Jump to content

Phonograph

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 76.174.206.219 (talk) at 17:52, 27 March 2008 (The phonautograph). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Edison cylinder phonograph ca. 1899
Thomas Edison and his early phonograph

The phonograph, or gramophone, was the most common device for playing recorded sound from the 1870s through the 1980s.

Terminology

Usage of these terms is not uniform across the English-speaking world (see below). In more modern usage, this device is often called a turntable, record player, or record changer.

The famous phonograph was the first device for recording and replaying sound. The term phonograph ("sound writer") is derived from the Greek words φωνή (meaning "sound" or "voice" and transliterated as phone) and γραφή (meaning "writing" and transliterated as graphe). Similar related terms gramophone and graphophone have similar root meanings. The coinage, particularly the use of the -graph root, may have been influenced by the then-existing words phonographic and phonography, which referred to a system of phonetic shorthand; in 1852 The New York Times carried an advertisement for "Professor Webster's phonographic class", and in 1859 the New York State Teachers' Association tabled a motion to "employ a phonographic recorder" to record its meetings.

F. B. Fenby was the original author of the word phonograph. An inventor in Worcester, Massachusetts, he was granted a patent in 1863 for an unsuccessful device called the "Electro-Magnetic Phonograph".[1] His concept detailed a system that would record a sequence of keyboard strokes onto paper tape. Although no model or workable device was ever made, it is often seen as a link to the concept of punched paper for player piano rolls (1880s), as well as Herman Hollerith's punch card tabulator (used in the 1890 census), a distant precursor of the modern computer.

Arguably, any device used to record sound or reproduce recorded sound could be called a type of "phonograph", but in common practice it has come to mean historic technologies of sound recording.

In the late 19th and early 20th century, the alternative term talking machine was sometimes used. This term was more in line with Thomas Edison's early view that his invention was better suited for spoken recordings such as dictation, than for musical recordings.

United Kingdom

In British English, gramophone came to refer to any sound reproducing machine using disc records, as disc records were popularized in the UK by the Gramophone Company. The term phonograph is usually restricted to devices playing cylinder records. The term gramophone would generally be taken to refer to a wind-up machine, and from the 1960s onwards the more common term would be record player or turntable as part of a system that also played cassettes and included radio. Such a system would be called a hi-fi or stereo (most systems being stereophonic by the mid-1960s). Gramophone took its name from the Greek words "γραμμή" (grami, line) and "φωνή" (phoni, voice). Like other, similar devices the marketers of which wanted to express the notion of "sound" in the devices' names, they also used the same part of the Greek word (e.g., telephone, microphone etc.).

United States

In American English, phonograph was the most common generic term for any early sound reproducing machine, until the second half of the 20th century, when it became archaic and record player became the universal term for disc record machines. In contemporary American usage phonograph most usually refers to disc record machines or turntables, the most common type of analogue recording from the 1910s on.

Gramophone was a U.S. brand name, and as such in the same category as Victrola, Zon-o-phone, Graphophone and Graphonola referring to specific brands of sound reproducing machines. (Similarly, in German, das Grammophon (literally "the Gramophone") was the most common generic term for any sound reproducer using grooved records, hence the brand name Deutsche Grammophon.) Emile Berliner's Gramophone was considered a type of phonograph.

The brand name Gramophone was not used in the USA after 1901, and the word fell out of use there, though it has survived in its nickname form, Grammy, as the title of the Grammy Awards. The Grammy trophy itself is a small rendering of a gramophone,

Australia

In Australian English, record player was the generic term; turntable was a more technical term; gramophone was restricted to the old mechanical (i.e., wind-up) players; and phonograph was used as in British English.

History

The phonautograph

Dictionary illustration of a phonautograph. The barrel is made of plaster of paris.

The earliest known invention of a phonographic recording device was the phonautograph, invented by Frenchman Édouard-Léon Scott de Martinville and patented on March 25 1857. It could transcribe sound to a visible medium, but had no means to play back the sound after it was recorded. The device consisted of a horn or barrel that focused sound waves onto a membrane to which a hog's bristle was attached, causing the bristle to move and enabling it to inscribe the sound onto a visual medium. Initially, the phonautograph made recordings onto a lamp-blackened glass plate. A later version (see image) used a medium of lamp-blackened paper on a drum or cylinder. Another version would draw a line representing the sound wave on a roll of paper. The phonautograph was a laboratory curiosity for the study of acoustics. It was used to determine the frequency of a given musical pitch and to study sound and speech; it was not widely understood until after the development of the phonograph that the waveform recorded by the phonautograph was a record of the sound wave that needed only a playback mechanism to reproduce the sound.

On March 27, 2008, the New York Times reported that a method of playing back a phonautograph recording had been discovered by American audio historians.[1] The team unearthed some of Leon Scott's forgotten phonautograph papers in Paris, then scanned them into a sophisticated computer program developed a few years earlier by the Library of Congress. The sound waves on the paper were then translated by the computer into audible sounds. One recording, created on April 9, 1860 was revealed to be a 10-second scratchy recording of a singer performing the French folk song Au Clair de la Lune. This phonautograph recording is now the earliest known recording of a human voice and the earliest known recording of music in existence, predating Edison's phonographic recording of a Handel concert by nearly three decades.

Phonograph theory

Charles Cros, a French scientist, produced a theory (April 18 1877) concerning a phonograph, but he did not manufacture a working model. His theory was submitted to the French Academy of Sciences, and was read to the public in December 1877, by which time Edison had produced a working model. Cros and Edison apparently discovered their theories independently.

The first phonograph

Patent drawing for Edison's phonograph, May 18 1880

Thomas Alva Edison announced his invention of the first phonograph, a device for recording and replaying sound, on November 21 1877, and he demonstrated the device for the first time on November 29 (it was patented on February 19 1878 as US Patent 200,521). Edison's early phonographs recorded onto a tinfoil sheet phonograph cylinder using an up-down ("hill-and-dale") motion of the stylus.[2] The tinfoil sheet was wrapped around a grooved cylinder, and the sound was recorded as indentations into the foil. Edison's early patents show that he also considered the idea that sound could be recorded as a spiral onto a disc, but Edison concentrated his efforts on cylinders, since the groove on the outside of a rotating cylinder provides a constant velocity to the stylus in the groove, which Edison considered more "scientifically correct". Edison's patent specified that the audio recording was embossed, and it was not until 1886 that vertically modulated engraved recordings using wax coated cylinders were patented by Chichester Bell and Charles Sumner Tainter. They named their version the Graphophone. Emile Berliner patented his Gramophone in 1887. The Gramophone involved a system of recording using a lateral (back and forth) movement of the stylus as it traced a spiral onto a zinc disc coated with a compound of beeswax in a solution of benzine. The zinc disc was immersed in a bath of chromic acid; this etched the groove into the disc where the stylus had removed the coating, after which the recording could be played.

In May 1889, the first "phonograph parlor" opened in San Francisco. Customers would sit at a desk where they could speak through a tube, and order a selection for one nickel. Through a separate tube connected to a cylinder phonograph in the room below, the selection would then be played. By the mid-1890s, most American cities had at least one phonograph parlor.

By 1890, record manufacturers had begun using a rudimentary duplication process to mass-produce their product. While the live performers recorded the master phonograph, up to ten tubes led to blank cylinders in other phonographs. Until this development, each record had to be custom-made. Before long, a more advanced pantograph-based process made it possible to simultaneously produce 150 copies of each record. However, as demand for certain records grew, popular artists still needed to re-record and re-re-record their songs. Reportedly, the medium's first major African-American star George Washington Johnson was obliged to perform his “The Laughing Coon” (or "Laughing Song") literally thousands of times in a studio during his recording career. Sometimes he would sing "The Laughing Coon" more than fifty times in a day, at twenty cents per rendition. (The average price of a single cylinder in the mid-1890s was about fifty cents.)

Oldest surviving recordings

Frank Lambert's lead cylinder recording for an experimental talking clock is often identified as the oldest surviving playable sound recording,[3] although the evidence advanced for its early date is controversial.[4] The phonograph cylinders made on June 29 1888 of Handel's choral music at The Crystal Palace in London were thought to be the oldest known surviving musical recordings,[5] until recent findings of the recorded tune,"Au Clair de la Lune" on April 9 1860 by a group of American historians. Cite error: A <ref> tag is missing the closing </ref> (see the help page)..

Styli

Stylus for jukebox using shellac 78 rpm records, 1940s

In the sound recording industry, a stylus is a phonograph or gramophone needle used to play back sound on gramophone records, as well as to record the sound indentations on the master record.

It is a crucial part of the phonograph, as it is the one part of the system that actually contacts the recorded disc and transfers its vibrations to the rest of the system. It is the part which also suffers the greatest wear. There are two desired qualities in a stylus: first, that it faithfully follows the contours of the recorded groove and transfers the vibration to the system, and second, that it does not damage the recorded disc.

Several technologies were used to record the sounds, beginning with wax cylinders. The harder the material used, the harder the stylus had to be. The latter stylus for vinyl records were made out of Sapphire or diamond. A specific case is the specofoc stylus type of B&O's moving magnet cartridge MMC 20CL, mostly used in parallel arm type B&O turntables in the 4002/6000 series. It uses a sapphire stem on which a diamond tip is fixed by a special adhesive. A stylus tip mass as low as 0.3 milligram is the result and full tracking only requires 1 gram of stylus force, reducing record wear even further. Maximum distortion (2nd harmonic) fell below 0.6%.

A wholly different chapter is on the shape of needles and styli. The first needles were made of copper or steel and with the extreme forces exerted on them quickly worn out (exchanging them after 2 sides 78 rpm 25cm, or one side 30 cm were safe choices). Because of this wear, the exact form of the needle hardly received attention. Some needles were made with a bend so a stark backward sloping needle resulted, suggesting (but not offering) lower record and needle wear. Some people went to cactus needles and accepted loss in high frequency for longer record life. At the end of acoustic 78rpm, so-called longplay steel needles came on the market, for 10 sides of a normal 25 cm disk.

When sapphires were introduced for the 78 rpm disk and the LP, they were made by tapering a stem and polishing the end into sphere of around 70 and 25 Micrometer respectively. A sphere is not equal to the form of the cutting stylus and by the time diamond needles came to the market, a whole discussion was started on the effect of circular forms moving through a non-circular cut groove. It can be easily shown that vertical, so called "pinching" movements were a result and when the stereophonic LPs were introduced, unwanted vertical modulation was recognized as a problem. Also the needle started its life touching the groove on a very small surface, giving extra wear on the walls.

Another problem is in the tapering along a straight line, while the side of the groove is far from straight. Both problems were attacked together: by polishing the diamond in a certain way that it could be made doubly elliptic. 1) the side was made into one ellipse as seen from behind, meaning the groove touched along a short line and 2) the ellipse form was also polished as seen from above and curvature in the direction of the groove became much smaller than 25 Micrometer. e.g. 13 Micron. With this approach a number of irregularities were eliminated. Furthermore, the angle of the stylus which used to be always sloping backwards, was changed into the forward direction, in line with the slope the original cutting stylus possessed. These styli were expensive to produce, but purists accepted these costs all the more, because by now stylus life was much higher than before.

The last development in stylus form came about by the attention to CD-4 quadraphonic sound with cartridges like Nagaoka capable of playback on frequencies up to 70 kHz. The so-called Shibata stylus was invented in Japan and marketed as an extra on some expensive cartridges, despite the fact that CD4 disk technology itself quickly disappeared. Yet another needle form was advocated by a certain Mr. A.J. van den Hul. His "van den Hul" styli were another, very expensive extra, offered on request for cartridges such as Shure V15 (types I-IV), Stanton (681EE and EEE) and Ortofon's MM-line. Probably to evade patent rights, B&O designed its own "contact line", non-elliptical MMC 20CL stylus.

To get the feel for the costs of these developments: for the price of a semi-professional turntable in the 1960's (€175,- equivalent), high-end ceramic cartridge included, one could just buy this MMC 20CL B&O cartridge end of the 70's. The 4002 B&O turntable (with parallel arm) was €1000,- equivalent in the 1980's. For van den Hul styli, historical price levels are hard to find, but Ortofon elements alone started at €300,- and the van den Hul styli tended to double the high-end cartridge prices (of €450,-) up to €900,-. More recently, phonograph cartridges have ranged in price from about US$50 for a basic moving-magnet unit with elliptical stylus to stratospheric levels for audiophile moving-coil units with exotic stylus forms. For example, the May 1999 issue of Stereophile magazine shows a price of US$5000 (€3500,-) for the van den Hul Black Beauty phono cartridge.

Equalization

Early "mechanical" gramophones used the stylus to vibrate a diaphragm radiating through a horn. Several serious problems resulted from this:

  • The maximum sound level achievable was quite limited, being limited to the physical amplification effects of the horn,
  • The energy needed to generate such sound levels as were obtainable had to come directly from the stylus tracing the groove. This required very high tracking forces that rapidly wore out both the stylus and the record.
  • Because bass sounds have a higher amplitude than high frequency sounds (for the same perceived loudness), the space taken in the groove by low frequency sounds needed to be large (limiting playback time per side of the record) to accommodate the bass notes, yet the high frequencies required only tiny variations in the groove, which were easily affected by noise from irregularities (wear, contaminates, etc) in the disk itself.

The introduction of electronic amplification allowed these issues to be addressed. Records are made with boosted high frequencies and/or reduced low frequencies. This reduces the effect of background noise, including clicks or pops, and also conserves the amount of physical space needed for each groove, by reducing the size of the low-frequency undulations.

During playback, the high frequencies must be rescaled to their original, flat frequency response—known as "equalization"—as well as being amplified. A phono input of an amplifier incorporates such equalization as well as amplification to suit the very low level output from a modern cartridge. Most hi-fi amplifiers made between the 1950s and the 1990s and virtually all DJ mixers are so equipped.

The widespread adoption of digital music formats, such as CD or satellite radio, has displaced phonograph records and resulted in phono inputs being omitted in most modern amplifiers. Some newer turntables include built-in preamplifiers to produce line-level outputs. Inexpensive and moderate performance discrete phono preamplifiers with RIAA equalization are available, while high-end audiophile units costing thousands of dollars continue to be available in very small numbers.

Since the late 1950s, almost all phono input stages have used the RIAA equalization standard. Before settling on that standard, there were many different equalizations in use, including EMI, HMV, Columbia, Decca FFRR, NAB, Ortho, BBC transcription, etc. Recordings made using these other equalization schemes will typically sound odd if they are played through a RIAA-equalized preamplifier. High-performance (so-called "multicurve disc") preamps, which include multiple, selectable equalizations, are no longer commonly available. However, some vintage preamps, such as the LEAK varislope series, are still obtainable and can be refurbished. Newer preamplifiers like the Esoteric Sound Re-Equalizer or the K-A-B MK2 Vintage Signal Processor are also available.[6] These kinds of adjustable phono equalizers are used by consumers wishing to play vintage record collections (often the only available recordings of musicians of the time) with the equalization used to make them.

Arm systems

The tone arm (or tonearm) holds the pickup cartridge over the groove, the stylus tracking the groove with the desired force to give the optimal compromise between good tracking and minimizing wear of the stylus and record groove. At its simplest, a tone arm is a pivoted lever, free to move in two axes (vertical and horizontal) with a counterbalance to maintain tracking pressure.

However, the requirements of high-fidelity reproduction place more demands upon the arm design:

  • The tone arm must track the groove without distorting the stylus assembly, so an ideal arm would have no mass, with bearings requiring zero force to move it.
  • The arm should not oscillate following a displacement, so it should either be both light and very stiff, or suitably damped.
  • The arm must not resonate with vibrations induced by the stylus or from the turntable motor or plinth, so it must likewise be heavy enough not to resonate at those frequencies, or it must be damped to absorb vibrations.

These demands are contradictory and impossible to realize (massless arms and zero-friction bearings do not exist in the real world), and consequently all tone arm designs are engineering compromises. Solutions vary, but all modern tonearms are at least relatively lightweight and stiff constructions with precision, very low friction pivot bearings in both vertical and horizontal axes. Most arms are made from some kind of alloy (the cheapest being aluminum), but one manufacturer tried balsa wood, the lightest wood known to man, others tried carbon fibers. The latter materials favour a straight arm design, while alloy arms are easier for S-type arms.

Prices vary largely: the well known and extremely populair high-end S-type SME-arm of the 1970-1980 era not only possessed a complicated design, but was also very costly. On the other hand a very cheap arm was made by the now defunct Dutch Jobo/Acoustical firm. This "All balance" arm was only €30,- equivalent. It was used by both the official Dutch radio studios of the NOS, as well as by the pirate radio station Veronica. Live disk jockeys lived on this radioship, meaning that the arm had to withstand sudden ship movements. Anecdotic information tells us, that this cheap arm was the only one capable of keeping the needle firmly in the groove, even during heavy storms at sea.

Adjustable counterweight; the dial below is the anti-skating adjustment.

Basic arm design has changed relatively little. S-type tonearms can be found on even the early 1925 Victor Orthophonic phonograph. Though early electrical pickup tonearms were light, their full weight rested on the record. Through to the crystal pickup, this was required to create sufficient tracking force to follow the grooves adequately with relatively stiff styli. Record wear was high. With better technologies (magnetic cartridge), far-smaller tracking forces became possible, and the balanced arm came into use. Most use a counterweight to offset the weight of the arm, cartridge included. A separate spring or small weight provided for finetuning in tracking force. Often, a calibrated dial on the weight provides quick adjustment of stylus force. Stylus forces of 10 to 20 mN (1 to 2 "grams-force", frequently mis-labeled by manufacturers as simply "grams") are typical for modern high-fidelity turntables, while forces of up to 50 mN (5 "grams-force") are common for DJ use. Stanton cartridges of the 681EE(E) series had a small brush attached to it, the weight of which required compensation of the tracking force value.

Tonearms are prone to two types of tracking errors that affect the sound. As the tonearm tracks the groove, the stylus drags tangent to the disc surface and resistance by the arm creates a horizontal skating force towards the center of the disc. Modern arms provide an anti-skating mechanism, using springs, hanging weights, or magnets to offset this force, making the net horizontal force near zero. The second error occurs as the arm sweeps in an arc across the disc, causing the angle between the cartridge head and groove to change slightly. A change in angle, albeit small, will have a detrimental effect (especially in stereo) by creating different forces on the two groove walls. Making the arm longer to reduce this angle is a partial solution, but less than ideal, because longer arms weigh more, and because even a long arm won't be long enough since only an infinitely long arm would reduce this error to zero. Some arms (such as the Garrard "Zero" series) have been manufactured with a parallelogram arrangement which pivots the cartridge head on the arm to maintain a constant angle.

Typical phonograph tonearm

If the arm is not pivoted, but instead travels horizontally along a radius of the disc, there is no skating force and no cartridge angle error. Such arms are driven along a linear track using an electronic servomechanism, or a precise mechanical adjustment (the Rabco arm) to position it properly. Rabco developed the first zero tracking error tonearm, followed by Bang & Olufsen with its Beogram 4000 model in 1972. A later development was made by Revox, a Swiss company more widely known for his high end reel to reel tape recorders: they designed a parallel movement using a very short arm moving sideways across the disk under the influence of a special drive motor. The mechanism had to be turned over the disk after its placement and turned back after playing the disk. This was contrary to the B&O design which automatically returned its parallel arm after playing and even detected whether a smaller (and therefor 45 rpm) disk was present or a larger (and therefor 33 rpm) disk. Only for the by then rare smaller 33rpm disks this system needed a manual speed override.

Early Edison phonographs had used similarly horizontal spring-powered drives to carry the stylus across the record at a pre-determined rate. In practice, the linear tracking system is not widely used today due to its complexity and related expense. However, some of the most sophisticated and expensive systems still employ this technique. It is nearly ideal, as the stylus replicates the motion of the recording lathe when the master recording was cut.

The phonograph in the 21st century

Turntables continue to be manufactured and sold into the 21st century, although in small numbers. While there are many audiophiles who still prefer vinyl records over digital music sources (primarily compact disc) for their perceived fidelity, they represent an enthusiastic minority of listeners. The quality of the available record players, tonearms, and cartridges has continued to improve, despite a diminishing market. Thus, the turntable remains the preferred sound source in some high end audio systems.

Modern turntable.

Updated versions of the 1970s era Technics SL-1200 have remained an industry standard for DJs to the present day. Turntables and vinyl records remain popular in mixing (mostly dance-oriented) forms of electronic music, where they allow great latitude for physical manipulation of the music by the DJ.

In hip hop music, the turntable is used as a musical instrument. Manipulation of a record as part of the music rather than for normal playback or mixing, is called turntablism. The basis of turntablism and its best known technique is scratching, pioneered by Grand Wizard Theodore. It was not until Herbie Hancock's "Rockit" in 1983 that the turntablism movement was recognized in popular music outside of a hip hop context. See list of turntablists for more influential turntablist artists.

The laser turntable, which uses a laser as the pickup instead of a stylus in physical contact with the disk, was conceived of in the late 1980s, although early prototypes were not of usable audio quality. Practical laser turntables are now being manufactured by ELPJ. They are favoured by record libraries and some audiophiles since they eliminate physical wear completely.

Experimentation is in progress in retrieving the audio from old records by scanning the disc and analysing the scanned image, rather than using any sort of turntable.

Notable turntables include: the Linn Sondek LP12, the Sota Cosmos, Roksan Xerxes, the Immedia RPM-2, the VPI TNT, Michell Orbe SE and the SME Models 20 and 30.

Turntables at a radio station, 2003

Although largely replaced since the introduction of the compact disc in 1982, record albums still sell in small numbers and are available through numerous sources. Many audiophiles believe that all-analogue recordings made using a traditional tape recorder, simple microphone arrays and few overdubs have a more natural sound than digital recordings.

Direct vs belt drive

Although most high-quality turntables use a rubber belt to drive the rotating platter from an electric motor, the Rockport Sirius, for example, uses a linear induction motor with no physical connection to the platter. The direct-drive turntable, for example, the abovementioned Technics SL-1200, became popular in the late 1970s.

Many turntables, such as the Rega Planar series, use a fixed plinth with the motor and bearing attached to the same flat surface, usually constructed of wood, metal or acrylic, others use a "suspended sub-chassis" design, where the platform allows the stylus to track accurately relative to the surface of the record whilst being protected from external vibrations. The platter, sub-chassis, armboard and tonearm mechanically form a closed loop, and sit on top of dampers.

The evaluation of the "best" turntable design is very subjective and often based more on listening experience. Technical measurement is fraught with difficulties: first there is the difficulty of measuring small parameters, secondly there is disagreement about relevant parameters to measure.

Audiophile grade turntables start at a few hundred dollars and range upwards of $100,000, depending on the complexity and quality of design and manufacture. The common view would be that there are diminishing returns with an increase in price - a turntable costing $1,000 would not sound significantly better than a turntable costing $500; nevertheless, there exists a large choice of expensive turntables although the popularity of the vinyl replay medium has been surpassed for some time.

See also

References

  1. ^ Oliver Read, From Tin Foil to Stereo: Evolution of the Phonograph (1959) 2nd edition 1976: coauthor Walter Welch, Indianapolis: Howard W. Sams & Co., ISBN 0672212064
  2. ^ Article about Edison and the invention of the phonograph
  3. ^ "Experimental Talking Clock" recording at Tinfoil.com, URL accessed August 14 2006
  4. ^ Aaron Cramer, Tim Fabrizio, and George Paul, "A Dialogue on 'The Oldest Playable Recording,'" ARSC Journal 33:1 (Spring 2002), 77-84; Patrick Feaster and Stephan Puille, "Dialogue on 'The Oldest Playable Recording' (continued), ARSC Journal 33:2 (Fall 2002), 237-242.
  5. ^ "Very Early Recorded Sound" U.S. National Park Service, URL accessed August 14 2006
  6. ^ Powell, James R., Jr. and Randall G. Stehle. Playback Equalizer Settings for 78 rpm Recordings. Third Edition. 1993, 2002, 2007, Gramophone Adventures, Portage MI. ISBN 0963492136
  • Brady, Erika. A Spiral Way: How the Phonograph Changed Ethnography. Jackson: University press of Mississippi, 1999.