Jump to content

Niobium: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Applications: added link to anodize
Line 108: Line 108:
==References==
==References==
*[http://periodic.lanl.gov/elements/41.html Los Alamos National Laboratory – Niobium]
*[http://periodic.lanl.gov/elements/41.html Los Alamos National Laboratory – Niobium]
fucking gay


== External links ==
== External links ==

Revision as of 21:06, 23 February 2006

Template:Elementbox header Template:Elementbox series Template:Elementbox groupperiodblock Template:Elementbox appearance img Template:Elementbox atomicmass gpm Template:Elementbox econfig Template:Elementbox epershell Template:Elementbox section physicalprop Template:Elementbox phase Template:Elementbox density gpcm3nrt Template:Elementbox meltingpoint Template:Elementbox boilingpoint Template:Elementbox heatfusion kjpmol Template:Elementbox heatvaporiz kjpmol Template:Elementbox heatcapacity jpmolkat25 Template:Elementbox vaporpressure katpa Template:Elementbox section atomicprop Template:Elementbox crystalstruct Template:Elementbox oxistates Template:Elementbox electroneg pauling Template:Elementbox ionizationenergies4 Template:Elementbox atomicradius pm Template:Elementbox atomicradiuscalc pm Template:Elementbox covalentradius pm Template:Elementbox section miscellaneous Template:Elementbox magnetic Template:Elementbox eresist ohmmat0 Template:Elementbox thermalcond wpmkat300k Template:Elementbox thermalexpansion umpmkat25 Template:Elementbox speedofsound rodmpsat20 Template:Elementbox youngsmodulus gpa Template:Elementbox shearmodulus gpa Template:Elementbox bulkmodulus gpa Template:Elementbox poissonratio Template:Elementbox mohshardness Template:Elementbox vickershardness mpa Template:Elementbox brinellhardness mpa Template:Elementbox cas number Template:Elementbox isotopes begin |- ! style="text-align:right;" | 91mNb | style="text-align:center;" | syn | style="text-align:right;" | 60.86 d | IT | style="text-align:right;" | 91Nb |- ! style="text-align:right;" | 91Nb | style="text-align:center;" | syn | style="text-align:right;" | 6.8×102 y | ε | style="text-align:right;" | 91Zr |- ! rowspan="2" style="text-align:right; vertical-align:middle;" | 92Nb | rowspan="2" style="text-align:center; vertical-align:middle;" | syn | rowspan="2" style="text-align:right; vertical-align:middle;" | 10.15 d | ε | style="text-align:right;" | 92Zr |- | γ | style="text-align:right;" | - |- ! rowspan="2" style="text-align:right; vertical-align:middle;" | 92Nb | rowspan="2" style="text-align:center; vertical-align:middle;" | syn | rowspan="2" style="text-align:right; vertical-align:middle;" | 3.47×107y | ε | style="text-align:right;" | 92Zr |- | γ | style="text-align:right;" | - |- ! style="text-align:right;" | 93mNb | style="text-align:center;" | syn | style="text-align:right;" | 16.13 y | IT | style="text-align:right;" | 93Nb Template:Elementbox isotopes stable |- ! rowspan="2" style="text-align:right; vertical-align:middle;" | 94Nb | rowspan="2" style="text-align:center; vertical-align:middle;" | syn | rowspan="2" style="text-align:right; vertical-align:middle;" | 2.03×104 y | β- | style="text-align:right;" | 94Mo |- | γ | style="text-align:right;" | - |- ! style="text-align:right;" | 95mNb | style="text-align:center;" | syn | style="text-align:right;" | 3.61 d | IT | style="text-align:right;" | 95Nb |- ! rowspan="2" style="text-align:right; vertical-align:middle;" | 95Nb | rowspan="2" style="text-align:center; vertical-align:middle;" | syn | rowspan="2" style="text-align:right; vertical-align:middle;" | 34.991 d | β- | style="text-align:right;" | 95Mo |- | γ | style="text-align:right;" | - Template:Elementbox isotopes end Template:Elementbox footer

Niobium (or columbium) is a chemical element in the periodic table that has the symbol Nb and atomic number 41. A rare, soft, gray, ductile transition metal, niobium is found in niobite and used in alloys. The most notable alloys are used to make special steels and strong welded joints. Niobium was discovered in a variety of columbite (now called niobite) and was at first named after this mineral.

Notable characteristics

Niobium is a shiny gray, ductile metal that takes on a bluish tinge when exposed to air at room temperature for extended periods. Niobium's chemical properties are almost identical to the chemical properties of tantalum, which appears below niobium in the periodic table.

When it is processed at even moderate temperatures niobium must be placed in a protective atmosphere. The metal begins to oxidize in air at 200 ° C and its oxidation states are +2, +3, +5.

Applications

Niobium has a number of uses: it is a component of some stainless steels and an alloy of other nonferrous metals. These alloys are strong and are often used in pipeline construction. Other uses;

  • The metal has a low capture cross-section for thermal neutrons and so finds use in the nuclear industries.
  • It is also the metal used in arc welding rods for some stabilized grades of stainless steel.
  • Because of its bluish color, niobium is also used in body piercing jewelry (usually as an alloy).
  • Appreciable amounts of niobium in the form of high-purity ferroniobium and nickel niobium are used in nickel-, cobalt-, and iron-base superalloys for such applications as jet engine components, rocket subassemblies, and heat-resisting and combustion equipment. For example, advanced air frame systems such as those used in the Gemini program used this metal.
  • Niobium is being evaluated as an alternative to tantalum in capacitors.
  • Because in their pure metal form they are considered to be physiologically inert, Niobium and Titanium are used very often in jewelry and in medical devices.
  • Niobium and Titanium in their pure metal form are extremely hypoallergenic and people that can't even wear gold can usually wear niobium and titanium.
  • Along with Titanium and Tantalum, Niobium can also be electrically and heat anodized to a wide array of colors. This makes it very attractive for use in jewelry and body piercings.

Niobium becomes a superconductor when lowered to cryogenic temperatures. At atmospheric pressure, it has the highest critical temperature of the elemental superconductors, 9.3 K. In addition, it is one of the three elemental superconductors that are Type II (the others being vanadium and technetium), meaning it remains a superconductor when subjected to high magnetic fields. Niobium-tin and niobium-titanium alloys are used as wires for superconducting magnets capable of producing exceedingly strong magnetic fields. Niobium is also used its pure form to make superconducting accelerating structures for particle accelerators.

History

Niobium (Greek mythology: Niobe, daughter of Tantalus) was discovered by Charles Hatchett in 1801. Hatchett found niobium in columbite ore that was sent to England in the 1750s by John Winthrop, the first governor of Connecticut. There was a considerable amount of confusion about the difference between the closely-related niobium and tantalum that wasn't resolved until 1846 by Heinrich Rose and Jean Charles Galissard de Marignac, who rediscovered the element. Since Rose was unaware of Hatchett's work, he gave the element a different name, niobium. In 1864 Christian Blomstrand was the first to prepare the metal. He did this by reducing niobium chloride by heating it in a hydrogen atmosphere.

Columbium (symbol Cb) was the name originally given to this element by Hatchett, but the International Union of Pure and Applied Chemistry (IUPAC) officially adopted "niobium" as the name for element 41 in 1950 after 100 years of controversy. This was a compromise of sorts; the IUPAC accepted tungsten instead of wolfram, in deference to North American usage; and niobium instead of columbium, in deference to European usage. Not everyone agreed, however, and while many leading chemical societies and government organizations refer to it by the official IUPAC name, many leading metallurgists, metal societies, and most leading American commercial producers still refer to the metal by the original "columbium."

Occurrence

Niobium metal

The element is never found as a free element but does occur in the minerals columbite ((Fe,Mn)(Nb,Ta)2O6), columbite-tantalite or coltan ((Fe,Mn)(Ta,Nb)2O6), pyrochlore ((Na,Ca)2Nb2O6OH,F), and euxenite ((Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6). Minerals that contain niobium often also contain tantalum. Large deposits of niobium have been found associated with carbonatites (carbon-silicate igneous rocks) and as a constituent of pyrochlore. Brazil and Canada are the major producers of niobium mineral concentrates and extensive ore reserves are also in Nigeria, Democratic Republic of Congo, and in Russia. A large producer in Brazil is CBMM located in Araxá, Minas Gerais.

Isotopes

Naturally occurring niobium is composed of one stable isotope (Nb-93). The most stable radioisotopes are Nb-92 with a half life of 34.7 million years, Nb-94 (half life: 20300 years), and Nb-91 with a half life of 680 years. There is also a meta state at 0.031 megaelectronvolts whose half life is 16.13 years. Twenty three other radioisotopes have been characterized. Most of these have half lives that are less than two hours except Nb-95 (35 days), Nb-96 (23.4 hours) and Nb-90 (14.6 hours). The primary decay mode before the stable Nb-93 is electron capture and the primary mode after is beta emission with some neutron emission occurring in the first mode of the two mode decay of Nb-104, 109 and 110.

Precautions

Niobium containing compounds are relatively rarely encountered by most people but many are highly toxic and should be treated with care. Metallic niobium dust is an eye and skin irritant and also can be a fire hazard. Niobium has no biological role.

References

fucking gay