Jump to content

List of nonlinear partial differential equations

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Roffaduft (talk | contribs) at 07:33, 15 June 2024 (G–K: changed wiki hyperlink to the kdv variations subsection). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

See also Nonlinear partial differential equation, List of partial differential equation topics and List of nonlinear ordinary differential equations.

A–F

Name Dim Equation Applications
Bateman-Burgers equation 1+1 Fluid mechanics
Benjamin–Bona–Mahony 1+1 Fluid mechanics
Benjamin–Ono 1+1 internal waves in deep water
Boomeron 1+1 Solitons
Boltzmann equation 1+6 Statistical mechanics
Born–Infeld 1+1 Electrodynamics
Boussinesq 1+1 Fluid mechanics
Boussinesq type equation 1+1 Fluid mechanics
Buckmaster 1+1 Thin viscous fluid sheet flow
Cahn–Hilliard equation Any Phase separation
Calabi flow Any Calabi–Yau manifolds
Camassa–Holm 1+1 Peakons
Carleman 1+1
Cauchy momentum any Momentum transport
Chafee–Infante equation
Clairaut equation any Differential geometry
Clarke's equation 1+1 Combustion
Complex Monge–Ampère Any lower order terms Calabi conjecture
Constant astigmatism 1+1 Differential geometry
Davey–Stewartson 1+2 Finite depth waves
Degasperis–Procesi 1+1 Peakons
Dispersive long wave 1+1 ,
Drinfeld–Sokolov–Wilson 1+1
Dym equation 1+1 Solitons
Eckhaus equation 1+1 Integrable systems
Eikonal equation any optics
Einstein field equations Any General relativity
Ernst equation 2
Estevez–Mansfield–Clarkson equation
Euler equations 1+3 non-viscous fluids
Fisher's equation 1+1 Gene propagation
FitzHugh–Nagumo model 1+1 Biological neuron model
Föppl–von Kármán equations Solid Mechanics
Fujita–Storm equation

G–K

Name Dim Equation Applications
G equation 1+3 turbulent combustion
Generic scalar transport 1+3 transport
Ginzburg–Landau 1+3 Superconductivity
Gross–Pitaevskii 1 + n Bose–Einstein condensate
Gyrokinetics equation 1 + 5 Microturbulence in plasma
Guzmán 1 + n Hamilton–Jacobi–Bellman equation for risk aversion
Hartree equation Any
Hasegawa–Mima 1+3 Turbulence in plasma
Heisenberg ferromagnet 1+1 Magnetism
Hicks 1+1 Fluid dynamics
Hunter–Saxton 1+1 Liquid crystals
Ishimori equation 1+2 Integrable systems
Kadomtsev –Petviashvili 1+2 Shallow water waves
Kardar–Parisi–Zhang equation 1+3 Stochastics
von Karman 2
Kaup 1+1
Kaup–Kupershmidt 1+1 Integrable systems
Klein–Gordon–Maxwell any
Klein–Gordon (nonlinear) any Relativistic quantum mechanics
Khokhlov–Zabolotskaya 1+2
Korteweg–de Vries (KdV) 1+1 Shallow waves, Integrable systems
KdV (super) 1+1
There are more minor variations listed in the article on KdV equations.
Kuramoto–Sivashinsky equation 1 + n Combustion

L–Q

Name Dim Equation Applications
Landau–Lifshitz model 1+n Magnetic field in solids
Lin–Tsien equation 1+2
Liouville equation any
Liouville–Bratu–Gelfand equation any combustion, astrophysics
Logarithmic Schrödinger equation any Superfluids, Quantum gravity
Minimal surface 3 minimal surfaces
Monge–Ampère any lower order terms
Navier–Stokes
(and its derivation)
1+3

+ mass conservation:
+ an equation of state to relate p and ρ, e.g. for an incompressible flow:

Fluid flow, gas flow
Nonlinear Schrödinger (cubic) 1+1 optics, water waves
Nonlinear Schrödinger (derivative) 1+1 optics, water waves
Omega equation 1+3 atmospheric physics
Plateau 2 minimal surfaces
Pohlmeyer–Lund–Regge 2
Porous medium 1+n diffusion
Prandtl 1+2 , boundary layer

R–Z, α–ω

Name Dim Equation Applications
Rayleigh 1+1
Ricci flow Any Poincaré conjecture
Richards equation 1+3 Variably saturated flow in porous media
Rosenau–Hyman 1+1 compacton solutions
Sawada–Kotera 1+1
Sack–Schamel equation 1+1 plasmas
Schamel equation 1+1 plasmas, solitons, optics
Schlesinger Any isomonodromic deformations
Seiberg–Witten 1+3 Seiberg–Witten invariants, QFT
Shallow water 1+2 shallow water waves
Sine–Gordon 1+1 Solitons, QFT
Sinh–Gordon 1+1 Solitons, QFT
Sinh–Poisson 1+n Fluid Mechanics
Swift–Hohenberg any pattern forming
Thomas 2
Thirring 1+1 , Dirac field, QFT
Toda lattice any
Veselov–Novikov 1+2 , , shallow water waves
Vorticity equation Fluid Mechanics
Wadati–Konno–Ichikawa–Schimizu 1+1
WDVV equations Any Topological field theory, QFT
WZW model 1+1

QFT
Whitham equation 1+1 water waves
Williams spray equation Combustion
Yamabe n Differential geometry
Yang–Mills (source-free) Any Gauge theory, QFT
Yang–Mills (self-dual/anti-self-dual) 4 Instantons, Donaldson theory, QFT
Yukawa 1+n Meson-nucleon interactions, QFT
Zakharov system 1+3 Langmuir waves
Zakharov–Schulman 1+3 Acoustic waves
Zeldovich–Frank-Kamenetskii equation 1+3 Combustion
Zoomeron 1+1 Solitons
φ4 equation 1+1 QFT
σ-model 1+1 Harmonic maps, integrable systems, QFT

References