Jump to content

PKS 1402+044

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Galaxybeing (talk | contribs) at 12:21, 13 June 2024 (New article). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
PKS 1402+044
PKS 1402+044 captured by DESI Legacy Surveys
Observation data (J2000.0 epoch)
ConstellationVirgo
Right ascension14h 05m 01.12s
Declination+04d 15m 35.82s
Redshift3.207977
Heliocentric radial velocity961,727 km/s
Distance11.323 Gly (light travel time distance)
Apparent magnitude (V)0.074
Apparent magnitude (B)0.098
Surface brightness19.6
Characteristics
TypeFSRQ; BAL, BLLAC
Other designations
NVSS J140501+041536, FIRST J140501.1+041535, PGC 2827828, TXS 1402+044, IRCF J140501.1+041535, ZS 1402+043, MRC 1402+044, PMN J1405+0415, SDSS J140501.12+041535.7

PKS 1402+044 is a quasar located in the constellation of Virgo. It has a redshift of 3.207, estimating the object to be located 11.3 billion light-years away from Earth.[1][2]

Characteristics

PKS 1402+044 is classified a broad absorption-line quasar (BAL QSO) observed by Sloan Digital Sky Survey[3] with a flat-spectrum radio source.[4][5] It is also classified a blazar, a type of active galaxy[6][7] and such produces a powerful astrophysical jet that is shot out into the depths of intergalactic space.[8] Observations made by the European VLBI network, finds the jet is weakly distorted and considered most distant in the universe's history.[9]

The blazar is known to be in its quiescence state, but in fact shows repeated periods of outbursts that is visible throughout the electromagnetic spectrum.[10] According to observations from Gamma-Ray Blazar Survey and Fermi Gamma-Ray Space Telescope, PKS 1402+044 is found optically variable with >6σ significance,[11] γ-ray detected and more Compton dominated than high synchrotron peaked (HSP) BL Lac objects.[12]

Researchers who observed PKS 1402+044 through radio imaging, found the quasar to be core-dominated with variable radio emission and a significant smaller radio morphology than compared to steep-spectrum quasars.[13] It is also the brightest X-ray quasar with a small dispersion of <logL χ1>=46.15±0.25 at high redshift[14] and radio-loud with an aligned jet magnetic field along the source axis and a misaligned orientation of its lobe field.[15]

Observations of PKS 1402+044

Researchers who observed PKS 1402+044 found the intrinsic C iv BAL QSO fractions is 41 ± 5 per cent. This allows them to probe deeper on its luminosity and redshift, in which they found the factor of 3.5 ± 0.4 decreases in the intrinsic fraction from the highest redshifts from z≃ 4.0 to z≃ 2.0, showing no strong luminosity dependence, but has 3σ limits on the rate of change of the intrinsic fraction with luminosity of -6.9 and 7.0 percent dex-1.[16] Moreover, the quasar has a narrow C IV λ1549 absorption line, displayed stronger than EWrest>=0.5 Å.[17]

PKS 1402+044 is known to have a weak emission-line. Researchers who studied the quasar, found it exhibits hot thermal dust emission (T ~ 1000 K) with a rest-frame of 0.1-5 μm spectral energy distribution, similar to normal quasars. Apart from that, the polarization, variability, and radio properties are also different than BL Lac objects ruling out the possibility of continuum boosting by its relativistic jet.[18]

Researchers who investigated the frequency-dependent radio properties of the jet in PKS 1402+044, found it is of "core-jet" morphology. It extends from the parsec to the kilo-parsec scales, with steeper spectral index and lower brightness temperature. The jet also shows an increasing distance as the core is further away. Through assumption that the jet is collimated by its ambient magnetic field, the mass of the central object as ~109 ~ M_⊙ and upper limit of the jet proper motion of PKS 1402+044 is 0.03 mas yr-1 (~3c) towards east-west direction.[19]

Host galaxy

The host galaxy of PKS 1402+044 is large disk galaxy.[20][21] It is an active galaxy with a critical rate of Q_{H I}∼ 10^{56} ionizing photons per second and a monochromatic λ = 912 Å luminosity of LUV ∼ 1023 W Hz-1 is now significant at ≈7σ.[22] Moreover the host galaxy contains an ultraluminous radio core[23] and a galactic halo around it with dense parameter of interstellar gas.[24] According to limits from detectable continuum flux from PKS 1402+044, a gas cloud is suggested interacting with the galaxy.[25]

Dampen Lyα System

The dampen Lyα System[26] in PKS 1402+044 is metal rich with values of [logN(Zn+)>=13.15 or logN(Si+)>=15.95]. It contains strong Zn II λ2026 and Si II λ1808 lines, indicating it is due to Type II supernovae.[27] Moreover, 90% of hydrogen mass is inside the dampen Lyα system with value of [N(HI) >1.6 × 1017 atom cm-2] and column density of 1.6 × 1021 atom cm-2 at z < 3.5.[28] The hydrogen ion ionization rate in PKS 1402+044 is estimated to be 1.9+1.2-1.0×10-12 s-1.[29][30]

Moreover, the Lyman-alpha forest lines in PKS 1402+044 is marginally stronger and much broader compared with lines away from quasars. These are larger and are uncorrelated with quasar luminosity, radio loudness or by its optical spectral index. The signs showed the lines occur more frequently at high redshifts, correlated weakly by presence of associated metal line systems.[31] The covering factor for absorbing clouds inside the extended emission-line region of PKS 1402+044 is lesser or equal to 0.15 as observed through spectroscopic observation by researchers looking at the Lyman-limit region in 32 quasars.[32]

Green Bank Telescope (GBT) and Berkeley-Illinois-Maryland Association (BIMA) array observed PKS 1402+044 and discovered the an increased number in redshifted millimetre absorptions reaching 3σ limits of τ<= 0.1. This is a significant improvement in which the researchers provide useful limits for millimetre absorptions below the atmospheric cut-off for the Lyman and Werner H2 bands in ultraviolet (zabs<~ 1.8).[33]

Black hole

The black hole found in PKS 1402+044 is found to be massive (log MBH, M○ > 9) with a luminous accretion disk (Ldisk >1046 erg s-1). The broadband spectral energy distribution inside the black hole is dominated by high-energy radiation, indicating their jets are among the fastest moving and the most luminous date to date.[34]

According to researchers who used a virial black hole mass estimator based on the Hβ, Mg II, and C IV emission lines,[35] the black hole mass is estimated to be μ 0 = 0.55 ± 0.22, ξ μR = 1.09 ± 0.10, and {ξ }μ X=-{0.59}-0.15+0.16 with the natural logarithm of the Gaussian intrinsic scatter in the log-mass direction {ln}{ɛ }μ =-{0.04}-0.13+0.14. This is a significant improvement over earlier mass scaling result because of the increase in active galactic nuclei sample size from 18 to 30.[36]

References

  1. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-06-13.
  2. ^ Peterson, B. A.; Jauncey, D. L.; Wright, A. E.; Condon, J. J. (1978-06-01). "PKS 1402+44: a red object with a redshift of 3.20". The Astrophysical Journal. 222: L81–L83. doi:10.1086/182697. ISSN 0004-637X.
  3. ^ Gibson, Robert R.; Jiang, Linhua; Brandt, W. N.; Hall, Patrick B.; Shen, Yue; Wu, Jianfeng; Anderson, Scott F.; Schneider, Donald P.; Vanden Berk, Daniel; Gallagher, S. C.; Fan, Xiaohui; York, Donald G. (2009-02-01). "A Catalog of Broad Absorption Line Quasars in Sloan Digital Sky Survey Data Release 5". The Astrophysical Journal. 692: 758–777. doi:10.1088/0004-637X/692/1/758. ISSN 0004-637X.
  4. ^ Healey, Stephen E.; Romani, Roger W.; Taylor, Gregory B.; Sadler, Elaine M.; Ricci, Roberto; Murphy, Tara; Ulvestad, James S.; Winn, Joshua N. (2007-07-01). "CRATES: An All-Sky Survey of Flat-Spectrum Radio Sources". The Astrophysical Journal Supplement Series. 171: 61–71. doi:10.1086/513742. ISSN 0067-0049.
  5. ^ Siebert, J.; Brinkmann, W.; Drinkwater, M. J.; Yuan, W.; Francis, P. J.; Peterson, B. A.; Webster, R. L. (1998-11-01). "X-ray properties of the Parkes sample of flat-spectrum radio sources: dust in radio-loud quasars?". Monthly Notices of the Royal Astronomical Society. 301: 261–279. doi:10.1046/j.1365-8711.1998.02019.x. ISSN 0035-8711.
  6. ^ Massaro, E.; Giommi, P.; Leto, C.; Marchegiani, P.; Maselli, A.; Perri, M.; Piranomonte, S.; Sclavi, S. (2009-02-01). "Roma-BZCAT: a multifrequency catalogue of blazars". Astronomy and Astrophysics. 495: 691–696. doi:10.1051/0004-6361:200810161. ISSN 0004-6361.
  7. ^ Paliya, Vaidehi S.; Marcotulli, L.; Ajello, M.; Joshi, M.; Sahayanathan, S.; Rao, A. R.; Hartmann, D. (2017-12-01). "General Physical Properties of CGRaBS Blazars". The Astrophysical Journal. 851: 33. doi:10.3847/1538-4357/aa98e1. ISSN 0004-637X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  8. ^ Liu, F. K.; Zhang, Y. H. (2002-01-01). "A new list of extra-galactic radio jets". Astronomy and Astrophysics. 381: 757–760. doi:10.1051/0004-6361:20011572. ISSN 0004-6361.
  9. ^ Gurvits, L. I.; Kardashev, N. S.; Popov, M. V.; Schilizzi, R. T.; Barthel, P. D.; Pauliny-Toth, I. I. K.; Kellermann, K. I. (1992-07-01). "The compact radio structure of the high redshift quasars 0642+449, 1402+044, 1614+051". Astronomy and Astrophysics. 260: 82–88. ISSN 0004-6361.
  10. ^ Liodakis, I.; Pavlidou, V.; Hovatta, T.; Max-Moerbeck, W.; Pearson, T. J.; Richards, J. L.; Readhead, A. C. S. (2017-06-01). "Bimodal radio variability in OVRO-40 m-monitored blazars". Monthly Notices of the Royal Astronomical Society. 467: 4565–4576. doi:10.1093/mnras/stx432. ISSN 0035-8711.
  11. ^ Richards, J. L.; Hovatta, T.; Max-Moerbeck, W.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S. (2014-03-01). "Connecting radio variability to the characteristics of gamma-ray blazars". Monthly Notices of the Royal Astronomical Society. 438: 3058–3069. doi:10.1093/mnras/stt2412. ISSN 0035-8711.
  12. ^ Hovatta, T.; Pavlidou, V.; King, O. G.; Mahabal, A.; Sesar, B.; Dancikova, R.; Djorgovski, S. G.; Drake, A.; Laher, R.; Levitan, D.; Max-Moerbeck, W.; Ofek, E. O.; Pearson, T. J.; Prince, T. A.; Readhead, A. C. S. (2014-03-01). "Connection between optical and γ-ray variability in blazars". Monthly Notices of the Royal Astronomical Society. 439: 690–702. doi:10.1093/mnras/stt2494. ISSN 0035-8711.
  13. ^ Barthel, Peter D.; Vestergaard, Marianne; Lonsdale, Colin J. (2000-02-01). "Radio imaging of core-dominated high redshift quasars". Astronomy and Astrophysics. 354: 7–16. doi:10.48550/arXiv.astro-ph/9911474. ISSN 0004-6361.
  14. ^ Sapre, A. K.; Mishra, V. D. (1985-10-01). "Redshifts of the brightest X-ray QSO's". Astrophysics and Space Science. 115: 107–118. doi:10.1007/BF00653831. ISSN 0004-640X.
  15. ^ Feigelson, E. D.; Isobe, T.; Kembhavi, A. (1984-10-01). "Radio and X-ray emission in radio-selected quasars". The Astronomical Journal. 89: 1464–1477. doi:10.1086/113648. ISSN 0004-6256.
  16. ^ Allen, James T.; Hewett, Paul C.; Maddox, Natasha; Richards, Gordon T.; Belokurov, Vasily (2011-01-01). "A strong redshift dependence of the broad absorption line quasar fraction". Monthly Notices of the Royal Astronomical Society. 410: 860–884. doi:10.1111/j.1365-2966.2010.17489.x. ISSN 0035-8711.
  17. ^ Vestergaard, M. (2003-12-01). "Occurrence and Global Properties of Narrow C IV λ1549 Å Absorption Lines in Moderate-Redshift Quasars". The Astrophysical Journal. 599: 116–139. doi:10.1086/379159. ISSN 0004-637X.
  18. ^ Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Brandt, W. N.; Shemmer, Ohad; Strauss, Michael A.; Anderson, Scott F.; Carilli, Christopher L.; Gibson, Robert R.; Jiang, Linhua; Kim, J. Serena; Richards, Gordon T.; Schmidt, Gary D.; Schneider, Donald P.; Shen, Yue; Smith, Paul S. (2009-07-01). "High-redshift SDSS Quasars with Weak Emission Lines". The Astrophysical Journal. 699: 782–799. doi:10.1088/0004-637X/699/1/782. ISSN 0004-637X.
  19. ^ Yang, J.; Gurvits, L. I.; Lobanov, A. P.; Frey, S.; Hong, X. -Y. (2008-10-01). "Multi-frequency investigation of the parsec- and kilo-parsec-scale radio structures in high-redshift quasar PKS ;1402+044". Astronomy and Astrophysics. 489: 517–524. doi:10.1051/0004-6361:200809846. ISSN 0004-6361.
  20. ^ Valentini, Milena; Gallerani, Simona; Ferrara, Andrea (2021-07-22). "Host galaxies of high-redshift quasars: SMBH growth and feedback". Monthly Notices of the Royal Astronomical Society. 507 (1): 1–26. doi:10.1093/mnras/stab1992. ISSN 0035-8711.
  21. ^ Lupi, Alessandro; Volonteri, Marta; Decarli, Roberto; Bovino, Stefano; Silk, Joseph; Bergeron, Jacqueline (2019-09-01). "High-redshift quasars and their host galaxies - I. Kinematical and dynamical properties and their tracers". Monthly Notices of the Royal Astronomical Society. 488: 4004–4022. doi:10.1093/mnras/stz1959. ISSN 0035-8711.
  22. ^ Curran, S. J.; Hunstead, R. W.; Johnston, H. M.; Whiting, M. T.; Sadler, E. M.; Allison, J. R.; Bignell, C. (2017-10-01). "Further observational evidence for a critical ionizing luminosity in active galaxies". Monthly Notices of the Royal Astronomical Society. 470: 4600–4607. doi:10.1093/mnras/stx1572. ISSN 0035-8711.
  23. ^ Punsly, Brian (1995-04-01). "The Extended Morphology of Ultraluminous Radio Cores". The Astronomical Journal. 109: 1555. doi:10.1086/117385. ISSN 0004-6256.
  24. ^ Sholomitskij, G. B.; Yaskovitch, A. L. (1990-10-01). "The cosmological halos as a new test for the intergalactic gas". Pisma v Astronomicheskii Zhurnal. 16: 893. ISSN 0320-0108.
  25. ^ Hu, Esther M.; Cowie, Lennox L. (1987-06-01). "The Distribution of Gas and Galaxies around the Distant Quasar PKS 1614+051". The Astrophysical Journal. 317: L7. doi:10.1086/184902. ISSN 0004-637X.
  26. ^ Curran, S. J.; Webb, J. K.; Murphy, M. T.; Bandiera, R.; Corbelli, E.; Flambaum, V. V. (2002-01-01). "A Catalogue of Damped Lyman Alpha Absorption Systems and Radio Flux Densities of the Background Quasars". Publications of the Astronomical Society of Australia. 19: 455–474. doi:10.1071/AS01077. ISSN 1323-3580.
  27. ^ Herbert-Fort, Stéphane; Prochaska, Jason X.; Dessauges-Zavadsky, Miroslava; Ellison, Sara L.; Howk, J. Chris; Wolfe, Arthur M.; Prochter, Gabriel E. (2006-08-01). "The Metal-strong Damped Lyα Systems". Publications of the Astronomical Society of the Pacific. 118: 1077–1097. doi:10.1086/507653. ISSN 0004-6280.
  28. ^ Péroux, C.; McMahon, R. G.; Storrie-Lombardi, L. J.; Irwin, M. J. (2003-12-01). "The evolution of ΩHI and the epoch of formation of damped Lyman α absorbers". Monthly Notices of the Royal Astronomical Society. 346: 1103–1115. doi:10.1111/j.1365-2966.2003.07129.x. ISSN 0035-8711.
  29. ^ Scott, Jennifer; Bechtold, Jill; Dobrzycki, Adam; Kulkarni, Varsha P. (2000-09-01). "A Uniform Analysis of the Lyα Forest at z=0-5. II. Measuring the Mean Intensity of the Extragalactic Ionizing Background Using the Proximity Effect". The Astrophysical Journal Supplement Series. 130: 67–89. doi:10.1086/317340. ISSN 0067-0049.
  30. ^ Swarup, G.; Sarkar, A. (2002-12-01). "Observations of associated HI absorption in radio galaxies and quasars using GMRT". Bulletin of the Astronomical Society of India. 30: 743–746. ISSN 0304-9523.
  31. ^ Srianand, R.; Khare, Pushpa (1996-06-01). "Analysis of Lyalpha absorption lines in the vicinity of QSOs". Monthly Notices of the Royal Astronomical Society. 280: 767–780. doi:10.1093/mnras/280.3.767. ISSN 0035-8711.
  32. ^ Smith, M. G.; Carswell, R. F.; Whelan, J. A. J.; Wilkes, B. J.; Boksenberg, A.; Clowes, R. G.; Savage, A.; Cannon, R. D.; Wall, J. V. (1981-05-01). "Observations of the Lyman limit in 19 QSOs". Monthly Notices of the Royal Astronomical Society. 195: 437–449. doi:10.1093/mnras/195.3.437. ISSN 0035-8711.
  33. ^ Curran, S. J.; Murphy, M. T.; Pihlström, Y. M.; Webb, J. K.; Bolatto, A. D.; Bower, G. C. (2004-08-01). "Molecular fraction limits in damped Lyman α absorption systems". Monthly Notices of the Royal Astronomical Society. 352: 563–570. doi:10.1111/j.1365-2966.2004.07945.x. ISSN 0035-8711.
  34. ^ Paliya, Vaidehi S.; Ajello, M.; Cao, H. -M.; Giroletti, M.; Kaur, Amanpreet; Madejski, Greg; Lott, Benoit; Hartmann, D. (2020-07-01). "Blazars at the Cosmic Dawn". The Astrophysical Journal. 897: 177. doi:10.3847/1538-4357/ab9c1a. ISSN 0004-637X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  35. ^ Shen, Yue; Greene, Jenny E.; Strauss, Michael A.; Richards, Gordon T.; Schneider, Donald P. (2008-06-01). "Biases in Virial Black Hole Masses: An SDSS Perspective". The Astrophysical Journal. 680: 169–190. doi:10.1086/587475. ISSN 0004-637X.
  36. ^ Gültekin, Kayhan; King, Ashley L.; Cackett, Edward M.; Nyland, Kristina; Miller, Jon M.; Di Matteo, Tiziana; Markoff, Sera; Rupen, Michael P. (2019-01-01). "The Fundamental Plane of Black Hole Accretion and Its Use as a Black Hole-Mass Estimator". The Astrophysical Journal. 871: 80. doi:10.3847/1538-4357/aaf6b9. ISSN 0004-637X.{{cite journal}}: CS1 maint: unflagged free DOI (link)