Jump to content

Talk:Linear map: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Line 5: Line 5:
|historical =
|historical =
}}
}}
==Mapping of closed shapes==
From my browsing I can't find any page which talks about the area of closed shapes under a linear transformation. Unless anyone could direct me to such a page I believe that this article would be the place to put such a comment. I do know that the area of the image of a closed shape under a linear transformation T:(x,y)→(ax+by,cx+dy) is:
:Area of the original shape × <math>\begin{vmatrix}
a & b \\
c & d
\end{vmatrix}</math>


==Preliminary remarks==
==Preliminary remarks==

Revision as of 09:54, 14 November 2008

Please add {{WikiProject banner shell}} to this page and add the quality rating to that template instead of this project banner. See WP:PIQA for details.
WikiProject iconMathematics B‑class High‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
BThis article has been rated as B-class on Wikipedia's content assessment scale.
HighThis article has been rated as High-priority on the project's priority scale.

Mapping of closed shapes

From my browsing I can't find any page which talks about the area of closed shapes under a linear transformation. Unless anyone could direct me to such a page I believe that this article would be the place to put such a comment. I do know that the area of the image of a closed shape under a linear transformation T:(x,y)→(ax+by,cx+dy) is:

Area of the original shape ×

Preliminary remarks

Endomorphism f from V into V, where V is a vector space. is it nessary f to be one-one mapping?

Nope.


Part about solving a system of equations ("f(x)=0 is called...") should probably be moved somewhere else. What about other articles about that topic?

dimension formula only in finite dimensions?

the article states that the formula dim ker f + dim im f = dim V is only valid if V is finite dimensional. Is that really true? Can someone give me a counterexample? -July 2, 2005 01:19 (UTC)

The formula either doesn't make sense (initially) or isn't very useful (if you define addition on infinite cardinals somehow) in the infinite dimensional case. By and large, you're likely to get formulae such as , which are not very useful. If you're really prepared for some heavy mathematics, however, you might want to check out Fredholm operators which have an associated index, a finite number that in the case where V, W are finite dimensional is just dimV - dimU (by the formula in the article). The index has many mystical properties I wot not of. Ben 13:02, 10 August 2006 (UTC)

Clarification of my move

I moved a pagraph to the bottom of the article, with the edit summary

moved the continuity section to the very bottom. Linear transformations are about vector spaces. For continuity, you need a Banach space. So, continuity is not the primary concern of this article.

Let me clarify myself. First of all, I definitely agree with what the paragraph says, that linear transformations are not necessarily continuous. But the problem is the following. Linear trasformations are about vector spaces. That vector space can be the reals, the complex numbers, a vector space of over a field finite characteristic, over a field which is a Galois extension, etc. All that matters in a vector space is addition and multiplication by scalar.

As such, inserting in the middle of that article a paragraph operators on a Banach space (or if you wish, a linear topological space) was wrong. It distracts the reader from the main point, which is the linearity, addition and multiplication by scalars. To talk about continuity you need topology, you need a norm. It is a totally different realm than the one of a vector space. That's why inserting that continuity paragraph was out of place. It has to of course be mentioned somewhere, but since all the other topics in this article are closely bound together, I put this periferial one at the bottom. Oleg Alexandrov 18:34, 24 September 2005 (UTC)[reply]

Ok, that is fine.--Patrick 00:07, 25 September 2005 (UTC)[reply]

Examples

Why are the examples talking about eigenvectors and eigenvalues? Is this not a distraction? --anon

I agree. I cut that out. Oleg Alexandrov (talk) 15:32, 20 July 2006 (UTC)[reply]

Example Suggestion x->x+1 is a non-linear map

Currently, the following is in the examples section:

  • For real numbers, the map is not linear.

The map x to x^2 is nonlinear because it does not satisfy homogeneity or additivity. Would it not be more "enlightening" to add the example:

  • For real numbers, the map is not linear.

I suggest this because x^2 is automatically parsed as non-linear by anyone who has plotted a function in 2D space, however x+1 is a nice line in 2D space, yet is a non-linear transformation. Raazer 19:48, 12 October 2007 (UTC)[reply]

Yeah its got mi fooled. Why is it non linear?--ProperFraction (talk) 02:08, 8 August 2008 (UTC)[reply]
If f(x) = x+1, then f(0) + f(0) is not equal to f(0 + 0). JackSchmidt (talk) 03:08, 8 August 2008 (UTC)[reply]

Title

I wonder if this article should be entitled Linear map rather than Linear transformation.

Both terms are in common use, but the term transformation suggests a specialization to the case of endomorphisms (see function), just as the term Linear operator suggests an infinite dimensional context. Geometry guy 20:10, 9 February 2007 (UTC)[reply]

No objections received, so I've moved it, fixed the double redirects, and edited the article. Geometry guy 19:25, 13 February 2007 (UTC)[reply]

Examples question

the example matrix of "rotation by 90 degrees counterclockwise" under "Examples of linear transformation matrices" -- doesnt this example rotate 90 degrees clockwise? or is it meant to work on the computer-screen type of coordinates, where +y axis is down?

Thanks for any clarification, i'm just starting to learn about this stuff. This is a great resource.

Why vector spaces? I wandered over to this page from preadditive category which tells me that "composition of morphisms is bilinear over the integers"; and that page says it means "linear in both of its arguments." Of course, the integers are not a field, and the abelian group of homomorphisms do not form a vector space. On the other hand, any abelian group is a Z-module. --192.75.48.150 20:47, 3 August 2007 (UTC)[reply]


Clarification Request

I'm taking multivariate calc at the moment, and our book uses the term 'Linear Transformation' as synonymous with 'Linear Function'. Unfortunately, it gives no explanation as to WHY linear functions are also called transformations. Could someone in the know please make an addition to address this? Celemourn 14:37, 4 October 2007 (UTC)

An example of a mapping where the additive property is satisfied but not the homogene

I've discussed this with some of the professors at my university if they could come up with a linear mapping satisfying that:

f(x+y)=f(x)+f(y)

But that f(a*x)!=af(x)

They couldn't think of one, but I assume that there is one? Snailwalker | talk 16:31, 7 March 2008 (UTC)[reply]

The complex numbers is a vector space over itself, so take f:C->C to be complex conjugation. Then f(a+b)=f(a)+f(b), but -1 = f(i*i) != i*f(i) = 1. JackSchmidt (talk) 16:47, 7 March 2008 (UTC)[reply]

Thanks for the help. Snailwalker | talk 17:12, 7 March 2008 (UTC)[reply]

Removed unclear sentence about alternative name

  • "It immediately follows from the definition that f(0) = 0. Hence linear maps are sometimes called homogeneous linear maps (see linear function)."

The logic of the second part of this sentence is not clear. Why should they call homogeneous something which is by definition both additive and homogeneous? It seems (incompletely) redundant. Either we call it "additive homogeneus map" or simply "linear map". Are you sure that the expression "homogeneous linear map" is used in the literature? Paolo.dL (talk) 18:38, 28 June 2008 (UTC)[reply]