Jump to content

Robots.txt: Difference between revisions

From Wikipedia, the free encyclopedia
[pending revision][pending revision]
Content deleted Content added
Blanked the page
Tag: blanking
m Reverting possible vandalism by 116.86.130.53 to version by Alefher!. Report False Positive? Thanks, ClueBot NG. (2573957) (Bot)
Line 1: Line 1:
{{selfref|"Robots.txt" redirects here. For Wikipedia's robots.txt files, see the ''[https://www.mediawiki.org/robots.txt MediaWiki Robots.txt file]'' and the ''[https://en.wikipedia.org/robots.txt English Wikipedia Robots.txt file].''}}

The '''robots exclusion standard''', also known as the '''robots exclusion protocol''' or simply '''robots.txt''', is a standard used by [[website]]s to communicate with [[web crawler]]s and other [[web robot]]s. The standard specifies how to inform the web robot about which areas of the website should not be processed or scanned. Robots are often used by [[search engines]] to categorize web sites. Not all robots cooperate with the standard; [[Email address harvesting|email harvesters]], [[spambots]] and [[malware]] robots that scan for security vulnerabilities may even start with the portions of the website where they have been told to stay out. The standard is different from, but can be used in conjunction with [[Sitemaps]], a robot ''inclusion'' standard for websites.

==History==
The standard was proposed by [[Martijn Koster]],<ref>
{{cite web |last=Martijn |first=Koster |title=Martijn Koster |url=http://www.greenhills.co.uk/historical.html}}</ref><ref>
{{cite web |title=Maintaining Distributed Hypertext Infostructures: Welcome to MOMspider's Web |first=Roy |last=Fielding |work=First International Conference on the World Wide Web |year=1994 |place=Geneva |url=http://www94.web.cern.ch/WWW94/PapersWWW94/fielding.ps |accessdate=September 25, 2013 |format=PostScript}}</ref>
when working for [[Nexor]]<ref>{{cite web |url=http://www.robotstxt.org/orig.html#status |title=The Web Robots Pages |publisher=Robotstxt.org |date=1994-06-30 |accessdate=2013-12-29}}</ref>
in February, 1994<ref>
{{cite web |title=Important: Spiders, Robots and Web Wanderers |first=Martijn |last=Koster |work=www-talk mailing list |date=25 February 1994 |url=https://web.archive.org/web/20131029200350/http://inkdroid.org/tmp/www-talk/4113.html |accessdate= |format=[[Hypermail]] archived message}}</ref>
on the ''www-talk'' mailing list, the main communication channel for WWW-related activities at the time. [[Charles Stross]] claims to have provoked Koster to suggest robots.txt, after he wrote a badly-behaved web crawler that caused an inadvertent [[denial of service]] attack on Koster's server.<ref>{{cite web |url=http://www.antipope.org/charlie/blog-static/2009/06/how_i_got_here_in_the_end_part_3.html |title=How I got here in the end, part five: "things can only get better!" |work=Charlie's Diary |date=19 June 2006 |accessdate=19 April 2014}}</ref>

It quickly became a [[de facto standard]] that present and future web crawlers were expected to follow; most complied, including those operated by search engines such as [[WebCrawler]], [[Lycos]] and [[AltaVista]].<ref name="sear_Robo">{{Cite web |title=Robots.txt Celebrates 20 Years Of Blocking Search Engines |author=Barry Schwartz |work=Search Engine Land |date=30 June 2014 |accessdate=2015-11-19 |url=http://searchengineland.com/robots-txt-celebrates-20-years-blocking-search-engines-195479 }}</ref>

==About the standard==
When a site owner wishes to give instructions to web robots they place a text file called {{mono|robots.txt}} in the root of the web site hierarchy (e.g. {{mono|<nowiki>https://www.example.com/robots.txt</nowiki>}}). This text file contains the instructions in a specific format (see examples below). Robots that ''choose'' to follow the instructions try to fetch this file and read the instructions before fetching any other file from the web site. If this file doesn't exist, web robots assume that the web owner wishes to provide no specific instructions, and crawl the entire site.

A robots.txt file on a website will function as a request that specified robots ignore specified files or directories when crawling a site. This might be, for example, out of a preference for privacy from search engine results, or the belief that the content of the selected directories might be misleading or irrelevant to the categorization of the site as a whole, or out of a desire that an application only operate on certain data. Links to pages listed in robots.txt can still appear in search results if they are linked to from a page that is crawled.<ref>{{cite web |url=http://www.youtube.com/watch?v=KBdEwpRQRD0#t=196s |title=Uncrawled URLs in search results |publisher=YouTube |date=Oct 5, 2009 |accessdate=2013-12-29}}</ref>

A robots.txt file covers one [[Same origin policy|origin]]. For websites with multiple subdomains, each subdomain must have its own robots.txt file. If {{mono|example.com}} had a robots.txt file but {{mono|a.example.com}} did not, the rules that would apply for {{mono|example.com}} would not apply to {{mono|a.example.com}}. In addition, each protocol and port needs its own robots.txt file; {{mono|<nowiki>http://example.com/robots.txt</nowiki>}} does not apply to pages under {{mono|<nowiki>https://example.com:8080/</nowiki>}} or {{mono|<nowiki>https://example.com/</nowiki>}}.

Some major search [[Facebook Paper|engines]] following this standard include Ask,<ref name="ask-webmasters">{{cite web |title=About Ask.com: Webmasters |url=http://about.ask.com/docs/about/webmasters.shtml |accessdate=16 February 2013}}</ref> AOL,<ref name="about-aol-search">{{cite web |title=About AOL Search |url=http://search.aol.com/aol/about |accessdate=16 February 2013}}</ref> Baidu,<ref name="baidu-spider">{{cite web |title=Baiduspider |url=http://www.baidu.com/search/spider_english.html |accessdate=16 February 2013}}</ref> Bing,<ref name="bing-blog-robots">{{cite web |url=https://blogs.bing.com/webmaster/2008/06/03/robots-exclusion-protocol-joining-together-to-provide-better-documentation/ |title= Robots Exclusion Protocol: joining together to provide better documentation |accessdate=16 February 2013}}</ref> Google,<ref name="google-webmasters-spec">{{cite web |url=https://developers.google.com/webmasters/control-crawl-index/docs/robots_txt |title=Webmasters: Robots.txt Specifications |work=Google Developers |accessdate=16 February 2013}}</ref> Yahoo!,<ref name="yahoo-search-is-bing">{{cite web |url=http://help.yahoo.com/kb/index?page=content&y=PROD_SRCH&locale=en_US&id=SLN2217&impressions=true |title=Submitting your website to Yahoo! Search |accessdate=16 February 2013}}</ref> and Yandex.<ref name="yandex-robots">{{cite web |url=http://help.yandex.com/webmaster/?id=1113851 |title=Using robots.txt |accessdate=16 February 2013}}</ref>

==Security==
Despite the use of the terms "allow" and "disallow", the protocol is purely advisory.<ref>{{cite web |title=Block URLs with robots.txt: Learn about robots.txt files |url=https://support.google.com/webmasters/answer/6062608 |publisher=Google |accessdate=2015-08-10}}</ref> and relies on the compliance of the [[web robot]]. Malicious web robots are unlikely to honor robots.txt; some may even use the robots.txt as a guide to find disallowed links and go straight to them. While this is sometimes claimed to be a security risk,<ref>{{cite web |url=http://www.theregister.co.uk/2015/05/19/robotstxt/ |title=Robots.txt tells hackers the places you don't want them to look |work=The Register |accessdate=August 12, 2015}}</ref> this sort of [[security through obscurity]] is discouraged by standards bodies. The [[National Institute of Standards and Technology]] (NIST) in the United States specifically recommends against this practice: "System security should not depend on the secrecy of the implementation or its components."<ref>{{cite web |title=Guide to General Server Security |url=http://csrc.nist.gov/publications/nistpubs/800-123/SP800-123.pdf |publisher=National Institute of Standards and Technology |date=July 2008 |accessdate=August 12, 2015}}</ref> In the context of robots.txt files, security through obscurity is not recommended as a security technique.<ref>{{cite book |author=Sverre H. Huseby |title=Innocent Code: A Security Wake-Up Call for Web Programmers |publisher=John Wiley & Sons, |year=2004 |pages=91–92 |isbn=9780470857472 |url=https://books.google.com/books?id=RjVjgPQsKogC&pg=PA92}}</ref>

==Alternatives==
Many robots also pass a special [[user-agent]] to the web server when fetching content.<ref>{{cite web |url=http://www.user-agents.org/ |title=List of User-Agents (Spiders, Robots, Browser) |publisher=User-agents.org |accessdate=2013-12-29}}</ref> A web administrator could also configure the server to automatically return failure (or [[Cloaking|pass alternative content]]) when it detects a connection using one of the robots.<ref>{{cite web |url=https://httpd.apache.org/docs/2.2/howto/access.html |title=Access Control - Apache HTTP Server |publisher=Httpd.apache.org |accessdate=2013-12-29}}</ref><ref>{{cite web |url=http://www.iis.net/configreference/system.webserver/security/requestfiltering/filteringrules/filteringrule/denystrings |title=Deny Strings for Filtering Rules : The Official Microsoft IIS Site |publisher=Iis.net |date=2013-11-06 |accessdate=2013-12-29}}</ref>

==Examples==
This example tells '''all robots''' that they '''can visit all files''' because the wildcard <code>*</code> specifies all robots:

<source lang="robots">
User-agent: *
Allow:
</source>

The same result can be accomplished with an empty or missing robots.txt file.

This example tells '''all robots''' to stay out of a website:

<source lang="robots">
User-agent: *
Disallow: /
</source>

This example tells '''all robots''' not to enter three directories:

<source lang="robots">
User-agent: *
Disallow: /cgi-bin/
Disallow: /tmp/
Disallow: /junk/
</source>

This example tells '''all robots''' to stay away from one specific file:

<source lang="robots">
User-agent: *
Disallow: /directory/file.html
</source>

Note that all other files in the specified directory will be processed.

This example tells '''a specific robot''' to stay out of a website:

<source lang="robots">
User-agent: BadBot # replace 'BadBot' with the actual user-agent of the bot
Disallow: /
</source>

This example tells '''two specific robots''' not to enter one specific directory:

<source lang="robots">
User-agent: BadBot # replace 'BadBot' with the actual user-agent of the bot
User-agent: Googlebot
Disallow: /private/
</source>

Example demonstrating how comments can be used:

<source lang="robots">
# Comments appear after the "#" symbol at the start of a line, or after a directive
User-agent: * # match all bots
Disallow: / # keep them out
</source>

It is also possible to list multiple '''robot'''s with their own rules. The actual '''robot''' string is defined by the crawler. A few sites, such as [[Google]], support several user-agent strings that allow the operator to deny access to a subset of their services by using specific user-agent strings.<ref name="google-webmasters-spec" />

Example demonstrating multiple user-agents:

<source lang="robots">
User-agent: googlebot # all Google services
Disallow: /private/ # disallow this directory

User-agent: googlebot-news # only the news service
Disallow: / # disallow everything

User-agent: * # any robot
Disallow: /something/ # disallow this directory
</source>

==Nonstandard extensions==

===Crawl-delay directive===
The crawl-delay value is supported by some crawlers to throttle their visits to the host. Since this value is not part of the standard, its interpretation is dependent on the crawler reading it. Yandex interprets the value as the number of seconds to wait between subsequent visits.<ref name="yandex-robots"/> Bing defines crawl-delay as the size of a time window (from 1 to 30 seconds) during which BingBot will access a web site only once.<ref name="bing-crawl-delay">{{cite web |url=https://blogs.bing.com/webmaster/2012/05/03/to-crawl-or-not-to-crawl-that-is-bingbots-question/ |title=To crawl or not to crawl, that is BingBot’s question |date=3 May 2012 |accessdate=9 February 2016}}</ref>

<source lang="robots">
User-agent: *
Crawl-delay: 10
</source>

===Allow directive===
Some major crawlers support an <code>Allow</code> directive which can counteract a following <code>Disallow</code> directive.<ref>{{cite web |url=http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=156449&from=40364 |title=Webmaster Help Center - How do I block Googlebot? |accessdate=2007-11-20}}</ref>
<ref>{{cite web |url=http://help.yahoo.com/l/us/yahoo/search/webcrawler/slurp-02.html |title=How do I prevent my site or certain subdirectories from being crawled? - Yahoo Search Help |accessdate=2007-11-20}}</ref> This is useful when one tells robots to avoid an entire directory but still wants some HTML documents in that directory crawled and indexed. While by standard implementation the first matching robots.txt pattern always wins, Google's implementation differs in that Allow patterns with equal or more characters in the directive path win over a matching Disallow pattern.<ref>{{cite web |url=http://blog.semetrical.com/googles-secret-approach-to-robots-txt/ |title=Google's Hidden Interpretation of Robots.txt |accessdate=2010-11-15}}</ref> Bing uses either the <code>Allow</code> or <code>Disallow</code> directive, whichever is more specific, based on length, like Google.<ref name="bing-blog-robots"/>

In order to be compatible to all robots, if one wants to allow single files inside an otherwise disallowed directory, it is necessary to place the Allow directive(s) first, followed by the Disallow, for example:

<source lang="robots">
Allow: /directory1/myfile.html
Disallow: /directory1/
</source>

This example will Disallow anything in /directory1/ except /directory1/myfile.html, since the latter will match first. The order is only important to robots that follow the standard; in the case of the Google or Bing bots, the order is not important.

===Sitemap===
Some crawlers support a <code>Sitemap</code> directive, allowing multiple [[Sitemaps]] in the same robots.txt in the form:<ref>{{cite web |url=http://ysearchblog.com/2007/04/11/webmasters-can-now-auto-discover-with-sitemaps/ |title=Yahoo! Search Blog - Webmasters can now auto-discover with Sitemaps |accessdate=2009-03-23}}</ref>

<source lang="robots">
Sitemap: http://www.gstatic.com/s2/sitemaps/profiles-sitemap.xml
Sitemap: http://www.google.com/hostednews/sitemap_index.xml
</source>

===Host===
Some crawlers (Yandex, Google) support a <code>Host</code> directive, allowing websites with multiple mirrors to specify their preferred domain:<ref>{{cite web |url=http://help.yandex.com/webmaster/?id=1113851 |title=Yandex - Using robots.txt |accessdate=2013-05-13}}</ref>

<source lang="robots">
Host: example.com
</source>

Or alternatively:

<source lang="robots">
Host: www.example.com
</source>

'''Note''': This is not supported by all crawlers and if used, it should be inserted at the bottom of the {{mono|robots.txt}} file after <code>Crawl-delay</code> directive.

===Universal "*" match===
The ''Robot Exclusion Standard'' does not mention anything about the "*" character in the <code>Disallow:</code> statement. Some crawlers like Googlebot recognize strings containing "*", while MSNbot and Teoma interpret it in different ways.<ref>{{cite web |url=http://ghita.org/search-engines-dynamic-content-issues.html |title=Search engines and dynamic content issues |accessdate=2007-04-01 |work=MSNbot issues with robots.txt}}</ref>

==Meta tags and headers==
In addition to root-level robots.txt files, robots exclusion directives can be applied at a more granular level through the use of [[Robots meta tag]]s and X-Robots-Tag HTTP headers. The robots meta tag cannot be used for non-HTML files such as images, text files, or PDF documents. On the other hand, the X-Robots-Tag can be added to non-HTML files by using [[.htaccess]] and [[httpd.conf]] files.<ref name="google-meta">{{cite web |url=https://developers.google.com/webmasters/control-crawl-index/docs/robots_meta_tag |title=Robots meta tag and X-Robots-Tag HTTP header specifications - Webmasters — Google Developers}}</ref>

;A "noindex" meta tag

<source lang="html4strict">
<meta name="robots" content="noindex" />
</source>

;A "noindex" HTTP response header

<source lang="html4strict">
X-Robots-Tag: noindex
</source>

The X-Robots-Tag is only effective after the page has been requested and the server responds, and the robots meta tag is only effective after the page has loaded, whereas robots.txt is effective before the page is requested. Thus if a page is excluded by a robots.txt file, any robots meta tags or X-Robots-Tag headers are effectively ignored because the robot will not see them in the first place.<ref name="google-meta"/> Even if a robot honors robots.txt, it is still possible for the robot to find and index a disallowed URL from other places on the web. This can be prevented by using robots.txt directives in combination with robots meta tags or X-Robots-Tag headers.<ref>{{cite web |title=Block or remove pages using a robots.txt file |url=https://support.google.com/webmasters/answer/156449?hl=en |publisher=Google |accessdate=16 March 2014}}</ref>{{clarify|reason=Even the cited link doesn't say how.|date=December 2015}}

==See also==
{{Portal|Internet}}
* [[Automated Content Access Protocol]] – a failed proposal to extend robots.txt
* [[BotSeer]] – now inactive search engine for robots.txt files
* [[Distributed web crawling]]
* [[Focused crawler]]
* [[Internet Archive]]
* [[National Digital Library Program]] (NDLP)
* [[National Digital Information Infrastructure and Preservation Program]] (NDIIPP)
* [[Nofollow]]
* [[Robots meta tag|Meta elements]] for search engines
* [[Sitemaps]]
* [[Spider trap]]
* [[Web archiving]]
* [[Web crawler]]

==External resources==
* [http://www.robotstxt.org/db.html Robots Database (list of bot names)]

==References==
{{Reflist|30em}}

==External links==
<!-- ========================== {{No more links}} ===========================+
| DO NOT ADD EXTERNAL LINKS WITHOUT DISCUSSING THEM ON THE TALK PAGE FIRST! |
| In particular, there are too many blogs, SEO pages and free tools to list |
| them all, and only listing a few of them unfairly gives those pages free |
| advertising that the pages we don't list don't get. |
*============================= {{No more links}} ======================== -->

* {{Official website|www.robotstxt.org}}

{{Authority control}}
{{DEFAULTSORT:Robots Exclusion Standard}}
[[Category:World Wide Web]]

Revision as of 12:57, 5 March 2016

The robots exclusion standard, also known as the robots exclusion protocol or simply robots.txt, is a standard used by websites to communicate with web crawlers and other web robots. The standard specifies how to inform the web robot about which areas of the website should not be processed or scanned. Robots are often used by search engines to categorize web sites. Not all robots cooperate with the standard; email harvesters, spambots and malware robots that scan for security vulnerabilities may even start with the portions of the website where they have been told to stay out. The standard is different from, but can be used in conjunction with Sitemaps, a robot inclusion standard for websites.

History

The standard was proposed by Martijn Koster,[1][2] when working for Nexor[3] in February, 1994[4] on the www-talk mailing list, the main communication channel for WWW-related activities at the time. Charles Stross claims to have provoked Koster to suggest robots.txt, after he wrote a badly-behaved web crawler that caused an inadvertent denial of service attack on Koster's server.[5]

It quickly became a de facto standard that present and future web crawlers were expected to follow; most complied, including those operated by search engines such as WebCrawler, Lycos and AltaVista.[6]

About the standard

When a site owner wishes to give instructions to web robots they place a text file called robots.txt in the root of the web site hierarchy (e.g. https://www.example.com/robots.txt). This text file contains the instructions in a specific format (see examples below). Robots that choose to follow the instructions try to fetch this file and read the instructions before fetching any other file from the web site. If this file doesn't exist, web robots assume that the web owner wishes to provide no specific instructions, and crawl the entire site.

A robots.txt file on a website will function as a request that specified robots ignore specified files or directories when crawling a site. This might be, for example, out of a preference for privacy from search engine results, or the belief that the content of the selected directories might be misleading or irrelevant to the categorization of the site as a whole, or out of a desire that an application only operate on certain data. Links to pages listed in robots.txt can still appear in search results if they are linked to from a page that is crawled.[7]

A robots.txt file covers one origin. For websites with multiple subdomains, each subdomain must have its own robots.txt file. If example.com had a robots.txt file but a.example.com did not, the rules that would apply for example.com would not apply to a.example.com. In addition, each protocol and port needs its own robots.txt file; http://example.com/robots.txt does not apply to pages under https://example.com:8080/ or https://example.com/.

Some major search engines following this standard include Ask,[8] AOL,[9] Baidu,[10] Bing,[11] Google,[12] Yahoo!,[13] and Yandex.[14]

Security

Despite the use of the terms "allow" and "disallow", the protocol is purely advisory.[15] and relies on the compliance of the web robot. Malicious web robots are unlikely to honor robots.txt; some may even use the robots.txt as a guide to find disallowed links and go straight to them. While this is sometimes claimed to be a security risk,[16] this sort of security through obscurity is discouraged by standards bodies. The National Institute of Standards and Technology (NIST) in the United States specifically recommends against this practice: "System security should not depend on the secrecy of the implementation or its components."[17] In the context of robots.txt files, security through obscurity is not recommended as a security technique.[18]

Alternatives

Many robots also pass a special user-agent to the web server when fetching content.[19] A web administrator could also configure the server to automatically return failure (or pass alternative content) when it detects a connection using one of the robots.[20][21]

Examples

This example tells all robots that they can visit all files because the wildcard * specifies all robots:

User-agent: *
Allow:

The same result can be accomplished with an empty or missing robots.txt file.

This example tells all robots to stay out of a website:

User-agent: *
Disallow: /

This example tells all robots not to enter three directories:

User-agent: *
Disallow: /cgi-bin/
Disallow: /tmp/
Disallow: /junk/

This example tells all robots to stay away from one specific file:

User-agent: *
Disallow: /directory/file.html

Note that all other files in the specified directory will be processed.

This example tells a specific robot to stay out of a website:

User-agent: BadBot # replace 'BadBot' with the actual user-agent of the bot
Disallow: /

This example tells two specific robots not to enter one specific directory:

User-agent: BadBot # replace 'BadBot' with the actual user-agent of the bot
User-agent: Googlebot
Disallow: /private/

Example demonstrating how comments can be used:

# Comments appear after the "#" symbol at the start of a line, or after a directive
User-agent: * # match all bots
Disallow: / # keep them out

It is also possible to list multiple robots with their own rules. The actual robot string is defined by the crawler. A few sites, such as Google, support several user-agent strings that allow the operator to deny access to a subset of their services by using specific user-agent strings.[12]

Example demonstrating multiple user-agents:

User-agent: googlebot        # all Google services
Disallow: /private/          # disallow this directory

User-agent: googlebot-news   # only the news service
Disallow: /                  # disallow everything

User-agent: *                # any robot
Disallow: /something/        # disallow this directory

Nonstandard extensions

Crawl-delay directive

The crawl-delay value is supported by some crawlers to throttle their visits to the host. Since this value is not part of the standard, its interpretation is dependent on the crawler reading it. Yandex interprets the value as the number of seconds to wait between subsequent visits.[14] Bing defines crawl-delay as the size of a time window (from 1 to 30 seconds) during which BingBot will access a web site only once.[22]

User-agent: *
Crawl-delay: 10

Allow directive

Some major crawlers support an Allow directive which can counteract a following Disallow directive.[23] [24] This is useful when one tells robots to avoid an entire directory but still wants some HTML documents in that directory crawled and indexed. While by standard implementation the first matching robots.txt pattern always wins, Google's implementation differs in that Allow patterns with equal or more characters in the directive path win over a matching Disallow pattern.[25] Bing uses either the Allow or Disallow directive, whichever is more specific, based on length, like Google.[11]

In order to be compatible to all robots, if one wants to allow single files inside an otherwise disallowed directory, it is necessary to place the Allow directive(s) first, followed by the Disallow, for example:

Allow: /directory1/myfile.html
Disallow: /directory1/

This example will Disallow anything in /directory1/ except /directory1/myfile.html, since the latter will match first. The order is only important to robots that follow the standard; in the case of the Google or Bing bots, the order is not important.

Sitemap

Some crawlers support a Sitemap directive, allowing multiple Sitemaps in the same robots.txt in the form:[26]

Sitemap: http://www.gstatic.com/s2/sitemaps/profiles-sitemap.xml
Sitemap: http://www.google.com/hostednews/sitemap_index.xml

Host

Some crawlers (Yandex, Google) support a Host directive, allowing websites with multiple mirrors to specify their preferred domain:[27]

Host: example.com

Or alternatively:

Host: www.example.com

Note: This is not supported by all crawlers and if used, it should be inserted at the bottom of the robots.txt file after Crawl-delay directive.

Universal "*" match

The Robot Exclusion Standard does not mention anything about the "*" character in the Disallow: statement. Some crawlers like Googlebot recognize strings containing "*", while MSNbot and Teoma interpret it in different ways.[28]

Meta tags and headers

In addition to root-level robots.txt files, robots exclusion directives can be applied at a more granular level through the use of Robots meta tags and X-Robots-Tag HTTP headers. The robots meta tag cannot be used for non-HTML files such as images, text files, or PDF documents. On the other hand, the X-Robots-Tag can be added to non-HTML files by using .htaccess and httpd.conf files.[29]

A "noindex" meta tag
<meta name="robots" content="noindex" />
A "noindex" HTTP response header
X-Robots-Tag: noindex

The X-Robots-Tag is only effective after the page has been requested and the server responds, and the robots meta tag is only effective after the page has loaded, whereas robots.txt is effective before the page is requested. Thus if a page is excluded by a robots.txt file, any robots meta tags or X-Robots-Tag headers are effectively ignored because the robot will not see them in the first place.[29] Even if a robot honors robots.txt, it is still possible for the robot to find and index a disallowed URL from other places on the web. This can be prevented by using robots.txt directives in combination with robots meta tags or X-Robots-Tag headers.[30][clarification needed]

See also

External resources

References

  1. ^ Martijn, Koster. "Martijn Koster".
  2. ^ Fielding, Roy (1994). "Maintaining Distributed Hypertext Infostructures: Welcome to MOMspider's Web" (PostScript). First International Conference on the World Wide Web. Geneva. Retrieved September 25, 2013.
  3. ^ "The Web Robots Pages". Robotstxt.org. 1994-06-30. Retrieved 2013-12-29.
  4. ^ Koster, Martijn (25 February 1994). "Important: Spiders, Robots and Web Wanderers" (Hypermail archived message). www-talk mailing list.
  5. ^ "How I got here in the end, part five: "things can only get better!"". Charlie's Diary. 19 June 2006. Retrieved 19 April 2014.
  6. ^ Barry Schwartz (30 June 2014). "Robots.txt Celebrates 20 Years Of Blocking Search Engines". Search Engine Land. Retrieved 2015-11-19.
  7. ^ "Uncrawled URLs in search results". YouTube. Oct 5, 2009. Retrieved 2013-12-29.
  8. ^ "About Ask.com: Webmasters". Retrieved 16 February 2013.
  9. ^ "About AOL Search". Retrieved 16 February 2013.
  10. ^ "Baiduspider". Retrieved 16 February 2013.
  11. ^ a b "Robots Exclusion Protocol: joining together to provide better documentation". Retrieved 16 February 2013.
  12. ^ a b "Webmasters: Robots.txt Specifications". Google Developers. Retrieved 16 February 2013.
  13. ^ "Submitting your website to Yahoo! Search". Retrieved 16 February 2013.
  14. ^ a b "Using robots.txt". Retrieved 16 February 2013.
  15. ^ "Block URLs with robots.txt: Learn about robots.txt files". Google. Retrieved 2015-08-10.
  16. ^ "Robots.txt tells hackers the places you don't want them to look". The Register. Retrieved August 12, 2015.
  17. ^ "Guide to General Server Security" (PDF). National Institute of Standards and Technology. July 2008. Retrieved August 12, 2015.
  18. ^ Sverre H. Huseby (2004). Innocent Code: A Security Wake-Up Call for Web Programmers. John Wiley & Sons,. pp. 91–92. ISBN 9780470857472.{{cite book}}: CS1 maint: extra punctuation (link)
  19. ^ "List of User-Agents (Spiders, Robots, Browser)". User-agents.org. Retrieved 2013-12-29.
  20. ^ "Access Control - Apache HTTP Server". Httpd.apache.org. Retrieved 2013-12-29.
  21. ^ "Deny Strings for Filtering Rules : The Official Microsoft IIS Site". Iis.net. 2013-11-06. Retrieved 2013-12-29.
  22. ^ "To crawl or not to crawl, that is BingBot's question". 3 May 2012. Retrieved 9 February 2016.
  23. ^ "Webmaster Help Center - How do I block Googlebot?". Retrieved 2007-11-20.
  24. ^ "How do I prevent my site or certain subdirectories from being crawled? - Yahoo Search Help". Retrieved 2007-11-20.
  25. ^ "Google's Hidden Interpretation of Robots.txt". Retrieved 2010-11-15.
  26. ^ "Yahoo! Search Blog - Webmasters can now auto-discover with Sitemaps". Retrieved 2009-03-23.
  27. ^ "Yandex - Using robots.txt". Retrieved 2013-05-13.
  28. ^ "Search engines and dynamic content issues". MSNbot issues with robots.txt. Retrieved 2007-04-01.
  29. ^ a b "Robots meta tag and X-Robots-Tag HTTP header specifications - Webmasters — Google Developers".
  30. ^ "Block or remove pages using a robots.txt file". Google. Retrieved 16 March 2014.