9}{12} \, 2^\frac{10}{12} \, 2^\frac{11}{12} \, 2 </math> <br>
<math> \scriptstyle {\color{white}...\color{black} Do_1\;\; Do\#\;\, Re\;\, Re\#\;\, Mi\;\; Fa\;\; Fa\#\; Sol\;\, Sol\#\, La\;\; La\#\;\; Si\;\, Do_2} </math>
<math> \scriptstyle {\color{white}....\color{black}C_1\;\;\;\; C\#\;\;\;\, D\;\;\; D\#\;\;\, E\;\;\;\;\, F\;\;\;\, F\#\;\;\; G\;\;\;\; G\#\;\;\; A\;\;\;\, A\#\;\;\;\, B\;\;\; C_2} </math>
||2^(1/12)
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A010774}}
||[1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...]
||
||<small> 1.05946309435929526456182529494634170 </small>
|-

<!-------------------------------------------v------------------------------------------>
|1.01494 16064 09653 62502 <ref group=Mw>{{MathWorld|GiesekingsConstant|Gieseking's Constant}}</ref>
||[[:de:Gieseking-Konstante|Gieseking constant]] <ref>{{cite book
|author= Steven Finch
|title= Volumes of Hyperbolic 3-Manifolds
|url= http://www.people.fas.harvard.edu/~sfinch/csolve/hyp.pdf
|year=
|publisher= Harvard University
|isbn=
|page=
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{\pi \ln \beta} </math>
||<math>\frac{3\sqrt{3}}{4} \left(1- \sum_{n=0}^\infty \frac{1}{(3n+2)^2}+ \sum_{n=1}^\infty\frac{1}{(3n+1)^2} \right)= </math> <br/>
<math>\textstyle \frac{3\sqrt{3}}{4} \left( 1 - \frac{1}{2^2} + \frac{1}{4^2}-\frac{1}{5^2}+\frac{1}{7^2}-\frac{1}{8^2}+\frac{1}{10^2} \pm \cdots \right)</math>.
||sqrt(3)*3/4 *(1<br/>-Sum[n=0 to ∞]<br/>{1/((3n+2)^2)}<br/>+Sum[n=1 to ∞]<br/>{1/((3n+1)^2)})
||
||{{OEIS2C|A143298}}
||[1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...]
||1912
||<small> 1.01494160640965362502120255427452028 </small>
|-

<!---------------------------------------------v---------------------------------------->
|2.62205 75542 92119 81046 <ref group=Mw>{{MathWorld|LemniscateConstant|Lemniscate Constant}}</ref>
||[[Lemniscate constant]] <ref>{{cite book
|author= J. Coates,Martin J. Taylor
|title= L-Functions and Arithmetic
|url= http://books.google.com/?id=aKQhpm1h770C&pg=PA333&dq=2.6220575#v=onepage&q&f=false
|year= 1991
|publisher= Cambridge University Press
|isbn= 0-521-38619-5
|page= 333
}}</ref>
||[[File:Lemniscate of Gerono.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>{\varpi} </math>
||<math> \pi \, {G} = 4 \sqrt{\tfrac2\pi}\,\Gamma{\left(\tfrac54 \right)^2} = \tfrac14 \sqrt{\tfrac{2}{\pi}}\,\Gamma {\left(\tfrac14 \right)^2} = 4 \sqrt{\tfrac2\pi}\left(\tfrac14 !\right)^2</math>
|| 4 sqrt(2/pi)<br/>((1/4)!)^2
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A062539}}
||[2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...]
||1798
||<small> 2.62205755429211981046483958989111941 </small>
|-

<!---------------------------------------------v---------------------------------------->
|1.28242 71291 00622 63687 <ref group=Mw>{{MathWorld|Glaisher-KinkelinConstant|Glaisher-Kinkelin Constant}}</ref>
||[[Glaisher–Kinkelin constant]] <ref>{{cite book
|author= Jan Feliksiak
|title= The Symphony of Primes, Distribution of Primes and Riemann’s Hypothesis
|url= http://books.google.com/?id=HFlgz7JoS-MC&pg=PA18&dq=Glaisher%E2%80%93Kinkelin+constant#v=onepage&q=Glaisher%E2%80%93Kinkelin&f=false
|year= 2013
|publisher= Xlibris Corporation
|isbn= 978-1-4797-6558-4
|page= 18
}}</ref>
||<br><br><br>
|bgcolor=#e0f0f0 align=center|<math>{A}</math>
||<math> e^{\frac{1}{12}-\zeta^\prime(-1)} =
e^{\frac{1}{8}-\frac{1}{2}\sum\limits_{n=0}^\infty \frac{1}{n+1} \sum\limits_{k=0}^n \left(-1\right)^k \binom{n}{k} \left(k+1\right)^2 \ln(k+1)}</math>
||e^(1/12-zeta´{-1})
|style="text-align:center;"|'''''[[Transcendental number|T]]''''' ?
||{{OEIS2C|A074962}}
||[1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...]
||
||<small> 1.28242712910062263687534256886979172 </small>
|-

<!------------------------------------------v------------------------------------------->
| -4.22745 35333 76265 408 <ref group=Mw>{{MathWorld|GausssDigammaTheorem|Gausss Digamma Theorem}}</ref>
||[[Digamma function|Digamma]] (1/4) <ref>{{cite book
|author= Horst Alzera, Dimitri Karayannakisb, H.M. Srivastava
|title= Series representations for some mathematical constants
|url= http://www.sciencedirect.com/science/article/pii/S0022247X05005883
|year= 2005
|publisher= Elsevier Inc
|isbn=
|page= 149
}}</ref>
||[[File:Complex Polygamma 0.jpg|100px]]
|bgcolor=#e0f0f0 align=center|<math>{\psi} (\tfrac14) </math>
|| <math> -\gamma -\frac{\pi}{2} - 3\ln{2} = -\gamma+\sum_{n=0}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+\tfrac14}\right)</math>
||-EulerGamma <br/>-\pi/2 -3 log 2
||
||{{OEIS2C|A020777}}
||-[4;4,2,1,1,10,1,5,9,11,1,22,1,1,14,1,2,1,4,...]
||
||<small> -4.2274535333762654080895301460966835 </small>
|-

<!------------------------------------------v------------------------------------------->
|0.28674 74284 34478 73410 <ref group=Mw>{{MathWorld|CarefreeCouple|Carefree Couple}}</ref>
||Strongly Carefree constant <ref>{{cite book
|author= Steven R. Finch
|title= Quadratic Dirichlet L-Series
|url= http://www.people.fas.harvard.edu/~sfinch/csolve/ls.pdf
|year= 2005
|publisher=
|isbn=
|page= 12
}}</ref>
||<br><br><br><br>
|bgcolor=#e0f0f0 align=center|<math>K_{2}</math>
||<math> \prod_{n=1}^\infty \underset{p_n: \text{ prime}} {\left( 1-\frac{3 p_n-2}{{p_n}^{3}}\right)} = \frac {6}{\pi ^2}\prod_{n=1}^\infty \underset{p_n: \text{ prime}} {\left( 1-\frac{1}{{p_n(p_n+1)}}\right)} </math>
||<small> N[ prod[k=1 to ∞] <br/> {1-(3*prime(k)-2) <br/> /(prime(k)^3)}] </small>
||
||{{OEIS2C|A065473}}
||[0;3,2,19,3,12,1,5,1,5,1,5,2,1,1,1,1,1,3,7,...]
||
||<small> 0.28674742843447873410789271278983845 </small>
|-

<!---------------------------------------------v---------------------------------------->
|1.78107 24179 90197 98523 <ref group=Mw>{{MathWorld|Euler-MascheroniConstant|Euler-Mascheroni Constant}}</ref>
||Exp.gamma, <br/> [[Barnes G-function]] <ref>{{cite book
|author= H. M. Srivastava,Junesang Choi
|title= Zeta and q-Zeta Functions and Associated Series and Integrals
|url= http://books.google.com/?id=DUyACqwqaqIC&pg=PA613&dq=%22Barnes+G-Function%22#v=onepage&q=%22generalized%20Barnes%20G-function%22&f=false
|year= 2012
|publisher= Elsevier
|isbn= 978-0-12-385218-2
|page= 613
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>e^{\gamma} </math>
||<math>\prod_{n=1}^\infty \frac{e^{\frac{1}{n}}}{1+\tfrac1n} = \prod_{n=0}^\infty \left(\prod_{k=0}^n (k+1)^{(-1)^{k+1}{n \choose k}}\right)^{\frac{1}{n+1}} = </math>
<math>\textstyle \left ( \frac{2}{1} \right )^{1/2} \left (\frac{2^2}{1 \cdot 3} \right )^{1/3} \left (\frac{2^3 \cdot 4}{1 \cdot 3^3} \right )^{1/4}
\left (\frac{2^4 \cdot 4^4}{1 \cdot 3^6 \cdot 5} \right )^{1/5}\cdots </math>
||Prod[n=1 to ∞]<br/>{e^(1/n)}<br/>/{1 + 1/n}
||
||{{OEIS2C|A073004}}
||[1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...]
||
||<small> 1.78107241799019798523650410310717954 </small>
|-

<!----------------------------------------v--------------------------------------------->
|3.62560 99082 21908 31193 <ref group=Mw>{{MathWorld|GammaFunction|Gamma Function}}</ref>
||Gamma(1/4)<ref>{{cite book
|author= Refaat El Attar
|title= Special Functions And Orthogonal Polynomials
|url= http://books.google.com/?id=r3Zj__Ag7LwC&pg=PA58&dq=3.6256#v=onepage&q=3.6256&f=false
|year= 2006
|publisher= Lulu Press
|isbn= 1-4116-6690-9
|page= 58
}}</ref>
||[[File:Gamma abs 3D.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>\Gamma(\tfrac14)</math>
||<math> 4 \left(\frac{1}{4}\right)! = \left(-\frac{3}{4}\right)! </math>
||4(1/4)!
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A068466}}
||[3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...]
||1729
||<small> 3.62560990822190831193068515586767200 </small>
|-

<!-------------------------------------------v------------------------------------------>
|1.66168 79496 33594 12129 <ref group=Mw>{{MathWorld|SomossQuadraticRecurrenceConstant|SomossQuadraticRecurrence Constant}}</ref>
||[[Somos' quadratic recurrence constant]] <ref>{{cite book
|author= Jesus Guillera and Jonathan Sondow
|title= Double integrals and infinite products...
|editor= arxiv.org
|url= http://arxiv.org/pdf/math/0506319v3.pdf
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{\sigma}</math>
||<math>\prod_{n=1}^\infty n^{{1/2}^n} = \sqrt {1 \sqrt {2 \sqrt{3 \cdots}}} = 1^{1/2} \; 2^{1/4} \; 3^{1/8} \cdots </math>
||prod[n=1 to ∞]<br/>{n ^(1/2)^n}
|style="text-align:center;"|'''''[[Transcendental number|T]]''''' ?
||{{OEIS2C|A065481}}
||[1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...]
||
||<small> 1.66168794963359412129581892274995074 </small>
|-

<!-----------------------------------------v-------------------------------------------->
|0.95531 66181 245092 78163
||[[Magic angle]] <ref>{{cite book
|author= Andras Bezdek
|title= Discrete Geometry
|url= http://books.google.com/?id=WoaxgpHu19gC&pg=PA150&lpg=PA150&dq=0.955316#v=onepage&q=0.955316&f=false
|year= 2003
|publisher= Marcel Dekkcr, Inc.
|isbn= 0-8247-0968-3
|page= 150
}}</ref>
||[[File:Magic angle.png|100px]]
|bgcolor=#e0f0f0 align=center|<math> {\theta_m} </math>
||<math> \arctan \left(\sqrt{2}\right) = \arccos \left(\sqrt{\tfrac13}\right) \approx \textstyle {54.7356} ^{ \circ } </math>
||arctan(sqrt(2))
|style="text-align:center;"|'''''[[Irrational number|I]]'''''
||{{OEIS2C|A195696}}
||[0;1,21,2,1,1,1,2,1,2,2,4,1,2,9,1,2,1,1,1,3,...]
||
||<small> 0.95531661812450927816385710251575775 </small>
|-

<!-------------------------------------------v------------------------------------------>
|0.74759 79202 53411 43517 <ref group=Mw>{{MathWorld|RenyisParkingConstant|Renyi's Parking Constant}}</ref>
||Rényi's Parking Constant <ref>{{cite book
|author= Weisstein, Eric W
|title= Rényi's Parking Constants
|url= http://mathworld.wolfram.com/RenyisParkingConstants.html
|year=
|publisher= MathWorld
|isbn=
|page= (4)
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{m}</math>
||<math> \int \limits_{0}^{\infty} exp \left(\! -2 \int \limits_{0}^{x} \frac {1-e^{-y}}{y} dy\right)\! dx = {e^{-2 \gamma}} \int \limits_{0}^{\infty} \frac{e^{-2 \Gamma(0,n)}}{n^2} </math>
||<small>[e^(-2*Gamma)] <br/>* Int{n,0,∞}[ e^(- 2<br/>*Gamma(0,n)) /n^2]</small>
||
||{{OEIS2C|A050996}}
||[0;1,2,1,25,3,1,2,1,1,12,1,2,1,1,3,1,2,1,43,...]
||
||<small> 0.74759792025341143517873094383017817 </small>
|-

<!-------------------------------------------v------------------------------------------>
|1.44466 78610 09766 13365 <ref group=Mw>{{MathWorld|SteinersProblem|Steiner's Problem}}</ref>
||Steiner number, [[Iterated exponential]] Constant <ref>{{cite book
|author= Eli Maor
|title= e: The Story of a Number
|url= http://books.google.com/?id=dSfaaVccJ_UC&pg=PA51&lpg=PA51&dq=1.444667861#v=onepage&q=1.444667861&f=false
|year= 2006
|publisher= Princeton University Press
|isbn= 0-691-03390-0
|page=
}}</ref>
||<center>[[File:Infinite power tower.svg|80px]]</center>
|bgcolor=#e0f0f0 align=center|<math>\sqrt[e]{e}</math>
||<math>e^{\frac{1}{e}}{\color{White}{...........}}</math> = Upper Limit of [[Tetration]]
||e^(1/e)
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A073229}}
||[1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...]
||
||<small> 1.44466786100976613365833910859643022 </small>
|-

<!-----------------------------------------v-------------------------------------------->
|0.69220 06275 55346 35386 <ref group=Mw>{{MathWorld|PowerTower|Power Tower}}</ref>
||Minimum value of función <br/> <big>ƒ</big>(x) = x<sup>x</sup> <ref>{{cite book
|author= Clifford A. Pickover
|title= A Passion for Mathematics
|url= http://books.google.com/?id=03CVDsZSBIcC&pg=PA387&dq=Clifford+A.Pickover+%22A+passion+for+mathematics%22+0.692200#v=onepage&q=Clifford%20A.Pickover%20%22A%20passion%20for%20mathematics%22%200.692200&f=false
|year= 2005
|publisher= John Wiley & Sons, Inc.
|isbn= 0-471-69098-8
|page= 90
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math> {\left(\frac{1}{e}\right)}^\frac{1}{e}</math>
||<math>{e}^{-\frac{1}{e}} {\color{White}{..........}}</math> = Inverse Steiner Number
||e^(-1/e)
||
||{{OEIS2C|A072364}}
||[0;1,2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...]
||
|<small> 0.69220062755534635386542199718278976 </small>
|-

<!-------------------------------------------v------------------------------------------>
|0.34053 73295 50999 14282 <ref group=Mw>{{MathWorld|PolyasRandomWalkConstant|Polya's Random Walk Constant}}</ref>
||Pólya [[Random walk]] constant <ref>{{cite book
|author= Steven R. Finch
|title= Mathematical Constants
|url= http://books.google.com/?id=Pl5I2ZSI6uAC&pg=PA322&dq=%22P%C3%B3lya+Random+Walk%22+finch#v=onepage&q=%22P%C3%B3lya%20Random%20Walk%22%20finch&f=false
|year= 2003
|publisher= Cambridge University Press
|isbn= 3-540-67695-3
|page= 322
}}</ref>
||[[File:Walk3d 0.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>{p(3)}</math>
||<math> 1- \!\!\left({3\over(2\pi)^3}\int\limits_{-\pi}^{\pi} \int\limits_{-\pi}^{\pi} \int\limits_{-\pi}^{\pi} {dx\,dy\,dz\over 3-\!\cos x-\!\cos y-\!\cos z}\right)^{\!-1}</math>
<math> = 1- 16\sqrt{\tfrac23}\;\pi^3 \left(\Gamma(\tfrac{1}{24})\Gamma(\tfrac{5}{24})\Gamma(\tfrac{7}{24})\Gamma(\tfrac{11}{24})\right)^{-1}</math>
||<small>1-16*Sqrt[2/3]*Pi^3 <br/>/(Gamma[1/24]<br/>*Gamma[5/24]<br/>*Gamma[7/24]<br/>*Gamma[11/24]) </small>
||
||{{OEIS2C|A086230}}
||[0;2,1,14,1,3,8,1,5,2,7,1,12,1,5,59,1,1,1,3,...]
||
||<small> 0.34053732955099914282627318443290289 </small>
|-

<!-------------------------------------------v------------------------------------------>
|0.54325 89653 42976 70695 <ref group=Mw>{{MathWorld|LandauConstant|Landau Constant}}</ref>
||[[:de:Satz von Bloch#Landausche Konstante|Bloch–Landau constant]] <ref>{{cite book
|author= Eric W. Weisstein
|title= CRC Concise Encyclopedia of Mathematics, Second Edition
|url= http://books.google.com/?id=aFDWuZZslUUC&pg=PA1688&dq=Bloch-Landau+constant#v=onepage&q=Bloch-Landau%20constant&f=false
|year= 2003
|publisher= CRC Press
|isbn= 1-58488-347-2
|page= 1688
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{L}</math>
||<math> = \frac {\Gamma(\tfrac13)\;\Gamma(\tfrac{5}{6})} {\Gamma(\tfrac{1}{6})} = \frac {(-\tfrac23)!\;(-1+\tfrac56)!} {(-1+\tfrac16)!}</math>
||gamma(1/3)<br/>*gamma(5/6)<br/>/gamma(1/6)
||
||{{OEIS2C|A081760}}
||[0;1,1,5,3,1,1,2,1,1,6,3,1,8,11,2,1,1,27,4,...]
||1929
||<small> 0.54325896534297670695272829530061323 </small>
|-

<!----------------------------------------v-------------------------------------------->
|0.18785 96424 62067 12024 <ref group=Mw>{{MathWorld|MRBConstant|MRB Constant}}</ref> <ref group=Ow>[http://oeis.org/wiki/MRB_constant MRB constant]</ref>
||[[MRB Constant]], [[Marvin Ray Burns]] <ref>{{cite book
|author= Richard E. Crandall
|title= Unified algorithms for polylogarithm, L-series, and zeta variants
|url= http://web.archive.org/web/20130430193005/http://www.perfscipress.com/papers/UniversalTOC25.pdf
|year= 2012
|publisher= perfscipress.com
}}</ref><ref>{{cite book
|author= RICHARD J. MATHAR
|title= NUMERICAL EVALUATION OF THE OSCILLATORY INTEGRAL OVER exp(I pi x)x^1/x BETWEEN 1 AND INFINITY
|url= http://arxiv.org/pdf/0912.3844v3.pdf
|year= 2010
|publisher= http://arxiv.org/abs/0912.3844
}}</ref><ref>{{cite book
|author= M.R.Burns
|title= Root constant
|url= http://marvinrayburns.com/Original_MRB_Post.html
|year= 1999
|publisher= http://marvinrayburns.com/
}}</ref>
||[[File:MRB-Gif.gif|100px]]
|bgcolor=#e0f0f0 align=center|<math> C_{{}_{MRB}}</math>
||<math> \sum_{n=1}^{\infty} (-1)^n (n^{1/n}-1) = - \sqrt[1]{1} + \sqrt[2]{2} - \sqrt[3]{3} + \cdots</math>
||Sum[n=1 to ∞]<br/>{(-1)^n (n^(1/n)-1)}
||
||{{OEIS2C|A037077}}
||[0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...]
||1999
||<small> 0.18785964246206712024851793405427323 </small>
|-

<!------------------------------------------v------------------------------------------->
|1.27323 95447 35162 68615
||Ramanujan–Forsyth series<ref>{{cite book
|author= H. K. Kuiken
|title= Practical Asymptotics
|url= http://books.google.com/?id=r_-4OQ2CVY8C&pg=PA162&dq=1.2732395#v=onepage&q=1.2732395&f=false
|year= 2001
|publisher= KLUWER ACADEMIC PUBLISHERS
|isbn= 0-7923-6920-3
|page= 162
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>\frac {4}{\pi}</math>
||<math> \displaystyle \sum \limits_{n=0}^\infty \textstyle \left(\frac{(2n-3)!!}{(2n)!!}\right)^2 = {1 \! + \! \left(\frac {1}{2} \right)^2 \! + \! \left(\frac {1}{2 \cdot 4} \right)^2 \! + \! \left(\frac {1 \cdot 3}{2 \cdot 4 \cdot 6} \right)^2 + \cdots}</math>
||Sum[n=0 to ∞] <br/> {[(2n-3)!! <br/> /(2n)!!]^2}
|style="text-align:center;"|'''''[[Irrational number|I]]'''''
||{{OEIS2C|A088538}}
||[1;3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...]
||
||<small> 1.27323954473516268615107010698011489 </small>
|-

<!---------------------------------------------v---------------------------------------->
|1.46707 80794 33975 47289 <ref group=Mw>{{MathWorld|PortersConstant|Porter's Constant}}</ref>
||Porter Constant<ref>{{cite book
|author= Michel A. Théra
|title= Constructive, Experimental, and Nonlinear Analysis
|url= http://books.google.com/?id=QTcCSegK6jQC&pg=PA80&dq=%22Porter%E2%80%99s+constant%22#v=onepage&q=%22Porter%E2%80%99s%20constant%22&f=false
|year= 2002
|publisher= CMS-AMS
|isbn= 0-8218-2167-9
|page= 77
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{C}</math>
||<math> \frac{6\ln 2}{\pi ^2} \left(3 \ln 2 + 4 \,\gamma -\frac{24}{\pi ^2} \,\zeta '(2)-2 \right)-\frac{1}{2}</math>
<math> \scriptstyle \gamma \, \text{= Euler–Mascheroni Constant} = 0.5772156649\ldots </math>
<math> \scriptstyle \zeta '(2) \,\text{= Derivative of }\zeta(2)=
- \sum \limits_{n = 2}^{\infty} \frac{\ln n}{n^2} = -0.9375482543\ldots </math>
||<small> 6*ln2/pi^2(3*ln2+ 4 EulerGamma- WeierstrassZeta'(2) *24/pi^2-2)-1/2 </small>
||
||{{OEIS2C|A086237}}
||[1;2,7,10,1,2,38,5,4,1,4,12,5,1,5,1,2,3,1,...]
||1974
||<small> 1.46707807943397547289779848470722995 </small>
|-

<!---------------------------------------------v---------------------------------------->
|4.66920 16091 02990 67185 <ref group=Mw>{{MathWorld|FeigenbaumConstant|Feigenbaum Constant}}</ref>
||[[Feigenbaum constant]] δ <ref>{{cite book
|author= Kathleen T. Alligood
|title= Chaos: An Introduction to Dynamical Systems
|url= http://books.google.com/?id=i633SeDqq-oC&pg=PA500&dq=669201609#v=onepage&q=669201609&f=false
|year= 1996
|publisher= Springer
|isbn= 0-387-94677-2
|page=
}}</ref>
||[[File:LogisticMap BifurcationDiagram.png|100px]]
|bgcolor=#e0f0f0 align=center|<math>{\delta}</math>
||<math> \lim_{n \to \infty}\frac {x_{n+1}-x_n}{x_{n+2}-x_{n+1}} \qquad \scriptstyle x \in (3.8284;\, 3.8495)</math>
<math> \scriptstyle x_{n+1}=\,ax_n(1-x_n)\quad \text{or} \quad x_{n+1}=\,a\sin(x_n)</math>
||
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A006890}}
||[4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...]
||1975
||<small> 4.66920160910299067185320382046620161 </small>
|-

<!------------------------------------------v------------------------------------------->
|2.50290 78750 95892 82228 <ref group=Mw>{{MathWorld|FeigenbaumConstant|Feigenbaum Constant}}</ref>
||[[Feigenbaum constant]] α<ref>{{cite book
|author= K. T. Chau,Zheng Wang
|title= Chaos in Electric Drive Systems: Analysis, Control and Application
|url= http://books.google.com/?id=DhCbYXzLFLsC&pg=PA7&dq=2.502907875095892822283902873218#v=onepage&q=2.502907875095892822283902873218&f=false
|year= 201
|publisher= John Wiley & Son
|isbn= 978-0-470-82633-1
|page= 7
}}</ref>
||[[File:Mandelbrot zoom.gif|100px]]
|bgcolor=#e0f0f0 align=center|<math>\alpha</math>
||<math>\lim_{n \to \infty}\frac {d_n}{d_{n+1}}</math>
||
|style="text-align:center;"|'''''[[Transcendental number|T]]''''' ?
||{{OEIS2C|A006891}}
||[2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...]
||1979
||<small> 2.50290787509589282228390287321821578 </small>
|-

<!----------------------------------------------v--------------------------------------->
|0.62432 99885 43550 87099 <ref group=Mw>{{MathWorld|Golomb-DickmanConstant|Golomb-Dickman Constant}}</ref>
||[[Golomb–Dickman constant]] <ref>{{cite book
|author= Eric W. Weisstein
|title= CRC Concise Encyclopedia of Mathematics
|url= http://books.google.com/?id=aFDWuZZslUUC&pg=PA1211&lpg=PA1211&dq=Golomb%E2%80%93Dickman+constant#v=onepage&q=Golomb%E2%80%93Dickman%20constant&f=false
|year= 2002
|publisher= Crc Press
|isbn=
|page= 1212
}}</ref>
||<br><br><br>
|bgcolor=#e0f0f0 align=center|<math>{\lambda}</math>
||<math>\int \limits_0^\infty \underset{\text{Para } x>2}{\frac{f(x)}{x^2} \, dx} = \int \limits_0^1 e^{\operatorname{Li}(n)} dn \quad \scriptstyle \text{Li: Logarithmic integral}</math>
||N[Int{n,0,1}[e^Li(n)],34]
||
||{{OEIS2C|A084945}}
||[0;1,1,1,1,1,22,1,2,3,1,1,11,1,1,2,22,2,6,1,...]
||1930 <br> & <br> 1964
||<small> 0.62432998854355087099293638310083724 </small>
|-

<!-------------------------------------------v------------------------------------------>
|23.14069 26327 79269 0057 <ref group=Mw>{{MathWorld|GelfondsConstant|Gelfonds Constant}}</ref>
||[[Gelfond constant]] <ref>{{cite book
|author= David Wells
|title= The Penguin Dictionary of Curious and Interesting Numbers
|url= http://books.google.com/?id=7L7xcjBPemEC&pg=RA2-PA4&dq=23.14069#v=onepage&q=23.14069&f=false
|year= 1997
|publisher= Penguin Books Ltd.
|isbn=
|page= 4
}}</ref>
||<br><br><br>
|bgcolor=#e0f0f0 align=center|<math>{e}^{\pi}</math>
||<math> (-1)^{-i} = i^{-2i} = \sum_{n=0}^\infty \frac{\pi^{n}}{n!} = \frac{\pi^{1}}{1} + \frac{\pi^{2}}{2!} + \frac{\pi^{3}}{3!} + \cdots</math>
||Sum[n=0 to ∞] <br/> {(pi^n)/n!}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A039661}}
||[23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...]
||
||<small> 23.1406926327792690057290863679485474 </small>
<!-- 0.04321391826377224977441773717172801<br> ''1/C = (-1)^i = e^-pi'' = {{OEIS2C|A093580}} -->
|-

<!---------------------------------------------v---------------------------------------->
|7.38905 60989 30650 22723
||[[Conic constant]], [[Schwarzschild constant]] <ref>{{cite book
|author= Jvrg Arndt,Christoph Haenel
|title= Pi: Algorithmen, Computer, Arithmetik
|url= http://books.google.com/?id=mchJCvIsSXwC&pg=PA67&dq=7.38905#v=onepage&q=7.38905&f=false
v|year=
|publisher= Springer
|isbn= 3-540-66258-8
|page= 67
}}</ref>
||[[File:Conic constant.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>e^2</math>
||<math> \sum_{n = 0}^\infty \frac{2^n}{n!} = 1+2+\frac{2^2}{2!}+\frac{2^3}{3!}+\frac{2^4}{4!}+\frac{2^5}{5!}+\cdots</math>
|| Sum[n=0 to ∞]<br/>{2^n/n!}
||
||{{OEIS2C|A072334}}
||[7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...]<br>= [7,2,{{overline|1,1,n,4*n+6,n+2}}], n = 3, 6, 9, etc.
||
||<small> 7.38905609893065022723042746057500781 </small>
|-

<!------------------------------------------v------------------------------------------->
|0.35323 63718 54995 98454 <ref group=Mw>{{MathWorld|Hafner-Sarnak-McCurleyConstant|Hafner-Sarnak-McCurley Constant}}</ref>
||[[Hafner–Sarnak–McCurley constant]] (1) <ref>{{cite book
|author= Steven R. Finch
|title= Mathematical Constants
|url= http://books.google.com/?id=Pl5I2ZSI6uAC&pg=PA110&dq=%22Hafner-Sarnak-McCurley+constant%22#v=onepage&q=%22Hafner-Sarnak-McCurley%20constant%22&f=false
|year= 2003
|publisher=
|isbn= 3-540-67695-3
|page= 110
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{\sigma}</math>
||<math> \prod_{k=1}^{\infty}\left\{1-[1-\prod_{j=1}^n \underset{p_k: \text{ prime}}{(1-p_k^{-j})]^2}\right\}</math>
||prod[k=1 to ∞] {1-(1-prod[j=1 to n] {1-ithprime(k)^-j})^2}
||
||{{OEIS2C|A085849}}
||[0;2,1,4,1,10,1,8,1,4,1,2,1,2,1,2,6,1,1,1,3,...]
||1993
||<small> 0.35323637185499598454351655043268201 </small>
|-

<!------------------------------------------v------------------------------------------->
|0.60792 71018 54026 62866 <ref group=Mw>{{MathWorld|RelativelyPrime|Relatively Prime}}</ref>
||[[Hafner–Sarnak–McCurley constant]] (2) <ref>{{cite book
|author= Holger Hermanns,Roberto Segala
|title= Process Algebra and Probabilistic Methods.
|url= http://books.google.com/?id=007-3SM9QmYC&pg=PA270&dq=0.607927101854026628663276779#v=onepage&q=0.607927101854026628663276779&f=false
|year= 2000
|publisher= Springer-Verlag
|isbn= 3-540-67695-3
|page= 270
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>\frac{1}{\zeta(2)}</math>
||<math> \frac{6}{\pi^2} = \prod_{n = 0}^\infty \underset{p_n: \text{ prime}}{\! \left(\! 1- \frac{1}{{p_n}^2} \! \right)} \! = \! \textstyle \left(1 \! - \! \frac{1}{2^2}\right) \! \left(1 \! - \! \frac{1}{3^2}\right) \! \left(1 \! - \! \frac{1}{5^2}\right)\cdots</math>
||Prod{n=1 to ∞}<br/>(1-1/ithprime(n)^2)
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A059956}}
||[0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...]
||
||<small> 0.60792710185402662866327677925836583 </small>
|-

<!------------------------------------------v------------------------------------------->
|0.12345 67891 01112 13141 <ref group=Mw>{{MathWorld|ChampernowneConstant|Champernowne Constant}}</ref>
||[[Champernowne constant]] <ref>{{cite book
|author= Michael J. Dinneen,Bakhadyr Khoussainov,Prof. Andre Nies
|title= Computation, Physics and Beyond
|url= http://books.google.com/?id=wRWyMbmJTMYC&pg=PA109&dq=%22Champernowne+number%22#v=onepage&q=%22Champernowne%20number%22&f=false
|year= 2012
|publisher= Springer
|isbn= 978-3-642-27653-8
|page= 110
}}</ref>
||[[File:Champernowne constant.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>C_{10}</math>
||<math>\sum_{n=1}^\infty \; \sum_{k=10^{n-1}}^{10^n-1}\frac{k}{10^{kn-9\sum_{j=0}^{n-1}10^j(n-j-1)}}</math>
||
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A033307}}
||[0;8,9,1,149083,1,1,1,4,1,1,1,3,4,1,1,1,15,...]
||1933
||<small> 0.12345678910111213141516171819202123 </small>
|-

<!-----------------------------------------v-------------------------------------------->
|0.76422 36535 89220 66299 <ref group=Mw>{{MathWorld|Landau-RamanujanConstant|Landau-Ramanujan Constant}}</ref>
||[[Landau-Ramanujan constant]] <ref>{{cite book
|author= Richard E. Crandall,Carl B. Pomerance
|title= Prime Numbers: A Computational Perspective
|url=http://books.google.com/?id=ZXjHKPS1LEAC&pg=PA80&dq=Landau-Ramanujan+constant#v=onepage&q=Landau-Ramanujan%20constant&f=false
|year= 2005
|publisher= Springer
|isbn= 978-0387-25282-7
|page= 80
}}</ref>
||<br><br><br><br>
|bgcolor=#e0f0f0 align=center|<math>K</math>
||<math>\frac1{\sqrt2}\prod_{p\equiv3\!\!\!\!\!\mod \! 4}\!\! \underset{\!\!\!\!\!\!\!\! p: \text{ prime}}{\left(1-\frac1{p^2}\right)^{-\frac{1}{2}}}\!\!=\frac\pi4\prod_{p\equiv1\!\!\!\!\!\mod \!4}\!\! \underset{\!\!\!\! p: \text{ prime}}{\left(1-\frac1{p^2}\right)^\frac{1}{2}}</math>
||
|style="text-align:center;"|'''''[[Transcendental number|T]]''''' ?
||{{OEIS2C|A064533}}
||[0;1,3,4,6,1,15,1,2,2,3,1,23,3,1,1,3,1,1,6,4,...]
||
||<small> 0.76422365358922066299069873125009232 </small>
|-

<!---------------------------------------------v---------------------------------------->
|1.92878 00... <ref group=Mw>{{MathWorld|PrimeFormulas|PrimeFormulas}}</ref>
||Wright constant <ref>{{cite book
|author= Paulo Ribenboim
|title= My Numbers, My Friends: Popular Lectures on Number Theory
|url= http://books.google.com/?id=EiYvlcimEi4C&pg=PA66&dq=1.9287800#v=onepage&q=1.9287800&f=false
|year= 2000
|publisher= Springer-Verlag
|isbn= 0-387-98911-0
|page= 66
}}</ref>
||<br><br><br>
|bgcolor=#e0f0f0 align=center|<math>{\omega}</math>
||<math>\left \lfloor 2^{2^{2^{\cdot^{\cdot^{2^{\omega}}}}}} \!\right \rfloor \scriptstyle \text{= primes:} \displaystyle\left\lfloor 2^\omega\right\rfloor \scriptstyle \text{=3,}
\displaystyle\left\lfloor 2^{2^\omega} \right\rfloor \scriptstyle \text{=13,}
\displaystyle \left\lfloor 2^{2^{2^\omega}} \right\rfloor \scriptstyle =16381, \ldots </math>
||
||
||{{OEIS2C|A086238}}
||[1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3]
||
||1.9287800...
|-

<!------------------------------------------v------------------------------------------->
|2.71828 18284 59045 23536 <ref group=Mw>{{MathWorld|e|e}}</ref>
||[[Number e]], Euler's number <ref>{{cite book
|author= E.Kasner y J.Newman.
|title= Mathematics and the Imagination
|pages= 77
|year= 2007
|publisher= Conaculta
|isbn= 978-968-5374-20-0
|url= http://books.google.com/?id=zdBHMHV3m5YC&pg=PA76&dq=2.7182818284590452353602874#v=onepage&q=2.7182818284590452353602874&f=false
}}</ref>
||[[File:Exp derivative at 0.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>{e}</math>
||<math>\! \lim_{n \to \infty} \! \left( \! 1 \! + \! \frac {1}{n}\right)^n \! = \! \sum_{n = 0}^\infty \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1} + \frac{1}{2!} + \frac{1}{3!} + \textstyle \cdots </math>
||Sum[n=0 to ∞]<br/>{1/n!} <!--- lim_(n->∞) (1+1/n)^n --->
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A001113}}
||[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...] <br> = [2;{{overline|1,2p,1}}], p∈ℕ
||
||<small> 2.71828182845904523536028747135266250 </small>
|-

<!--------------------------------------------v----------------------------------------->
|0.36787 94411 71442 32159 <ref group=Mw>{{MathWorld|FactorialSums|Factorial Sums}}</ref>
||Inverse of [[Number e]] <ref>{{cite book
|author= Eli Maor
|title= "e": The Story of a Number
|url= http://books.google.com/?id=eIsyLD_bDKkC&pg=PA37&dq=0.367879441#v=onepage&q=0.367879441&f=false
|year= 1994
|publisher= Princeton University Press
|isbn= 978-0-691-14134-3
|page= 37
}}</ref>
||<br><br><br>
|bgcolor=#e0f0f0 align=center|<math>\frac{1}{e}</math>
||<math>\sum_{n = 0}^\infty \frac{(-1)^n}{n!} = \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} +\cdots</math>
<!--- 2\cdot(1/3! +2/5! +3/7!+\cdots --->
||Sum[n=2 to ∞]<br/>{(-1)^n/n!}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A068985}}
||[0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...] <br> = [0;2,1,{{overline|1,2p,1}}], p∈ℕ
||1618
||<small> 0.36787944117144232159552377016146086 </small>
|-

<!----------------------------------------------v--------------------------------------->
|0.69034 71261 14964 31946
||Upper [[iterated exponential]] <ref>{{cite book
|author= Theo Kempermann
|title= Zahlentheoretische Kostproben
|url= http://books.google.com/?id=c70frvZ9TEQC&pg=PA139&lpg=PA139&dq=0.690347+0.658366#v=onepage&q=0%2C690347%200%2C658366&f=false
|year= 2005
|publisher= Freiburger graphische betriebe
|isbn= 3-8171-1780-9
|page= 139
}}</ref>
||[[Image:TetrationConvergence2D.png|100px]]
|bgcolor=#e0f0f0 align=center|<math> {H}_{2n+1} </math>
||<math> \lim_{n \to \infty} {H}_{2n+1} =
\textstyle \left(\frac{1}{2}\right)
^{\left(\frac{1}{3}\right)
^{\left(\frac{1}{4}\right)
^{\cdot^{\cdot^{\left(\frac{1}{2n+1}\right)}}}}}
= {2}^{-3^{-4^{\cdot^{\cdot^{{-2n-1}}}}}} </math>
||2^-3^-4^-5^-6^ <br/> -7^-8^-9^-10^ <br/> -11^-12^-13 …
||
||{{OEIS2C|A242760}}
||[0;1,2,4,2,1,3,1,2,2,1,4,1,2,4,3,1,1,10,1,3,2,...]
||
||<small> 0.69034712611496431946732843846418942 </small>
|-

<!--------------------------------------------v----------------------------------------->
|0.65836 55992 ...
||Lower límit [[iterated exponential]] <ref>{{cite book
|author= Steven Finch
|title= Mathematical Constants
|url=http://books.google.com/?id=DL5iVYNoEa0C&pg=PA449&lpg=PA449&dq=0.6583655992#v=onepage&q=0.6583655992&f=false
|year= 2003
|publisher= Cambridge University Press
|isbn= 0-521-81805-2
|page= 449
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math> {H}_{2n} </math>
||<math> \lim_{n \to \infty} {H}_{2n} =
\textstyle \left(\frac{1}{2}\right)
^{\left(\frac{1}{3}\right)
^{\left(\frac{1}{4}\right)
^{\cdot^{\cdot^{\left(\frac{1}{2n}\right)}}}}}
= {2}^{-3^{-4^{\cdot^{\cdot^{{-2n}}}}}} </math>
||2^-3^-4^-5^-6^ <br/> -7^-8^-9^-10^ <br/> -11^-12 …
||
||
||[0;1,1,1,12,1,2,1,1,4,3,1,1,2,1,2,1,51,2,2,1,...]
||
||0.6583655992...
|-

<!------------------------------------------v------------------------------------------->
|3.14159 26535 89793 23846 <ref group=Mw>{{MathWorld|PiFormulas|Pi Formulas}}</ref>
||[[pi|π number]], [[Archimedes number]] <ref>{{cite book
|author= Michael Trott
|title= The Mathematica GuideBook for Programming
|url= http://books.google.com/?id=iZTxaxT_YeMC&pg=PA173&dq=pi+nested+radical#v=onepage&q=pi%20nested%20radical&f=false
|year= 2004
|publisher= Springer Science
|isbn= 0-387-94282-3
|page= 173
}}</ref>
||[[File:Sine cosine one period.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math> \pi </math>
||<math>\lim_{n\to \infty }\, 2^n \underbrace{\sqrt{2-\sqrt{2+\sqrt{2+\cdots +\sqrt{2}}}}}_n</math>
||Sum[n=0 to ∞]<br/>{(-1)^n 4/(2n+1)}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A000796}}
||[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...]
||
||<small> 3.14159265358979323846264338327950288 </small>
|-

<!-----------------------------------------v-------------------------------------------->
|0.46364 76090 00806 11621
||Machin–Gregory series<ref>{{cite book
|author= John Horton Conway, Richard K. Guy.
|title= The Book of Numbers
|url= http://books.google.com/?id=0--3rcO7dMYC&pg=PA242&dq=%22The+Book+of+Numbers%22+%22mathematician+David+Gregory%22#v=onepage&q=%22The%20Book%20of%20Numbers%22%20%22mathematician%20David%20Gregory%22&f=false
|year= 1995
|publisher= Copernicus
|isbn= 0-387-97993-X
|page= 242
|quote=
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>\arctan \frac {1}{2}</math>
||<math> \underset{\text{For } x = 1/2 \qquad \qquad} {\sum_{n=0}^\infty \frac{(\!-1\!)^n \, x^{2n+1}}{2n+1} = \frac {1}{2} {-} \frac{1}{3 \! \cdot \! 2^3} {+} \frac{1}{5 \! \cdot \! 2^5} {-} \frac{1}{7 \! \cdot \! 2^7} {+} \cdots}</math>
||Sum[n=0 to ∞] <br/> {(-1)^n (1/2)^(2n+1)<br/>/(2n+1)}
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A073000}}
||[0;2,6,2,1,1,1,6,1,2,1,1,2,10,1,2,1,2,1,1,1,...]
||
||<small> 0.46364760900080611621425623146121440 </small>
|-

<!--------------------------------------------v----------------------------------------->
|1.90216 05831 04 <ref group=Mw>{{MathWorld|BrunsConstant|Brun's Constant}}</ref>
||<small>[[Brun's constant|Brun<sub> 2 </sub> constant]] = Σ inverse of [[Twin prime]]s</small> <ref>{{cite book
|author= Thomas Koshy
|title= Elementary Number Theory with Applications
|url= http://books.google.com/?id=d5Z5I3gnFh0C&pg=PA118&dq=Brun+constant#v=onepage&q=Brun%20constant&f=false
|year= 2007
|publisher= Elsevier
|isbn= 978-0-12-372-487-8
|page= 119
}}</ref>
||[[File:Bruns-constant.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>{B}_{\,2}</math>
||<math> \textstyle \underset{ p,\, p+2: \text{ prime}}{\sum(\frac1{p}+\frac1{p+2})} = (\frac1{3} \! + \! \frac1{5}) + (\tfrac1{5} \! + \! \tfrac1{7}) + (\tfrac1{11} \! + \! \tfrac1{13}) + \cdots </math>
||
||
||{{OEIS2C|A065421}}
||[1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2]
||
||1.902160583104
|-

<!-------------------------------------------v------------------------------------------>
|0.87058 83799 75 <ref group=Mw>{{MathWorld|BrunsConstant|Brun's Constant}}</ref>
||<small>[[Brun's constant|Brun<sub> 4 </sub> constant]] = Σ inv.[[prime quadruplet]]s</small> <ref>{{cite book
|author= Pascal Sebah and Xavier Gourdon
|title= Introduction to twin primes and Brun’s constant computation
|url= http://numbers.computation.free.fr/Constants/Primes/twin.pdf
|year= 2002
|publisher=
|isbn=
|page=
}}</ref>
||<br><br><br><br>
|bgcolor=#e0f0f0 align=center|<math>{B}_{\,4}</math>
||<math>\textstyle {\sum(\frac1{p}+\frac1{p+2}+\frac1{p+4}+\frac1{p+6})} \scriptstyle \quad {p,\; p+2,\; p+4,\; p+6: \text{ prime}} </math>
<math> \textstyle{\left(\tfrac1{5} + \tfrac1{7} + \tfrac1{11} + \tfrac1{13}\right)}+ \left(\tfrac1{11} + \tfrac1{13} + \tfrac1{17} + \tfrac1{19}\right)+ \dots</math>
||
||
||{{OEIS2C|A213007}}
||[0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1]
||
||0.870588379975
|-

<!------------------------------------------v------------------------------------------->
|0.63661 97723 67581 34307 <ref group=Mw>{{MathWorld|PrimeProducts|Prime Products}}</ref>
<ref group=Ow>[http://oeis.org/wiki/Buffon%27s_constant Buffon's constant]</ref>
||Buffon constant<ref>{{cite book
|author= Jorg Arndt,Christoph Haenel
|title= Pi -- Unleashed
|page= 13
|year= 2000
|publisher= Verlag Berlin Heidelberg
|isbn= 3-540-66572-2
|url= http://books.google.com/?id=QwwcmweJCDQC&pg=PA13&dq=Fran%C3%A7ois+Vi%C3%A8te+(1540-1603)+developed#v=onepage&q=Fran%C3%A7ois%20Vi%C3%A8te%20(1540-1603)%20developed&f=false
}}</ref>
||[[Image:Viète nested polygons.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>\frac{2}{\pi}</math>
||<math> \frac{\sqrt2}2 \cdot \frac{\sqrt{2+\sqrt2}}2 \cdot \frac{\sqrt{2+\sqrt{2+\sqrt2}}}2 \cdots</math>
[[Viète's formula|Viète product]]
||2/Pi
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A060294}}
||[0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...]
||1540 <br> to <br> 1603
||<small> 0.63661977236758134307553505349005745 </small>
|-

<!--------------------------------------------v----------------------------------------->
|0.59634 73623 23194 07434 <ref group=Mw>{{MathWorld|GompertzConstant|Gompertz Constant}}</ref>
||[[Gompertz constant|Euler–Gompertz constant]] <ref>{{cite book
|author= Annie Cuyt, Viadis Brevik Petersen, Brigitte Verdonk, William B. Jones
|title= Handbook of continued fractions for special functions
|url= http://books.google.com/?id=DQtpJaEs4NIC&pg=PA190&dq=Gompertz+constant#v=onepage&q=Gompertz%20constant&f=false
|year= 2008
|publisher= Springer Science
|isbn= 978-1-4020-6948-2
|page= 190
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{G}</math>
||<math>\! \int \limits_0^\infty \!\! \frac{e^{-n}}{1{+}n} \, dn = \!\! \int \limits_0^1 \!\! \frac{1}{1{-}\ln n} \, dn =
\textstyle {\tfrac 1 {1+\tfrac 1{1+\tfrac 1{1+\tfrac 2{1+\tfrac 2{1+\tfrac 3{1+3{/\cdots}} }}}}}} </math>
<!--- 1/(1+1/(1+1/(1+2/(1+2/(1+3/(1+3))))))) demo Wolfram --->
||integral[0 to ∞]<br/>{(e^-n)/(1+n)}
||
||{{OEIS2C|A073003}}
||[0;1,1,2,10,1,1,4,2,2,13,2,4,1,32,4,8,1,1,1,...]
<!--- 1/(1+1/(1+1/(2+1/(10+1/(1+1/(1+1/(4+1))))))) demo Wolfram --->
||
||<small> 0.59634736232319407434107849936927937 </small>
|-

<!----------------------------------------v--------------------------------------------->
|<center> '''''i''''' ··· <ref group=Mw>{{MathWorld|i|i}}</ref> </center>
||[[Imaginary number]] <ref>{{cite book
|author= Keith J. Devlin
|title= Mathematics: The New Golden Age
|url= http://books.google.com/?id=IKmMKOtSI50C&pg=PA66&dq=%22This+leads+to+some+amazing+results.+For+example,+Euler+discovered%22#v=onepage&q=%22This%20leads%20to%20some%20amazing%20results.%20For%20example%2C%20Euler%20discovered%22&f=false
|year= 1999
|publisher= Columbia University Press
|isbn= 0-231-11638-1
|page= 66
}}</ref>
||[[Image:Complex numbers imaginary unit.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>{i}</math>
||<math>\sqrt{-1} = \frac{\ln(-1)}{\pi} \qquad\qquad \mathrm{e}^{i\,\pi} = -1</math>
||sqrt(-1)
|style="text-align:center;"|'''''[[Complex number|C]]'''''
||
||
||
| style="text-align:center;"| ''[[Irrational number|I]]''
||1501 <br/> to <br/> 1576
| align=right |
||<center> '''''i''''' </center>
| align=right |
|-
|-

| style="background:#d0f0d0; text-align:center;"|<div style="font-size:125%;"><math>\delta</math></div>
<!--------------------------------------------v----------------------------------------->
|| ≈ 4.66920 16091 02990 67185 32038 20466 20161
|0.69777 46579 64007 98200 <ref group=Mw>{{MathWorld|ContinuedFractionConstant|ContinuedFraction Constant}}</ref>
|| [[Feigenbaum constant]]
||Continued fraction constant, [[Bessel function]]<ref>{{cite book
|| '''[[chaos theory|ChT]]'''
|author= Simon Plouffe
|title= Miscellaneous Mathematical Constants
|url= http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap69.html
}}</ref>
||
||
|bgcolor=#e0f0f0 align=center|<math>{C}_{CF}</math>
|align=right | 1975
||<math> \frac{I_1(2)}{I_0(2)} = \frac{ \sum \limits_{n = 0}^\infty \frac{n}{n!n!}} {{ \sum \limits_{n = 0}^{\infty} \frac{1}{n!n!}}} =
\textstyle \tfrac 1{1+\tfrac 1{2+\tfrac 1{3+\tfrac 1{4+\tfrac 1{5+\tfrac 1{6+1{/\cdots}}}}}}} </math>
<!--- 1/(1+1/(1+1/(1+2/(1+2/(1+3/(1+3/(1+4))))))) demo Wolfram --->
||(Sum [n=0 to ∞]<br/>{n/(n!n!)}) /<br/>(Sum [n=0 to ∞]<br/>{1/(n!n!)})
||
||
||{{OEIS2C|A052119}}
||[0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...] <br> = [0;{{overline|p+1}}], p∈ℕ
<!--- 1/(1+1/(2+1/(3+1/(4+1/(5+1/(6+1/(7+1/(8+1))))))))--->
||
||<small> 0.69777465796400798200679059255175260 </small>
|-

<!---------------------------------------------v---------------------------------------->
|2.74723 82749 32304 33305
||[[Ramanujan]] [[nested radical]] <ref>{{cite book
|author= Bruce C. Berndt,Robert Alexander Rankin
|title= Ramanujan: essays and surveys
|url= http://books.google.com/?id=TT1T8A94xNcC&pg=PA219&dq=Ramanujan+nested+radical#v=onepage&q=Ramanujan%20nested%20radical&f=false
|year= 2001
|publisher= American Mathematical Society, London Mathematical Society
|isbn= 0-8218-2624-7
|page= 219
}}</ref>
||<br><br><br><br>
|bgcolor=#e0f0f0 align=center|<math> R_{5} </math>
||<math>\scriptstyle \sqrt{5+\sqrt{5+\sqrt{5-\sqrt{5+
\sqrt{5+\sqrt{5+\sqrt{5-\cdots}}}}}}}\;=
\textstyle\frac{2+\sqrt{5}+\sqrt{15-6\sqrt{5}}}{2}</math>
||(2+sqrt(5)<br/>+sqrt(15<br/>-6 sqrt(5)))/2
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||
||[2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...]
||
||<small> 2.74723827493230433305746518613420282 </small>
|-

<!------------------------------------------v------------------------------------------->
|0.56714 32904 09783 87299 <ref group=Mw>{{MathWorld|OmegaConstant|Omega Constant}}</ref>
||[[Omega constant]], [[Lambert W function]] <ref>{{cite book
|author= Albert Gural
|title= Infinite Power Towers
|url= http://www.albertgural.com/math/theory/infinite-power-towers/
}}</ref>
||[[File:Lambert-w.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math>{\Omega}</math>
||<math> \sum_{n=1}^\infty \frac{(-n)^{n-1}}{n!}
=\,\left(\frac{1}{e}\right)
^{\left(\frac{1}{e}\right)
^{\cdot^{\cdot^{\left(\frac{1}{e}\right)}}}}
= e^{-\Omega} = e^{-e^{-e^{\cdot^{\cdot^{{-e}}}}}} </math>
||Sum[n=1 to ∞]<br/>{(-n)^(n-1)/n!}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A030178}}
||[0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,2,1,...]
||
||<small> 0.56714329040978387299996866221035555 </small>
|-

<!-------------------------------------------v------------------------------------------>
|0.96894 61462 59369 38048
||[[Dirichlet beta function|Beta]](3) <ref>{{cite book
|author= Michael A. Idowu
|title= Fundamental relations between the Dirichlet beta function, euler numbers, and Riemann zeta function for positive integers
|url= http://arxiv.org/abs/1210.5559
|year= 2012
|publisher= arXiv:1210.5559
|isbn=
|page= 1
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math>{\beta} (3)</math>
|| <math> \frac{\pi^3}{32} = \sum_{n=1}^\infty\frac{-1^{n+1}}{(-1+2n)^3} = \frac{1}{1^3} {-} \frac{1}{3^3} {+} \frac{1}{5^3} {-} \frac{1}{7^3} {+} \cdots </math>
||Sum[n=1 to ∞]<br/>{(-1)^(n+1)<br/>/(-1+2n)^3}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A153071}}
||[0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...]
||
||<small> 0.96894614625936938048363484584691860 </small>
|-

<!------------------------------------------v------------------------------------------->
|2.23606 79774 99789 69640
||[[Square root of 5]], [[Gauss sum]] <ref>{{cite book
|author= P A J Lewis
|title= Essential Mathematics 9
|url= http://books.google.com/?id=KjMVx6ljh6YC&pg=PA24&dq=2.236067977#v=onepage&q=2.236067977&f=false
|year= 2008
|publisher= Ratna Sagar
|isbn= 9788183323673
|page= 24
|quote=
}}</ref>
||[[File:Pinwheel 1.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math> \sqrt{5} </math>
||<math> \scriptstyle (n = 5) \displaystyle \sum_{k=0}^{n-1} e^{\frac{2 k^2 \pi i}{n}} = 1 + e^\frac{2 \pi i} {5} + e^\frac{8 \pi i} {5} + e^\frac{18 \pi i} {5} + e^\frac{32 \pi i} {5}</math>
||Sum[k=0 to 4]<br/>{e^(2k^2 pi i/5)}
|style="text-align:center;"|'''''[[Algebraic number|A]]'''''
||{{OEIS2C|A002163}}
||[2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...] <br> = [2;{{overline|4}},...]
||
||<small> 2.23606797749978969640917366873127624 </small>
|-

<!--------------------------------------------v----------------------------------------->
|3.35988 56662 43177 55317 <ref group=Mw>{{MathWorld|ReciprocalFibonacciConstant|Reciprocal Fibonacci Constant}}</ref>
||Prévost constant [[Reciprocal Fibonacci constant]]<ref>{{cite book
|author= Gérard P. Michon
|title= Numerical Constants
|url= http://www.numericana.com/answer/constants.htm#prevost
|year= 2005
|publisher= Numericana
|isbn=
|page=
}}</ref>
||
|bgcolor=#e0f0f0 align=center|<math> \Psi </math>
||<math>\sum_{n=1}^{\infty} \frac{1}{F_n} = \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{8} + \frac{1}{13} + \cdots</math>
F<sub>n</sub>: [[Fibonacci series]]
||Sum[n=1 to ∞]<br/>{1/Fibonacci[n]}
|style="text-align:center;"|'''''[[Irrational number|I]]'''''
||{{OEIS2C|A079586}}
||[3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...]
||?
||<small> 3.35988566624317755317201130291892717 </small>
|-

<!------------------------------------------v------------------------------------------->
|{{nobr|2.68545 20010 65306 44530}}&nbsp;<ref group=Mw>{{MathWorld|KhinchinsConstant|Khinchin's Constant}}</ref>
||[[Khinchin's constant]] <ref>{{cite book
|author= Julian Havil
|title= Gamma: Exploring Euler's Constant
|url=http://books.google.com/?id=7-sDtIy8MNIC&pg=PA161&dq=Khinchin%27s+constant#v=onepage&q=Khinchin%27s%20constant&f=false
|year= 2003
|publisher= Princeton University Press
|isbn= 9780691141336
|page= 161
}}</ref>
||[[File:KhinchinBeispiele.svg|100px]]
|bgcolor=#e0f0f0 align=center|<math> K_{\,0} </math>
||<math> \prod_{n=1}^\infty \left[{1+{1\over n(n+2)}}\right]^{\ln n/\ln 2}</math>
||Prod[n=1 to ∞] <br/> {(1+1/(n(n+2))) <br/> ^(ln(n)/ln(2))}
|style="text-align:center;"|'''''[[Transcendental number|T]]'''''
||{{OEIS2C|A002210}}
||[2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...]
||1934
||<small> 2.68545200106530644530971483548179569 </small>
|-

<!-------------------------------------------.------------------------------------------>
|}
|}



==TWA Badges==
==TWA Badges==
Line 479: Line 3,712:
{{Wikipedia:TWA/Badge/14template}}
{{Wikipedia:TWA/Badge/14template}}
{{Wikipedia:TWA/Badge/15template}}
{{Wikipedia:TWA/Badge/15template}}

==References==
{{reflist}}

Revision as of 16:24, 23 February 2015

Tables structure

Table of constants and functions

You can choose the order of the list by clicking on the name, value, OEIS, etc..

Value Name Graphics Symbol LaTeX Formula OEIS Continued fraction Year Web format
0,70444 22009 99165 59273 Carefree constant 2 [1]



N[prod[n=1 to ∞]
{1 - 1/(prime(n)*
(prime(n)+1))}]
OEISA065463 [0;1,2,2,1,1,1,1,4,2,1,1,3,703,2,1,1,1,3,5,1,...] 0.70444220099916559273660335032663721
1.84775 90650 22573 51225 [Mw 1] Connective constant [2][3]

as a root of the polynomial

sqrt(2+sqrt(2)) A OEISA179260 [1;1,5,1,1,3,6,1,3,3,10,10,1,1,1,5,2,3,1,1,3,...] 1.84775906502257351225636637879357657
0.30366 30028 98732 65859 [Mw 2] Gauss-Kuzmin-Wirsing constant [4]

where is an analytic function with .

OEISA038517 [0;3,3,2,2,3,13,1,174,1,1,1,2,2,2,1,1,1,2,2,1,...] 1973 0.30366300289873265859744812190155623
1,57079 63267 94896 61923 [Mw 3] Favard constant K1
Wallis product [5]
Prod[n=1 to ∞]
{(4n^2)/(4n^2-1)}
T OEISA069196 [1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,1,5,1...] 1655 1.57079632679489661923132169163975144
1,60669 51524 15291 76378 [Mw 4] Erdős–Borwein constant[6][7]


sum[n=1 to ∞]
{1/(2^n-1)}
I OEISA065442 [1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,...] 1949 1.60669515241529176378330152319092458
1.61803 39887 49894 84820 [Mw 5] Phi, Golden ratio [8] (1+5^(1/2))/2 A OEISA001622 [0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]
= [0;1,...]
-300 ~ 1.61803398874989484820458633436563812
1.64493 40668 48226 43647 [Mw 6] Riemann Function Zeta(2) Sum[n=1 to ∞]
{1/n^2}
T OEISA013661 [1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...] 1826
to
1866
1.64493406684822643647241516664602519
1.73205 08075 68877 29352 [Mw 7] Theodorus constant[9] (3(3(3(3(3(3(3)
^1/3)^1/3)^1/3)
^1/3)^1/3)^1/3)
^1/3 ...
A OEISA002194 [1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...]
= [1;1,2,...]
-465
to
-398
1.73205080756887729352744634150587237
1.75793 27566 18004 53270 [Mw 8] Kasner number Fold[Sqrt[#1+#2]
&,0,Reverse
[Range[20]]]
OEISA072449 [1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...] 1878
a
1955
1.75793275661800453270881963821813852
2.29558 71493 92638 07403 [Mw 9] Universal parabolic constant [10] ln(1+sqrt 2)+sqrt 2 T OEISA103710 [2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,7,2,1,...] 2.29558714939263807403429804918949038
1.78657 64593 65922 46345 [Mw 10] Silverman constant[11]




ø() = Euler's totient function, σ1() = Divisor function.
Sum[n=1 to ∞]
{1/[EulerPhi(n)
DivisorSigma(1,n)]}
OEISA093827 [1;1,3,1,2,5,1,65,11,2,1,2,13,1,4,1,1,1,2,5,4,...] 1.78657645936592246345859047554131575
2.59807 62113 53315 94029 [Mw 11] Area of the regular hexagon with side equal to 1 [12] 3 sqrt(3)/2 A OEISA104956 [2;1,1,2,20,2,1,1,4,1,1,2,20,2,1,1,4,1,1,2,20,...]
[2;1,1,2,20,2,1,1,4]
2.59807621135331594029116951225880855
0.66131 70494 69622 33528 [Mw 12] Feller-Tornier
constant [13]




[prod[n=1 to ∞]
{1-2/prime(n)^2}]
/2 + 1/2
T ? OEISA065493 [0;1,1,1,20,9,1,2,5,1,2,3,2,3,38,8,1,16,2,2,...] 1932 0.66131704946962233528976584627411853
1.46099 84862 06318 35815 [Mw 13] Baxter's
Four-coloring
constant [14]
Mapamundi Four-Coloring
Γ() = Gamma function
3×Gamma(1/3)
^3/(4 pi^2)
OEISA224273 [1;2,5,1,10,8,1,12,3,1,5,3,5,8,2,1,23,1,2,161,...] 1970 1.46099848620631835815887311784605969
1.92756 19754 82925 30426 [Mw 14] Tetranacci constant

Positive root of Root[x+x^-4-2=0] OEISA086088 [1;1,12,1,4,7,1,21,1,2,1,4,6,1,10,1,2,2,1,7,1,...] 1.92756197548292530426190586173662216
1.00743 47568 84279 37609 [Mw 15] DeVicci's tesseract constant The largest cube that can pass through in an 4D hypercube.

Positive root of

Root[4*x^8-28*x^6
-7*x^4+16*x^2+16
=0]
A OEISA243309 [1;134,1,1,73,3,1,5,2,1,6,3,11,4,1,5,5,1,1,48,...] 1.00743475688427937609825359523109914
1.70521 11401 05367 76428 [Mw 16] Niven's constant [15] 1+ Sum[n=2 to ∞]
{1-(1/Zeta(n))}
OEISA033150 [1;1,2,2,1,1,4,1,1,3,4,4,8,4,1,1,2,1,1,11,1,...] 1969 1.70521114010536776428855145343450816
0.60459 97880 78072 61686 [Mw 17] Relationship among the area of an equilateral triangle and the inscribed circle.
Dirichlet series
Sum[1/(n
Binomial[2 n, n])
, {n, 1, ∞}]
T OEISA073010 [0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,6,6,...] 0.60459978807807261686469275254738524
1.15470 05383 79251 52901 [Mw 18] Hermite Constant [16] 2/sqrt(3) A 1+
OEISA246724
[1;6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...]
[1;6,2]
1.15470053837925152901829756100391491
0.41245 40336 40107 59778 [Mw 19] Prouhet–Thue–Morse constant [17]    where is the Thue–Morse sequence  and
Where
T OEISA014571 [0;2,2,2,1,4,3,5,2,1,4,2,1,5,44,1,4,1,2,4,1,1,...] 0.41245403364010759778336136825845528
0.58057 75582 04892 40229 [Mw 20] Pell Constant [18]


N[1-prod[n=0 to ∞]
{1-1/(2^(2n+1)}]
T ? OEISA141848 [0;1,1,2,1,1,1,1,14,1,3,1,1,6,9,18,7,1,27,1,1,...] 0.58057755820489240229004389229702574
0.66274 34193 49181 58097 [Mw 21] Laplace limit [19] (x e^sqrt(x^2+1))
/(sqrt(x^2+1)+1)
= 1
OEISA033259 [0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,1,1,2,1601,...] 1782 ~ 0.66274341934918158097474209710925290
0.17150 04931 41536 06586 [Mw 22] Hall-Montgomery Constant [20] 1 + Pi^2/6 + 2*PolyLog[2, -Sqrt[E]] OEISA143301 [0;5,1,4,1,10,1,1,11,18,1,2,19,14,1,51,1,2,1,...] 0.17150049314153606586043997155521210
1.55138 75245 48320 39226 [Mw 23] Calabi triangle constant [21] FindRoot[
2x^3-2x^2-3x+2
==0, {x, 1.5},
WorkingPrecision->40]
A OEISA046095 [1;1,1,4,2,1,2,1,5,2,1,3,1,1,390,1,1,2,11,6,2,...] 1946 ~ 1.55138752454832039226195251026462381
1.22541 67024 65177 64512 [Mw 24] Gamma(3/4) [22]


(-1+3/4)! OEISA068465 [1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,8,3,...] 1.22541670246517764512909830336289053
1.20205 69031 59594 28539 [Mw 25] Apéry's constant [23]

Sum[n=1 to ∞]
{1/n^3}
I OEISA010774 [1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,7,1,1,7,11,...] 1979 1.20205690315959428539973816151144999
0.91596 55941 77219 01505 [Mw 26] Catalan's constant[24][25][26]


Sum[n=0 to ∞]
{(-1)^n/(2n+1)^2}
T OEISA006752 [0;1,10,1,8,1,88,4,1,1,7,22,1,2,3,26,1,11,...] 1864 0.91596559417721901505460351493238411
0.78539 81633 97448 30961 [Mw 27] Beta(1) [27] Sum[n=0 to ∞]
{(-1)^n/(2n+1)}
T OEISA003881 [0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...] 1805
to
1859
0.78539816339744830961566084581987572
0.00131 76411 54853 17810 [Mw 28] Heath-Brown–Moroz constant[28] N[prod[n=1 to ∞]
{((1-1/prime(n))^7)
*(1+(7*prime(n)+1)
/(prime(n)^2))}]
T ? OEISA118228 [0,0,1,3,1,7,6,4,1,1,5,4,8,5,3,1,7,8,1,0,9,8,1,...] 0.00131764115485317810981735232251358
0.56755 51633 06957 82538 Module of
Infinite
Tetration of i
Mod(i^i^i^...) OEISA212479 [0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...] 0.56755516330695782538461314419245334
0.78343 05107 12134 40705 [Mw 29] Sophomore's dream 1 J.Bernoulli [29] Sum[n=1 to ∞]
{-(-1)^n /n^n}
OEISA083648 [0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,2,1,14,...] 1697 0.78343051071213440705926438652697546
1.29128 59970 62663 54040 [Mw 30] Sophomore's dream 2 J.Bernoulli [30] Sum[n=1 to ∞]
{1/(n^n)}
OEISA073009 [1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,2,4,...] 1697 1.29128599706266354040728259059560054
0.70523 01717 91800 96514 [Mw 31] Primorial constant
Sum of the product of inverse of primes [31]
Sum[k=1 to ∞]
(prod[n=1 to k] {1/prime(n)})
OEISA064648 [0;1,2,2,1,1,4,1,2,1,1,6,13,1,4,1,16,6,1,1,4,...] 0.70523017179180096514743168288824851
0.14758 36176 50433 27417 [Mw 32] Plouffe's gamma constant [32]
Arctan(1/2)/pi T OEISA086203 [0;6,1,3,2,5,1,6,5,3,1,1,2,1,1,2,3,1,2,3,2,2,...] 0.14758361765043327417540107622474052
0.15915 49430 91895 33576 [Mw 33] Plouffe's A constant [33]


1/(2 pi) T OEISA086201 [0;6,3,1,1,7,2,146,3,6,1,1,2,7,5,5,1,4,1,2,42,...] 0.15915494309189533576888376337251436
0.29156 09040 30818 78013 [Mw 34] Dimer constant 2D,
Domino tiling[34][35]

C=Catalan

N[int[-pi to pi] {arccosh(sqrt(
cos(t)+3)/sqrt(2))
/(4*Pi)dt}]
OEISA143233 [0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...] 0.29156090403081878013838445646839491
0.49801 56681 18356 04271

0.15494 98283 01810 68512 i

Factorial(i)[36] Integral_0^∞
t^i/e^t dt
C OEISA212877
OEISA212878
[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...]
- [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i
0.49801566811835604271369111746219809
- 0.15494982830181068512495513048388 i
2.09455 14815 42326 59148 [Mw 35] Wallis Constant (((45-sqrt(1929))
/18))^(1/3)+
(((45+sqrt(1929))
/18))^(1/3)
T OEISA007493 [2;10,1,1,2,1,3,1,1,12,3,5,1,1,2,1,6,1,11,4,...] 1616
to
1703
2.09455148154232659148238654057930296
0.72364 84022 98200 00940 [Mw 36] Sarnak constant N[prod[k=2 to ∞]
{1-(prime(k)+2)
/(prime(k)^3)}]
T ? OEISA065476 [0;1,2,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,8,2,1,1,...] 0.72364840229820000940884914980912759
0.63212 05588 28557 67840 [Mw 37] Time constant [37]

lim_(n->∞) (1- !n/n!)
!n=subfactorial
T OEISA068996 [0;1,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...]
= [0;1,1,1,2n], n∈ℕ
0.63212055882855767840447622983853913
1.04633 50667 70503 18098 Minkowski-Siegel mass constant [38] N[prod[n=1 to ∞]
n! /(sqrt(2*Pi*n)
*(n/e)^n *(1+1/n)
^(1/12))]
OEISA213080 [1;21,1,1,2,1,1,4,2,1,5,7,2,1,20,1,1,1134,3,..] 1867
1885
1935
1.04633506677050318098095065697776037
5.24411 51085 84239 62092 [Mw 38] Lemniscate Constant [39]
Gamma[ 1/4 ]^2
/Sqrt[ 2 Pi ]
OEISA064853 [5;4,10,2,1,2,3,29,4,1,2,1,2,1,2,1,4,9,1,4,1,2,...] 1718 5.24411510858423962092967917978223883
0.66170 71822 67176 23515 [Mw 39] Robbins constant [40] (4+17*2^(1/2)-6
*3^(1/2)+21*ln(1+
2^(1/2))+42*ln(2+
3^(1/2))-7*Pi)/105
OEISA073012 [0;1,1,1,21,1,2,1,4,10,1,2,2,1,3,11,1,331,1,4,...] 1978 0.66170718226717623515583113324841358
1.30357 72690 34296 39125 [Mw 40] Conway constant [41] A OEISA014715 [1;3,3,2,2,54,5,2,1,16,1,30,1,1,1,2,2,1,14,1,...] 1987 1.30357726903429639125709911215255189
1.18656 91104 15625 45282 [Mw 41] Khinchin–Lévy constant[42]


pi^2 /(12 ln 2) OEISA100199 [1;5,2,1,3,1,1,28,18,16,3,2,6,2,6,1,1,5,5,9,...] 1935 1.18656911041562545282172297594723712
0.83564 88482 64721 05333 Baker constant [43] Sum[n=0 to ∞]
{((-1)^(n))/(3n+1)}
OEISA113476 [0;1,5,11,1,4,1,6,1,4,1,1,1,2,1,3,2,2,2,2,1,3,...] 0.83564884826472105333710345970011076
23.10344 79094 20541 6160 [Mw 42] Kempner Serie(0) [44]

1+1/2+1/3+1/4+1/5
+1/6+1/7+1/8+1/9
+1/11+1/12+1/13
+1/14+1/15+...
OEISA082839 [23;9,1,2,3244,1,1,5,1,2,2,8,3,1,1,6,1,84,1,...] 23.1034479094205416160340540433255981
0.98943 12738 31146 95174 [Mw 43] Lebesgue constant [45] 4/pi^2*[(2
Sum[k=1 to ∞]
{ln(k)/(4*k^2-1)})
-poligamma(1/2)]
OEISA243277 [0;1,93,1,1,1,1,1,1,1,7,1,12,2,15,1,2,7,2,1,5,...] ? 0.98943127383114695174164880901886671
0.19452 80494 65325 11361 [Mw 44] 2nd du Bois-Reymond constant [46] (e^2-7)/2 T OEISA062546 [0;5,7,9,11,13,15,17,19,21,23,25,27,29,31,...]
= [0;2p+3], p∈ℕ
0.19452804946532511361521373028750390
0.78853 05659 11508 96106 [Mw 45] Lüroth constant[47]
Sum[n=2 to ∞]
log(n/(n-1))/n
OEISA085361 [0;1,3,1,2,1,2,4,1,127,1,2,2,1,3,8,1,1,2,1,16,...] 0.78853056591150896106027632216944432
1.18745 23511 26501 05459 [Mw 46] Foias constant α [48]


Foias constant is the unique real number such that if x1 = α then the sequence diverges to ∞. When x1 = α,

OEISA085848 [1;5,2,1,81,3,2,2,1,1,1,1,1,6,1,1,3,1,1,4,3,2,...] 2000 1.18745235112650105459548015839651935
2.29316 62874 11861 03150 [Mw 47] Foias constant β x^(x+1)
= (x+1)^x
OEISA085846 [2;3,2,2,3,4,2,3,2,130,1,1,1,1,1,6,3,2,1,15,1,...] 2000 2.29316628741186103150802829125080586
0.82246 70334 24113 21823 [Mw 48] Nielsen-Ramanujan constant [49]


Sum[n=1 to ∞]
{((-1)^(n+1))/n^2}
T OEISA072691 [0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,1,1,1,4...] 1909 0.82246703342411321823620758332301259
0.69314 71805 59945 30941 [Mw 49] Natural logarithm of 2 [50] Sum[n=1 to ∞]
{(-1)^(n+1)/n}
T OEISA002162 [0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,1,1,1,2,1,1,...] 1550
to
1617
0.69314718055994530941723212145817657
0.47494 93799 87920 65033 [Mw 50] Weierstrass constant [51]


(E^(Pi/8) Sqrt[Pi])
/(4 2^(3/4) (1/4)!^2)
OEISA094692 [0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,4,8,6...] 1872 ? 0.47494937998792065033250463632798297
0.57721 56649 01532 86060 [Mw 51] Euler-Mascheroni constant

sum[n=1 to ∞]
|sum[k=0 to ∞]
{((-1)^k)/(2^n+k)}
OEISA001620 [0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,...] 1735 0.57721566490153286060651209008240243
1.38135 64445 18497 79337 Beta, Kneser-Mahler polynomial constant[52] e^((PolyGamma(1,4/3)
- PolyGamma(1,2/3)
+9)/(4*sqrt(3)*Pi))
OEISA242710 [1;2,1,1,1,1,1,4,1,139,2,1,3,5,16,2,1,1,7,2,1,...] 1963 1.38135644451849779337146695685062412
1.35845 62741 82988 43520 [Mw 52] Golden Spiral GoldenRatio^(2/pi) OEISA212224 [1;2,1,3,1,3,10,8,1,1,8,1,15,6,1,3,1,1,2,3,1,1,...] 1.35845627418298843520618060050187945
0.57595 99688 92945 43964 [Mw 53] Stephens constant [53] Prod[n=1 to ∞]
{1-hprime(n)
/(hprime(n)^3-1)}
T ? OEISA065478 [0;1,1,2,1,3,1,3,1,2,1,77,2,1,1,10,2,1,1,1,7,...] ? 0.57595996889294543964316337549249669
0.73908 51332 15160 64165 [Mw 54] Dottie number [54] cos(c)=c OEISA003957 [0;1,2,1,4,1,40,1,9,4,2,1,15,2,12,1,21,1,17,...] ? 0.73908513321516064165531208767387340
0.67823 44919 17391 97803 [Mw 55] Taniguchi constant [55]
Prod[n=1 to ∞] {1
-3/ithprime(n)^3
+2/ithprime(n)^4
+1/ithprime(n)^5
-1/ithprime(n)^6}
T ? OEISA175639 [0;1,2,9,3,1,2,9,11,1,13,2,15,1,1,1,2,4,1,1,1,...] ? 0.67823449191739197803553827948289481
1.85407 46773 01371 91843 [Mw 56] Gauss' Lemniscate constant[56]
pi^(3/2)/(2 Gamma(3/4)^2) OEISA093341 [1;1,5,1,5,1,3,1,6,2,1,4,16,3,112,2,1,1,18,1,...] 1.85407467730137191843385034719526005
1.75874 36279 51184 82469 Infinite product constant, with Alladi-Grinstead [57] Prod[n=2 to inf] {(1+1/n)^(1/n)} OEISA242623 [1;1,3,6,1,8,1,4,3,1,4,1,1,1,6,5,2,40,1,387,2,...] 1977 1.75874362795118482469989684865589317
1.86002 50792 21190 30718 Spiral of Theodorus [58] Sum[n=1 to ∞]
{1/(n^(3/2)
+n^(1/2))}
OEISA226317 [1;1,6,6,1,15,11,5,1,1,1,1,5,3,3,3,2,1,1,2,19,...] -460
to
-399
1.86002507922119030718069591571714332
2.79128 78474 77920 00329 Nested radical S5

(sqrt(21)+1)/2 A A222134 [2;1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,...]
[2;1,3]
? 2.79128784747792000329402359686400424
0.70710 67811 86547 52440
+0.70710 67811 86547 524 i [Mw 57]
Square root of i [59] (1+i)/(sqrt 2) C A OEISA010503 [0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..]
= [0;1,2,...]
[0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..] i
= [0;1,2,...] i
? 0.70710678118654752440084436210484903
+ 0.70710678118654752440084436210484 i
0.80939 40205 40639 13071 [Mw 58] Alladi–Grinstead constant [60] e^{(sum[k=2 to ∞]
|sum[n=1 to ∞]
{1/(n k^(n+1))})-1}
OEISA085291 [0;1,4,4,17,4,3,2,5,3,1,1,1,1,6,1,1,2,1,22,...] 1977 0.80939402054063913071793188059409131
2.58498 17595 79253 21706 [Mw 59] Sierpiński's constant [61]

-Pi Log[Pi]+2 Pi
EulerGamma
+4 Pi Log
[Gamma[3/4]]
OEISA062089 [2;1,1,2,2,3,1,3,1,9,2,8,4,1,13,3,1,15,18,1,...] 1907 2.58498175957925321706589358738317116
1.73245 47146 00633 47358 [Ow 1] Reciprocal of the Euler–Mascheroni constant 1/Integrate_
{x=0 to 1}
-log(log(1/x))
OEISA098907 [1;1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,...] 1.73245471460063347358302531586082968
1.43599 11241 76917 43235 [Mw 60] Lebesgue constant (interpolation) [62][63] 1/3 + 2*sqrt(3)/pi T OEISA226654 [1;2,3,2,2,6,1,1,1,1,4,1,7,1,1,1,2,1,3,1,2,1,1,...] 1902 ~ 1.43599112417691743235598632995927221
3.24697 96037 17467 06105 [Mw 61] Silver root
Tutte–Beraha constant [64]
2+2 cos(2Pi/7) A OEISA116425 [3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...] 3.24697960371746706105000976800847962
1.94359 64368 20759 20505 [Mw 62] Euler Totient
constant
[65][66]
zeta(2)*zeta(3)
/zeta(6)
OEISA082695 [1;1,16,1,2,1,2,3,1,1,3,2,1,8,1,1,1,1,1,1,1,32,...] 1750 1.94359643682075920505707036257476343
1.49534 87812 21220 54191 Fourth root of five [67] (5(5(5(5(5(5(5)
^1/5)^1/5)^1/5)
^1/5)^1/5)^1/5)
^1/5 ...
I OEISA011003 [1;2,53,4,96,2,1,6,2,2,2,6,1,4,1,49,17,2,3,2,...] 1.49534878122122054191189899414091339
0.87228 40410 65627 97617 [Mw 63] Area of Ford circle [68] pi Zeta(3) /(4 Zeta(4)) [0;1,6,1,4,1,7,5,36,3,29,1,1,10,3,2,8,1,1,1,3,...] 0.87228404106562797617519753217122587
1.08232 32337 11138 19151 [Mw 64] Zeta(4) [69]


Sum[n=1 to ∞]
{1/n^4}
T OEISA013662 [1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,23,...] ? 1.08232323371113819151600369654116790
1.56155 28128 08830 27491 Triangular root of 2.[70]

(sqrt(17)-1)/2 A OEISA222133 [1;1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,...]
[1;1,1,3]
1.56155281280883027491070492798703851
9.86960 44010 89358 61883 Pi Squared


6 Sum[n=1 to ∞]
{1/n^2}
T A002388 [9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,1,3,...] 9.86960440108935861883449099987615114
1.32471 79572 44746 02596 [Mw 65] Plastic number [71] (1+(1+(1+(1+(1+(1
)^(1/3))^(1/3))^(1/3))
^(1/3))^(1/3))^(1/3)
A OEISA060006 [1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,2,...] 1929 1.32471795724474602596090885447809734
2.37313 82208 31250 90564 Lévy 2 constant [72]


Pi^(2)/(6*ln(2)) T OEISA174606 [2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...] 1936 2.37313822083125090564344595189447424
0.85073 61882 01867 26036 [Mw 66] Regular paperfolding sequence [73][74] N[Sum[n=0 to ∞]
{8^2^n/(2^2^
(n+2)-1)},37]
OEISA143347 [0;1,5,1,2,3,21,1,4,107,7,5,2,1,2,1,1,2,1,6,...] 0.85073618820186726036779776053206660
1.15636 26843 32269 71685 [Mw 67] Cubic recurrence constant [75][76]


prod[n=1 to ∞]
{n ^(1/3)^n}
OEISA123852 [1;6,2,1,1,8,13,1,3,2,2,6,2,1,2,1,1,1,10,33,...] 1.15636268433226971685337032288736935
1.26185 95071 42914 87419 [Mw 68] Fractal dimension of the Koch snowflake [77] log(4)/log(3) I A100831 [1;3,1,4,1,1,11,1,46,1,5,112,1,1,1,1,1,3,1,7,...] 1.26185950714291487419905422868552171
6.58088 59910 17920 97085 Froda constant[78]

2^e [6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...] 6.58088599101792097085154240388648649
0.26149 72128 47642 78375 [Mw 69] Meissel-Mertens constant [79] gamma+
Sum[n=1 to ∞]
{ln(1-1/prime(n))
+1/prime(n)}
T ? OEISA077761 [0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,296,...] 1866
&
1873
0.26149721284764278375542683860869585
4.81047 73809 65351 65547 John constant [80] e^(π/2) T OEISA042972 [4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,2,...] 4.81047738096535165547303566670383313
-0.5
± 0.86602 54037 84438 64676 i
Cube Root of 1 [81] 1,
E^(2i pi/3),
E^(-2i pi/3)
C OEISA010527 - [0,5]
± [0;1,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...] i
- [0,5]
± [0; 1, 6, 2] i
- 0.5
± 0.8660254037844386467637231707529 i
0.11000 10000 00000 00000 0001 [Mw 70] Liouville number [82]


Sum[n=1 to ∞]
{10^(-n!)}
T OEISA012245 [1;9,1,999,10,9999999999999,1,9,999,1,9] 0.11000100000000000000000100...
0.06598 80358 45312 53707 [Mw 71] Lower limit of Tetration [83] 1/(e^e) OEISA073230 [0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...] 0.06598803584531253707679018759684642
1.83928 67552 14161 13255 Tribonacci constant[84] (1/3)*(1+(19+3
*sqrt(33))^(1/3)
+(19-3
*sqrt(33))^(1/3))
A OEISA058265 [1;1,5,4,2,305,1,8,2,1,4,6,14,3,1,13,5,1,7,...] 1.83928675521416113255185256465328660
0.36651 29205 81664 32701 Median of the Gumbel distribution [85] -ln(ln(2)) A074785 [0;2,1,2,1,2,6,1,6,6,2,2,2,1,12,1,8,1,1,3,1,...] 0.36651292058166432701243915823266947
36.46215 96072 07911 7709 Pi^pi [86]

pi^pi OEISA073233 [36;2,6,9,2,1,2,5,1,1,6,2,1,291,1,38,50,1,2,...] 36.4621596072079117709908260226921236
0.53964 54911 90413 18711 Ioachimescu constant [87] γ +N[
sum[n=1 to ∞]
{((-1)^(2n)
gamma_n)
/(2^n n!)}]
2-
OEISA059750
[0;1,1,5,1,4,6,1,1,2,6,1,1,2,1,1,1,37,3,2,1,...] 0.53964549119041318711050084748470198
15.15426 22414 79264 1897 [Mw 72] Exponential reiterated constant [88] Sum[n=0 to ∞]
{(e^n)/n!}
OEISA073226 [15;6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,6,7,...] 15.1542622414792641897604302726299119
0.64624 54398 94813 30426 [Mw 73] Masser–Gramain constant [89]

Pi/4*(2*Gamma
+ 2*Log[2]
+ 3*Log[Pi]- 4
Log[Gamma[1/4]])
OEISA086057 [0;1,1,1,4,1,3,2,3,9,1,33,1,4,3,3,5,3,1,3,4,...] 0.64624543989481330426647339684579279
1.11072 07345 39591 56175 [Mw 74] The ratio of a square and circle circumscribed [90] sum[n=1 to ∞]
{(-1)^(floor(
(n-1)/2))
/(2n-1)}
T OEISA093954 [1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...] 1.11072073453959156175397024751517342
1.45607 49485 82689 67139 [Mw 75] Backhouse's constant [91]

1/( FindRoot[0 == 1 + Sum[x^n Prime[n], {n, 10000}], {x, {1}}) OEISA072508 [1;2,5,5,4,1,1,18,1,1,1,1,1,2,13,3,1,2,4,16,...] 1995 1.45607494858268967139959535111654355
1.85193 70519 82466 17036 [Mw 76] Gibbs constant [92]
Sin integral

SinIntegral[Pi] OEISA036792 [1;1,5,1,3,15,1,5,3,2,7,2,1,62,1,3,110,1,39,...] 1.85193705198246617036105337015799136
0.23571 11317 19232 93137 [Mw 77] Copeland–Erdős constant [93] sum[n=1 to ∞]
{prime(n) /(n+(10^
sum[k=1 to n]{floor
(log_10 prime(k))}))}
A OEISA033308 [0;4,4,8,16,18,5,1,1,1,1,7,1,1,6,2,9,58,1,3,...] 0.23571113171923293137414347535961677
1.52362 70862 02492 10627 [Mw 78] Fractal dimension of the boundary of the dragon curve [94] (log((1+(73-6 sqrt(87))^1/3+ (73+6 sqrt(87))^1/3)
/3))/ log(2)))
[1;1,1,10,12,2,1,149,1,1,1,3,11,1,3,17,4,1,...] 1.52362708620249210627768393595421662
1.78221 39781 91369 11177 [Mw 79] Grothendieck constant [95]


pi/(2 log(1+sqrt(2))) OEISA088367 [1;1,3,1,1,2,4,2,1,1,17,1,12,4,3,5,10,1,1,3,...] 1.78221397819136911177441345297254934
1.58496 25007 21156 18145 [Mw 80] Hausdorff dimension, Sierpinski triangle [96] ( Sum[n=0 to ∞] {1/
(2^(2n+1) (2n+1))})/
(Sum[n=0 to ∞] {1/
(3^(2n+1) (2n+1))})
T OEISA020857 [1;1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] 1.58496250072115618145373894394781651
1.30637 78838 63080 69046 [Mw 81] Mills' constant [97] Nest[ NextPrime[#^3] &, 2, 7]^(1/3^8) OEISA051021 [1;3,3,1,3,1,2,1,2,1,4,2,35,21,1,4,4,1,1,3,2,...] 1947 1.30637788386308069046861449260260571
2.02988 32128 19307 25004 [Mw 82] Figure eight knot hyperbolic volume [98]

6 integral[0 to pi/3]
{log(1/(2 sin (n)))}
OEISA091518 [2;33,2,6,2,1,2,2,5,1,1,7,1,1,1,113,1,4,5,1,...] 2.02988321281930725004240510854904057
262 53741 26407 68743
.99999 99999 99250 073 [Mw 83]
Hermite–Ramanujan constant[99] e^(π sqrt(163)) T OEISA060295 [262537412640768743;1,1333462407511,1,8,1,1,5,...] 1859 262537412640768743.999999999999250073
1.74540 56624 07346 86349 [Mw 84] Khinchin harmonic mean [100]

a1 ... an are elements of a continued fraction [a0; a1, a2, ..., an]

(log 2)/
(sum[n=1 to ∞]
{1/n log(1+
1/(n(n+2))}
OEISA087491 [1;1,2,1,12,1,5,1,5,13,2,13,2,1,9,1,6,1,3,1,...] 1.74540566240734686349459630968366106
1.64872 12707 00128 14684 [Ow 2] Square root of the number e [101]


Sum[n=0 to ∞]
{1/(2^n n!)}
T OEISA019774 [1;1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,...]
= [1;1,1,1,4p+1], p∈ℕ
1.64872127070012814684865078781416357
1.01734 30619 84449 13971 [Mw 85] Zeta(6) [102] Prod[n=1 to ∞]
{1/(1-ithprime
(n)^-6)}
T OEISA013664 [1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...] 1.01734306198444913971451792979092052
0.10841 01512 23111 36151 [Mw 86] Trott constant [103]

Trott Constant OEISA039662 [0;9,4,2,5,1,2,2,3,1,1,1,3,6,1,5,1,1,2,...] 0.10841015122311136151129081140641509
0.00787 49969 97812 3844 [Mw 87] Chaitin constant [104]

See also: Halting problem
T OEISA100264 [0; 126, 1, 62, 5, 5, 3, 3, 21, 1, 4, 1] 1975 0.0078749969978123844
0.83462 68416 74073 18628 [Mw 88] Gauss constant [105]

AGM = Arithmetic–geometric mean

(4 sqrt(2)((1/4)!)^2)
/pi^(3/2)
T OEISA014549 [0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...] 0.83462684167407318628142973279904680
1.45136 92348 83381 05028 [Mw 89] Ramanujan–Soldner constant[106][107] li = Logarithmic integral

Ei = Exponential integral

FindRoot[li(x) = 0] I OEISA070769 [1;2,4,1,1,1,3,1,1,1,2,47,2,4,1,12,1,1,2,2,1,...] 1792
to
1809
1.45136923488338105028396848589202744
0.64341 05462 88338 02618 [Mw 90] Cahen's constant [108]

Where sk is the kth term of Sylvester's sequence 2, 3, 7, 43, 1807, ...
Defined as:

T OEISA080130 [0; 1, 1, 1, 4, 9, 196, 16641, 639988804, ...] 1891 0.64341054628833802618225430775756476
1.41421 35623 73095 04880 [Mw 91] Square root of 2, Pythagoras constant.[109] prod[n=1 to ∞]
{1+(-1)^(n+1)
/(2n-1)}
A OEISA002193 [1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...]
= [1;2...]
1.41421356237309504880168872420969808
1.77245 38509 05516 02729 [Mw 92] Carlson–Levin constant [110] sqrt (pi) T OEISA002161 [1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...] 1.77245385090551602729816748334114518
1.05946 30943 59295 26456 [Ow 3] Musical interval between each half tone [111][112]


2^(1/12) A OEISA010774 [1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...] 1.05946309435929526456182529494634170
1.01494 16064 09653 62502 [Mw 93] Gieseking constant [113]

.

sqrt(3)*3/4 *(1
-Sum[n=0 to ∞]
{1/((3n+2)^2)}
+Sum[n=1 to ∞]
{1/((3n+1)^2)})
OEISA143298 [1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...] 1912 1.01494160640965362502120255427452028
2.62205 75542 92119 81046 [Mw 94] Lemniscate constant [114] 4 sqrt(2/pi)
((1/4)!)^2
T OEISA062539 [2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...] 1798 2.62205755429211981046483958989111941
1.28242 71291 00622 63687 [Mw 95] Glaisher–Kinkelin constant [115]


e^(1/12-zeta´{-1}) T ? OEISA074962 [1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...] 1.28242712910062263687534256886979172
-4.22745 35333 76265 408 [Mw 96] Digamma (1/4) [116] -EulerGamma
-\pi/2 -3 log 2
OEISA020777 -[4;4,2,1,1,10,1,5,9,11,1,22,1,1,14,1,2,1,4,...] -4.2274535333762654080895301460966835
0.28674 74284 34478 73410 [Mw 97] Strongly Carefree constant [117]



N[ prod[k=1 to ∞]
{1-(3*prime(k)-2)
/(prime(k)^3)}]
OEISA065473 [0;3,2,19,3,12,1,5,1,5,1,5,2,1,1,1,1,1,3,7,...] 0.28674742843447873410789271278983845
1.78107 24179 90197 98523 [Mw 98] Exp.gamma,
Barnes G-function [118]

Prod[n=1 to ∞]
{e^(1/n)}
/{1 + 1/n}
OEISA073004 [1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...] 1.78107241799019798523650410310717954
3.62560 99082 21908 31193 [Mw 99] Gamma(1/4)[119] 4(1/4)! T OEISA068466 [3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...] 1729 3.62560990822190831193068515586767200
1.66168 79496 33594 12129 [Mw 100] Somos' quadratic recurrence constant [120] prod[n=1 to ∞]
{n ^(1/2)^n}
T ? OEISA065481 [1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...] 1.66168794963359412129581892274995074
0.95531 66181 245092 78163 Magic angle [121] arctan(sqrt(2)) I OEISA195696 [0;1,21,2,1,1,1,2,1,2,2,4,1,2,9,1,2,1,1,1,3,...] 0.95531661812450927816385710251575775
0.74759 79202 53411 43517 [Mw 101] Rényi's Parking Constant [122] [e^(-2*Gamma)]
* Int{n,0,∞}[ e^(- 2
*Gamma(0,n)) /n^2]
OEISA050996 [0;1,2,1,25,3,1,2,1,1,12,1,2,1,1,3,1,2,1,43,...] 0.74759792025341143517873094383017817
1.44466 78610 09766 13365 [Mw 102] Steiner number, Iterated exponential Constant [123]
= Upper Limit of Tetration e^(1/e) T OEISA073229 [1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] 1.44466786100976613365833910859643022
0.69220 06275 55346 35386 [Mw 103] Minimum value of función
ƒ(x) = xx [124]
= Inverse Steiner Number e^(-1/e) OEISA072364 [0;1,2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] 0.69220062755534635386542199718278976
0.34053 73295 50999 14282 [Mw 104] Pólya Random walk constant [125]

1-16*Sqrt[2/3]*Pi^3
/(Gamma[1/24]
*Gamma[5/24]
*Gamma[7/24]
*Gamma[11/24])
OEISA086230 [0;2,1,14,1,3,8,1,5,2,7,1,12,1,5,59,1,1,1,3,...] 0.34053732955099914282627318443290289
0.54325 89653 42976 70695 [Mw 105] Bloch–Landau constant [126] gamma(1/3)
*gamma(5/6)
/gamma(1/6)
OEISA081760 [0;1,1,5,3,1,1,2,1,1,6,3,1,8,11,2,1,1,27,4,...] 1929 0.54325896534297670695272829530061323
0.18785 96424 62067 12024 [Mw 106] [Ow 4] MRB Constant, Marvin Ray Burns [127][128][129] Sum[n=1 to ∞]
{(-1)^n (n^(1/n)-1)}
OEISA037077 [0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...] 1999 0.18785964246206712024851793405427323
1.27323 95447 35162 68615 Ramanujan–Forsyth series[130] Sum[n=0 to ∞]
{[(2n-3)!!
/(2n)!!]^2}
I OEISA088538 [1;3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...] 1.27323954473516268615107010698011489
1.46707 80794 33975 47289 [Mw 107] Porter Constant[131]

6*ln2/pi^2(3*ln2+ 4 EulerGamma- WeierstrassZeta'(2) *24/pi^2-2)-1/2 OEISA086237 [1;2,7,10,1,2,38,5,4,1,4,12,5,1,5,1,2,3,1,...] 1974 1.46707807943397547289779848470722995
4.66920 16091 02990 67185 [Mw 108] Feigenbaum constant δ [132]

T OEISA006890 [4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...] 1975 4.66920160910299067185320382046620161
2.50290 78750 95892 82228 [Mw 109] Feigenbaum constant α[133] T ? OEISA006891 [2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...] 1979 2.50290787509589282228390287321821578
0.62432 99885 43550 87099 [Mw 110] Golomb–Dickman constant [134]


N[Int{n,0,1}[e^Li(n)],34] OEISA084945 [0;1,1,1,1,1,22,1,2,3,1,1,11,1,1,2,22,2,6,1,...] 1930
&
1964
0.62432998854355087099293638310083724
23.14069 26327 79269 0057 [Mw 111] Gelfond constant [135]


Sum[n=0 to ∞]
{(pi^n)/n!}
T OEISA039661 [23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...] 23.1406926327792690057290863679485474
7.38905 60989 30650 22723 Conic constant, Schwarzschild constant [136] Sum[n=0 to ∞]
{2^n/n!}
OEISA072334 [7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...]
= [7,2,1,1,n,4*n+6,n+2], n = 3, 6, 9, etc.
7.38905609893065022723042746057500781
0.35323 63718 54995 98454 [Mw 112] Hafner–Sarnak–McCurley constant (1) [137] prod[k=1 to ∞] {1-(1-prod[j=1 to n] {1-ithprime(k)^-j})^2} OEISA085849 [0;2,1,4,1,10,1,8,1,4,1,2,1,2,1,2,6,1,1,1,3,...] 1993 0.35323637185499598454351655043268201
0.60792 71018 54026 62866 [Mw 113] Hafner–Sarnak–McCurley constant (2) [138] Prod{n=1 to ∞}
(1-1/ithprime(n)^2)
T OEISA059956 [0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...] 0.60792710185402662866327677925836583
0.12345 67891 01112 13141 [Mw 114] Champernowne constant [139] T OEISA033307 [0;8,9,1,149083,1,1,1,4,1,1,1,3,4,1,1,1,15,...] 1933 0.12345678910111213141516171819202123
0.76422 36535 89220 66299 [Mw 115] Landau-Ramanujan constant [140]



T ? OEISA064533 [0;1,3,4,6,1,15,1,2,2,3,1,23,3,1,1,3,1,1,6,4,...] 0.76422365358922066299069873125009232
1.92878 00... [Mw 116] Wright constant [141]


OEISA086238 [1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3] 1.9287800...
2.71828 18284 59045 23536 [Mw 117] Number e, Euler's number [142] Sum[n=0 to ∞]
{1/n!}
T OEISA001113 [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...]
= [2;1,2p,1], p∈ℕ
2.71828182845904523536028747135266250
0.36787 94411 71442 32159 [Mw 118] Inverse of Number e [143]


Sum[n=2 to ∞]
{(-1)^n/n!}
T OEISA068985 [0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...]
= [0;2,1,1,2p,1], p∈ℕ
1618 0.36787944117144232159552377016146086
0.69034 71261 14964 31946 Upper iterated exponential [144] 2^-3^-4^-5^-6^
-7^-8^-9^-10^
-11^-12^-13 …
OEISA242760 [0;1,2,4,2,1,3,1,2,2,1,4,1,2,4,3,1,1,10,1,3,2,...] 0.69034712611496431946732843846418942
0.65836 55992 ... Lower límit iterated exponential [145] 2^-3^-4^-5^-6^
-7^-8^-9^-10^
-11^-12 …
[0;1,1,1,12,1,2,1,1,4,3,1,1,2,1,2,1,51,2,2,1,...] 0.6583655992...
3.14159 26535 89793 23846 [Mw 119] π number, Archimedes number [146] Sum[n=0 to ∞]
{(-1)^n 4/(2n+1)}
T OEISA000796 [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...] 3.14159265358979323846264338327950288
0.46364 76090 00806 11621 Machin–Gregory series[147] Sum[n=0 to ∞]
{(-1)^n (1/2)^(2n+1)
/(2n+1)}
A OEISA073000 [0;2,6,2,1,1,1,6,1,2,1,1,2,10,1,2,1,2,1,1,1,...] 0.46364760900080611621425623146121440
1.90216 05831 04 [Mw 120] Brun 2 constant = Σ inverse of Twin primes [148] OEISA065421 [1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2] 1.902160583104
0.87058 83799 75 [Mw 121] Brun 4 constant = Σ inv.prime quadruplets [149]



OEISA213007 [0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1] 0.870588379975
0.63661 97723 67581 34307 [Mw 122]

[Ow 5]

Buffon constant[150]

Viète product

2/Pi T OEISA060294 [0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...] 1540
to
1603
0.63661977236758134307553505349005745
0.59634 73623 23194 07434 [Mw 123] Euler–Gompertz constant [151] integral[0 to ∞]
{(e^-n)/(1+n)}
OEISA073003 [0;1,1,2,10,1,1,4,2,2,13,2,4,1,32,4,8,1,1,1,...] 0.59634736232319407434107849936927937
i ··· [Mw 124]
Imaginary number [152] sqrt(-1) C 1501
to
1576
i
0.69777 46579 64007 98200 [Mw 125] Continued fraction constant, Bessel function[153] (Sum [n=0 to ∞]
{n/(n!n!)}) /
(Sum [n=0 to ∞]
{1/(n!n!)})
OEISA052119 [0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...]
= [0;p+1], p∈ℕ
0.69777465796400798200679059255175260
2.74723 82749 32304 33305 Ramanujan nested radical [154]



(2+sqrt(5)
+sqrt(15
-6 sqrt(5)))/2
A [2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...] 2.74723827493230433305746518613420282
0.56714 32904 09783 87299 [Mw 126] Omega constant, Lambert W function [155] Sum[n=1 to ∞]
{(-n)^(n-1)/n!}
T OEISA030178 [0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,2,1,...] 0.56714329040978387299996866221035555
0.96894 61462 59369 38048 Beta(3) [156] Sum[n=1 to ∞]
{(-1)^(n+1)
/(-1+2n)^3}
T OEISA153071 [0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...] 0.96894614625936938048363484584691860
2.23606 79774 99789 69640 Square root of 5, Gauss sum [157] Sum[k=0 to 4]
{e^(2k^2 pi i/5)}
A OEISA002163 [2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...]
= [2;4,...]
2.23606797749978969640917366873127624
3.35988 56662 43177 55317 [Mw 127] Prévost constant Reciprocal Fibonacci constant[158]

Fn: Fibonacci series

Sum[n=1 to ∞]
{1/Fibonacci[n]}
I OEISA079586 [3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...] ? 3.35988566624317755317201130291892717
2.68545 20010 65306 44530 [Mw 128] Khinchin's constant [159] Prod[n=1 to ∞]
{(1+1/(n(n+2)))
^(ln(n)/ln(2))}
T OEISA002210 [2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...] 1934 2.68545200106530644530971483548179569


TWA Badges

References

  1. ^ Steven Finch (2004). Harvard.edu (ed.). Unitarism and Infinitarism (PDF). p. 1.
  2. ^ Mireille Bousquet-Mélou. CNRS, LaBRI, Bordeaux, France (ed.). Two-dimensional self-avoiding walks (PDF).{{cite book}}: CS1 maint: multiple names: editors list (link)
  3. ^ Hugo Duminil-Copin and Stanislav Smirnov (2011). Universite de Geneve. (ed.). The connective constant of the honeycomb lattice √ (2 + √ 2) (PDF).
  4. ^ W.A. Coppel (2000). Springer (ed.). Number Theory: An Introduction to Mathematics. p. 480. ISBN 978-0-387-89485-0.
  5. ^ James Stuart Tanton (2005). Encyclopedia of Mathematics. p. 529. ISBN 9781438110080.
  6. ^ Robert Baillie (2013). arxiv (ed.). Summing The Curious Series of Kempner and Irwin (PDF). p. 9.
  7. ^ Leonhard Euler (1749). Consideratio quarumdam serierum, quae singularibus proprietatibus sunt praeditae. p. 108.
  8. ^ Timothy Gowers, June Barrow-Green, Imre Leade (2007). Princeton University Press (ed.). The Princeton Companion to Mathematics. p. 316. ISBN 978-0-691-11880-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  9. ^ Vijaya AV (2007). Dorling Kindcrsley (India) Pvt. Lid. (ed.). Figuring Out Mathematics. p. 15. ISBN 978-81-317-0359-5.
  10. ^ Steven Finch (2014). Harvard.edu (ed.). Errata and Addenda to Mathematical Constants (PDF). p. 59.
  11. ^ Steven Finch (2007). Harvard.edu (ed.). Series involving Arithmetric Functions (PDF). p. 1.
  12. ^ Nayar. Tata McGraw-Hill Education. (ed.). The Steel Handbook. p. 953.
  13. ^ ECKFORD COHEN (1962). University of Tennessee (ed.). SOME ASYMPTOTIC FORMULAS IN THE THEORY OF NUMBERS (PDF). p. 220.
  14. ^ Paul B. Slater (2013). University of California (ed.). A Hypergeometric Formula ... (PDF). p. 9.
  15. ^ Ivan Niven. Averages of exponents in factoring integers (PDF).
  16. ^ Steven Finch (2014). Harvard.edu (ed.). Errata and Addenda to Mathematical Constants (PDF).
  17. ^ Steven Finch (2014). Harvard.edu (ed.). Errata and Addenda to Mathematical Constants (PDF). p. 53.
  18. ^ FRANZ LEMMERMEYER (2003). arxiv.org (ed.). HIGHER DESCENT ON PELL CONICS. I. FROM LEGENDRE TO SELMER (PDF). p. 13.
  19. ^ Howard Curtis (2014). Elsevier (ed.). Orbital Mechanics for Engineering Students. p. 159. ISBN 978-0-08-097747-8.
  20. ^ Andrew Granville and K. Soundararajan (1999). Arxiv (ed.). The spectrum of multiplicative functions (PDF). p. 3.
  21. ^ John Horton Conway, Richard K. Guy (1995). Copernicus (ed.). The Book of Numbers. p. 242. ISBN 0-387-97993-X.
  22. ^ John Derbyshire (2003). Joseph Henry Press (ed.). Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. p. 147. ISBN 0-309-08549-7.
  23. ^ Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadelantl, William B. Jones. (2008). Handbook of Continued Fractions for Special Functions. Springer. p. 188. ISBN 978-1-4020-6948-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  24. ^ Henri Cohen (2000). Number Theory: Volume II: Analytic and Modern Tools. Springer. p. 127. ISBN 978-0-387-49893-5.
  25. ^ H. M. Srivastava,Choi Junesang (2001). Series Associated With the Zeta and Related Functions. Kluwer Academic Publishers. p. 30. ISBN 0-7923-7054-6.
  26. ^ E. Catalan (1864). Mémoire sur la transformation des séries, et sur quelques intégrales définies, Comptes rendus hebdomadaires des séances de l’Académie des sciences 59. Kluwer Academic éditeurs. p. 618.
  27. ^ Lennart Råde,Bertil (2000). Springer-Verlag (ed.). Mathematics Handbook for Science and Engineering. p. 423. ISBN 3-540-21141-1.
  28. ^ J. B. Friedlander, A. Perelli, C. Viola, D.R. Heath-Brown, H.Iwaniec, J. Kaczorowski (2002). Springer (ed.). Analytic Number Theory. p. 29. ISBN 978-3-540-36363-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  29. ^ William Dunham (2005). Princeton University Press (ed.). The Calculus Gallery: Masterpieces from Newton to Lebesgue. p. 51. ISBN 978-0-691-09565-3.
  30. ^ Jean Jacquelin (2010). SOPHOMORE'S DREAM FUNCTION.
  31. ^ Simon Plouffe. Sum of the product of inverse of primes.
  32. ^ Simon Plouffe (1998). Université du Québec à Montréal (ed.). The Computation of Certain Numbers Using a Ruler and Compass. p. Vol. 1 (1998), Article 98.1.3.
  33. ^ John Srdjan Petrovic (2014). CRC Press (ed.). Advanced Calculus: Theory and Practice. p. 65. ISBN 978-1-4665-6563-0.
  34. ^ Steven R. Finch (1999). Several Constants Arising in Statistical Mechanics (PDF). p. 5.
  35. ^ Federico Ardila, Richard Stanley. Department of Mathematics, MIT, Cambridge (ed.). Several Constants Arising in Statistical Mechanics (PDF).{{cite book}}: CS1 maint: multiple names: editors list (link)
  36. ^ Andrija S. Radovic. A REPRESENTATION OF FACTORIAL FUNCTION, THE NATURE OF CONSTAT AND A WAY FOR SOLVING OF FUNCTIONAL EQUATION F(x) = x . F(x - 1) (PDF).
  37. ^ Kunihiko Kaneko,Ichiro Tsuda (1997). Complex Systems: Chaos and Beyond. p. 211. ISBN 3-540-67202-8.
  38. ^ Steven Finch (2005). Harvard University (ed.). Minkowski-Siegel Mass Constants (PDF). p. 5.
  39. ^ University of Florida, Department of Mechanical and Aerospace Engineering (ed.). Evaluation of the complete elliptic integrals by the agm method (PDF).
  40. ^ Steven R. Finch (2003). Cambridge University Press (ed.). Mathematical Constants. p. 479. ISBN 3-540-67695-3.
  41. ^ Facts On File, Incorporated (1997). Mathematics Frontiers. p. 46. ISBN 978-0-8160-5427-5.
  42. ^ Aleksandr I͡Akovlevich Khinchin (1997). Courier Dover Publications (ed.). Continued Fractions. p. 66. ISBN 978-0-486-69630-0.
  43. ^ Jean-Pierre Serre (1969–1970). Travaux de Baker (PDF). NUMDAM, Séminaire N. Bourbaki. p. 74.
  44. ^ Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 31. ISBN 9780691141336.
  45. ^ Horst Alzer (2002). Journal of Computational and Applied Mathematics, Volume 139, Issue 2 (PDF). Elsevier. pp. 215–230.
  46. ^ Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 238. ISBN 3-540-67695-3.
  47. ^ Steven Finch (2007). Continued Fraction Transformation III (PDF). Harvard University. p. 5.
  48. ^ Andrei Vernescu (2007). Gazeta Matematica€ Seria a revista€ de cultur€ Matematica Anul XXV(CIV)Nr. 1, Constante de tip Euler generalizate€ (PDF). p. 14. {{cite book}}: C1 control character in |title= at position 18 (help)
  49. ^ Mauro Fiorentini. Nielsen – Ramanujan (costanti di).
  50. ^ Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadeland, William B. Jones (2008). Handbook of Continued Fractions for Special Functions. Springer. p. 182. ISBN 978-1-4020-6948-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  51. ^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 151. ISBN 1-58488-347-2.
  52. ^ P. HABEGGER (2003). MULTIPLICATIVE DEPENDENCE AND ISOLATION I (PDF). Institut für Mathematik, Universit¨at Basel, Rheinsprung Basel, Switzerland. p. 2.
  53. ^ Steven Finch (2005). Class Number Theory (PDF). Harvard University. p. 8.
  54. ^ James Stewart (2010). Single Variable Calculus: Concepts and Contexts. Brooks/Cole. p. 314. ISBN 978-0-495-55972-6.
  55. ^ Steven Finch (2005). Class Number Theory (PDF). Harvard University. p. 8.
  56. ^ Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 421. ISBN 3-540-67695-3.
  57. ^ Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 122. ISBN 3-540-67695-3.
  58. ^ J?org Waldvogel (2008). Analytic Continuation of the Theodorus Spiral (PDF). p. 16.
  59. ^ Robert Kaplan,Ellen Kaplan (2014). Oxford University Press, Bloomsburv Press (ed.). The Art of the Infinite: The Pleasures of Mathematics. p. 238. ISBN 978-1-60819-869-6.
  60. ^ Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 121. ISBN 3-540-67695-3.
  61. ^ Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1356.
  62. ^ Chebfun Team (2010). Lebesgue functions and Lebesgue constants. MATLAB Central.
  63. ^ Simon J. Smith (2005). Lebesgue constants in polynomial interpolation. La Trobe University, Bendigo, Australia.
  64. ^ D. R. Woodall (2005). University of Nottingham (ed.). CHROMATIC POLYNOMIALS OF PLANE TRIANGULATIONS (PDF). p. 5.
  65. ^ Benjamin Klopsch (2013). NOTE DI MATEMATICA: Representation growth and representation zeta functions of groups (PDF). Universita del Salento. p. 114. ISSN 1590–0932. {{cite book}}: Check |issn= value (help)
  66. ^ Nikos Bagis. Some New Results on Prime Sums (3 The Euler Totient constant) (PDF). Aristotle University of Thessaloniki. p. 8.
  67. ^ Robinson, H.P. (1971–2011). MATHEMATICAL CONSTANTS. Lawrence Berkeley National Laboratory. p. 40.
  68. ^ Annmarie McGonagle (2011). A New Parameterization for Ford Circles (PDF). Plattsburgh State University of New York.
  69. ^ V. S. Varadarajan (2000). Euler Through Time: A New Look at Old Themes. AMS. ISBN 0-8218-3580-7.
  70. ^ Leonhard Euler, Joseph Louis Lagrange (1810). Elements of Algebra, Volumen 1. J. Johnson and Company. p. 333.
  71. ^ Ian Stewart (1996). Professor Stewart's Cabinet of Mathematical Curiosities. Birkhäuser Verlag. ISBN 978-1-84765-128-0.
  72. ^ H.M. Antia (2000). Numerical Methods for Scientists and Engineers. Birkhäuser Verlag. p. 220. ISBN 3-7643-6715-6.
  73. ^ Francisco J. Aragón Artacho, David H. Baileyy, Jonathan M. Borweinz, Peter B. Borwein (2012). Tools for visualizing real numbers (PDF). p. 33.{{cite book}}: CS1 maint: multiple names: authors list (link)
  74. ^ Papierfalten (PDF). 1998.
  75. ^ Sondow, Jonathan; Hadjicostas, Petros (2008). "The generalized-Euler-constant function γ(z) and a generalization of Somos's quadratic recurrence constant". Journal of Mathematical Analysis and Applications. 332: 292–314. arXiv:math/0610499. doi:10.1016/j.jmaa.2006.09.081.
  76. ^ J. Sondow. Generalization of Somos Quadratic (PDF).
  77. ^ Chan Wei Ting ... Moire patterns + fractals (PDF). p. 16.
  78. ^ Christoph Zurnieden (2008). Descriptions of the Algorithms (PDF).
  79. ^ Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 64. ISBN 9780691141336.
  80. ^ Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 466. ISBN 3-540-67695-3.
  81. ^ James Stuart Tanton (2007). Encyclopedia of Mathematics. p. 458. ISBN 0-8160-5124-0.
  82. ^ Calvin C. Clawson (2003). Mathematical Traveler: Exploring the Grand History of Numbers. Perseus. p. 187. ISBN 0-7382-0835-3.
  83. ^ Jonathan Sondowa, Diego Marques (2010). Algebraic and transcendental solutions of some exponential equations (PDF). Annales Mathematicae et Informaticae.
  84. ^ T. Piezas. Tribonacci constant & Pi.
  85. ^ Steven Finch. Addenda to Mathematical Constants (PDF).
  86. ^ Renzo Sprugnoli. Introduzione alla Matematica (PDF).
  87. ^ Chao-Ping Chen. Ioachimescu's constant (PDF).
  88. ^ R. A. Knoebel. Exponentials Reiterated (PDF). Maa.org.
  89. ^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1688. ISBN 1-58488-347-2.
  90. ^ Richard J.Mathar. Table of Dirichlet L-series and Prime Zeta (PDF). Arxiv.
  91. ^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 151. ISBN 1-58488-347-2.
  92. ^ Dave Benson (2006). Music: A Mathematical Offering. Cambridge University Press. p. 53. ISBN 978-0-521-85387-3.
  93. ^ Yann Bugeaud (2012). Distribution Modulo One and Diophantine Approximation. Cambridge University Press. p. 87. ISBN 978-0-521-11169-0.
  94. ^ Angel Chang y Tianrong Zhang. On the Fractal Structure of the Boundary of Dragon Curve.
  95. ^ Joe Diestel (1995). Absolutely Summing Operators. Cambridge University Press. p. 29. ISBN 0-521-43168-9.
  96. ^ Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1356. ISBN 1-58488-347-2.
  97. ^ Laith Saadi (2004). Stealth Ciphers. Trafford Publishing. p. 160. ISBN 978-1-4120-2409-9.
  98. ^ Jonathan Borwein,David Bailey (2008). Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st Century. A K Peters, Ltd. p. 56. ISBN 978-1-56881-442-1.
  99. ^ L. J. Lloyd James Peter Kilford (2008). Modular Forms: A Classical and Computational Introduction. Imperial College Press. p. 107. ISBN 978-1-84816-213-6.
  100. ^ Continued Fractions from Euclid till Present. IHES, Bures sur Yvette. 1998.
  101. ^ Julian Havil (2012). The Irrationals: A Story of the Numbers You Can't Count On. Princeton University Press. p. 98. ISBN 978-0-691-14342-2.
  102. ^ Lennart R©Æde,Bertil Westergren (2004). Mathematics Handbook for Science and Engineering. Springer-Verlag. p. 194. ISBN 3-540-21141-1.
  103. ^ Michael Trott. Finding Trott Constants (PDF). Wolfram Research.
  104. ^ David Darling (2004). The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes. Wiley & Sons inc. p. 63. ISBN 0-471-27047-4.
  105. ^ Keith B. Oldham,Jan C. Myland,Jerome Spanier (2009). An Atlas of Functions: With Equator, the Atlas Function Calculator. Springer. p. 15. ISBN 978-0-387-48806-6.{{cite book}}: CS1 maint: multiple names: authors list (link)
  106. ^ Johann Georg Soldner (1809). Lindauer, München (ed.). Théorie et tables d’une nouvelle fonction transcendante (in French). p. 42.
  107. ^ Lorenzo Mascheroni (1792). Petrus Galeatius, Ticini (ed.). Adnotationes ad calculum integralem Euleri (in Latin). p. 17.
  108. ^ Yann Bugeaud (2004). Series representations for some mathematical constants. p. 72. ISBN 0-521-82329-3.
  109. ^ Calvin C Clawson (2001). Mathematical sorcery: revealing the secrets of numbers. p. IV. ISBN 978 0 7382 0496-3.
  110. ^ H.M. Antia (2000). Numerical Methods for Scientists and Engineers. Birkhäuser Verlag. p. 220. ISBN 3-7643-6715-6.
  111. ^ Bart Snapp (2012). Numbers and Algebra (PDF).
  112. ^ George Gheverghese Joseph (2011). The Crest of the Peacock: Non-European Roots of Mathematics. Princeton University Press. p. 295. ISBN 978-0-691-13526-7.
  113. ^ Steven Finch. Volumes of Hyperbolic 3-Manifolds (PDF). Harvard University.
  114. ^ J. Coates,Martin J. Taylor (1991). L-Functions and Arithmetic. Cambridge University Press. p. 333. ISBN 0-521-38619-5.
  115. ^ Jan Feliksiak (2013). The Symphony of Primes, Distribution of Primes and Riemann’s Hypothesis. Xlibris Corporation. p. 18. ISBN 978-1-4797-6558-4.
  116. ^ Horst Alzera, Dimitri Karayannakisb, H.M. Srivastava (2005). Series representations for some mathematical constants. Elsevier Inc. p. 149.{{cite book}}: CS1 maint: multiple names: authors list (link)
  117. ^ Steven R. Finch (2005). Quadratic Dirichlet L-Series (PDF). p. 12.
  118. ^ H. M. Srivastava,Junesang Choi (2012). Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier. p. 613. ISBN 978-0-12-385218-2.
  119. ^ Refaat El Attar (2006). Special Functions And Orthogonal Polynomials. Lulu Press. p. 58. ISBN 1-4116-6690-9.
  120. ^ Jesus Guillera and Jonathan Sondow. arxiv.org (ed.). Double integrals and infinite products... (PDF).
  121. ^ Andras Bezdek (2003). Discrete Geometry. Marcel Dekkcr, Inc. p. 150. ISBN 0-8247-0968-3.
  122. ^ Weisstein, Eric W. Rényi's Parking Constants. MathWorld. p. (4).
  123. ^ Eli Maor (2006). e: The Story of a Number. Princeton University Press. ISBN 0-691-03390-0.
  124. ^ Clifford A. Pickover (2005). A Passion for Mathematics. John Wiley & Sons, Inc. p. 90. ISBN 0-471-69098-8.
  125. ^ Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 322. ISBN 3-540-67695-3.
  126. ^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1688. ISBN 1-58488-347-2.
  127. ^ Richard E. Crandall (2012). Unified algorithms for polylogarithm, L-series, and zeta variants (PDF). perfscipress.com.
  128. ^ RICHARD J. MATHAR (2010). NUMERICAL EVALUATION OF THE OSCILLATORY INTEGRAL OVER exp(I pi x)x^1/x BETWEEN 1 AND INFINITY (PDF). http://arxiv.org/abs/0912.3844. {{cite book}}: External link in |publisher= (help)
  129. ^ M.R.Burns (1999). Root constant. http://marvinrayburns.com/. {{cite book}}: External link in |publisher= (help)
  130. ^ H. K. Kuiken (2001). Practical Asymptotics. KLUWER ACADEMIC PUBLISHERS. p. 162. ISBN 0-7923-6920-3.
  131. ^ Michel A. Théra (2002). Constructive, Experimental, and Nonlinear Analysis. CMS-AMS. p. 77. ISBN 0-8218-2167-9.
  132. ^ Kathleen T. Alligood (1996). Chaos: An Introduction to Dynamical Systems. Springer. ISBN 0-387-94677-2.
  133. ^ K. T. Chau,Zheng Wang (201). Chaos in Electric Drive Systems: Analysis, Control and Application. John Wiley & Son. p. 7. ISBN 978-0-470-82633-1.
  134. ^ Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics. Crc Press. p. 1212.
  135. ^ David Wells (1997). The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books Ltd. p. 4.
  136. ^ Jvrg Arndt,Christoph Haenel. [http://books.google.com/?id=mchJCvIsSXwC&pg=PA67&dq=7.38905#v=onepage&q=7.38905&f=false v Pi: Algorithmen, Computer, Arithmetik]. Springer. p. 67. ISBN 3-540-66258-8. {{cite book}}: Check |url= value (help); line feed character in |url= at position 88 (help)
  137. ^ Steven R. Finch (2003). Mathematical Constants. p. 110. ISBN 3-540-67695-3.
  138. ^ Holger Hermanns,Roberto Segala (2000). Process Algebra and Probabilistic Methods. Springer-Verlag. p. 270. ISBN 3-540-67695-3.
  139. ^ Michael J. Dinneen,Bakhadyr Khoussainov,Prof. Andre Nies (2012). Computation, Physics and Beyond. Springer. p. 110. ISBN 978-3-642-27653-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
  140. ^ Richard E. Crandall,Carl B. Pomerance (2005). Prime Numbers: A Computational Perspective. Springer. p. 80. ISBN 978-0387-25282-7.
  141. ^ Paulo Ribenboim (2000). My Numbers, My Friends: Popular Lectures on Number Theory. Springer-Verlag. p. 66. ISBN 0-387-98911-0.
  142. ^ E.Kasner y J.Newman. (2007). Mathematics and the Imagination. Conaculta. p. 77. ISBN 978-968-5374-20-0.
  143. ^ Eli Maor (1994). "e": The Story of a Number. Princeton University Press. p. 37. ISBN 978-0-691-14134-3.
  144. ^ Theo Kempermann (2005). Zahlentheoretische Kostproben. Freiburger graphische betriebe. p. 139. ISBN 3-8171-1780-9.
  145. ^ Steven Finch (2003). Mathematical Constants. Cambridge University Press. p. 449. ISBN 0-521-81805-2.
  146. ^ Michael Trott (2004). The Mathematica GuideBook for Programming. Springer Science. p. 173. ISBN 0-387-94282-3.
  147. ^ John Horton Conway, Richard K. Guy. (1995). The Book of Numbers. Copernicus. p. 242. ISBN 0-387-97993-X.
  148. ^ Thomas Koshy (2007). Elementary Number Theory with Applications. Elsevier. p. 119. ISBN 978-0-12-372-487-8.
  149. ^ Pascal Sebah and Xavier Gourdon (2002). Introduction to twin primes and Brun’s constant computation (PDF).
  150. ^ Jorg Arndt,Christoph Haenel (2000). Pi -- Unleashed. Verlag Berlin Heidelberg. p. 13. ISBN 3-540-66572-2.
  151. ^ Annie Cuyt, Viadis Brevik Petersen, Brigitte Verdonk, William B. Jones (2008). Handbook of continued fractions for special functions. Springer Science. p. 190. ISBN 978-1-4020-6948-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  152. ^ Keith J. Devlin (1999). Mathematics: The New Golden Age. Columbia University Press. p. 66. ISBN 0-231-11638-1.
  153. ^ Simon Plouffe. Miscellaneous Mathematical Constants.
  154. ^ Bruce C. Berndt,Robert Alexander Rankin (2001). Ramanujan: essays and surveys. American Mathematical Society, London Mathematical Society. p. 219. ISBN 0-8218-2624-7.
  155. ^ Albert Gural. Infinite Power Towers.
  156. ^ Michael A. Idowu (2012). Fundamental relations between the Dirichlet beta function, euler numbers, and Riemann zeta function for positive integers. arXiv:1210.5559. p. 1.
  157. ^ P A J Lewis (2008). Essential Mathematics 9. Ratna Sagar. p. 24. ISBN 9788183323673.
  158. ^ Gérard P. Michon (2005). Numerical Constants. Numericana.
  159. ^ Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 161. ISBN 9780691141336.


Cite error: There are <ref group=Mw> tags on this page, but the references will not show without a {{reflist|group=Mw}} template (see the help page).
Cite error: There are <ref group=Ow> tags on this page, but the references will not show without a {{reflist|group=Ow}} template (see the help page).