Nanotechnology
Nanotechnology is a broad field of applied science and technology focused on controlling and exploiting the structure of matter on a scale below 100 nanometers.[1] Nanotechnology has as its goal the realization of novel materials and devices with features on the nanoscale, drawing from fields such as colloidal science, device physics, and supramolecular chemistry. Much speculation exists as to what new technologies might be invented based upon these lines of research, and what the implications for society might be if these become commonplace.
Despite the apparent simplicity of this definition, nanotechnology actually encompasses a very diverse group of lines of inquiry, each taking different approaches and using different methods to progress towards different applications. Nanotechnology cuts across many disciplines, including colloidal science, chemistry, applied physics, biology, and other scientific fields. It could variously be seen as an extension of existing sciences into the nanoscale, or as a recasting of existing sciences using a newer, more modern term. Two main approaches are used in nanotechnology: one is a "bottom-up" approach where materials and devices are built from smaller (molecular) components which assemble themselves chemically using principles such as molecular recognition; the other being a "top-down" approach where they are synthesized or constructed from larger entities through an externally-controlled process.
The impetus for nanotechnology has stemmed from a renewed interest in colloidal science, coupled with a new generation of analytical tools such as the atomic force microscope (AFM) and the scanning tunneling microscope (STM). Combined with refined processes such as electron beam lithography, these instruments allow the deliberate manipulation of nanostructures, and in turn led to the observation of novel phenomena. Nanotechnology is also used as an umbrella term to describe emerging or novel technological developments associated with microscopic dimensions. Despite the great promise of numerous nanotechnologies such as quantum dots and nanotubes, real applications that have moved out of the lab and into the marketplace have mainly utilized the advantages of colloidal nanoparticles in bulk form, such as suntan lotion, cosmetics, protective coatings, and stain resistant textiles.
Fundamental concepts
Use of the term
- For information about the origins of nanotechnology, see History of nanotechnology.
Most broadly, nanotechnology includes the many techniques used to create structures at a size scale below 100 nanometers. One nanometer (abbreviated nm) is one billionth, or 10-9 of a meter. For comparison, typical carbon-carbon bond lengths, or the spacing between these atoms in a molecule, are in the range .12-.15 nm, and a DNA double-helix has a diameter around 2 nm. On the other hand, the smallest cellular lifeforms, the bacteria of the genus Mycoplasma, are around 200 nm in length.
Nanotechnological techniques include those used for fabrication of nanowires, those used in semiconductor fabrication such as deep ultraviolet lithography, electron beam lithography, focused ion beam machining, nanoimprint lithography, atomic layer deposition, and molecular vapor deposition, and further including molecular self-assembly techniques such as those employing di-block copolymers. However, all of these techniques preceded the nanotech era, and are extensions in the development of scientific advancements rather than techniques which were devised with the sole purpose of creating nanotechnology or which were results of nanotechnology research.
General fields involved with proper characterization of these systems include physics, chemistry, and biology, as well as mechanical and electrical engineering. However, due to the inter- and multidisciplinary nature of nanotechnology, subdisciplines such as physical chemistry, materials science, or biomedical engineering are considered significant or essential components of nanotechnology. The proper design, synthesis, characterization, and application of materials are dominant concerns of nanotechnologists. The manufacture of polymers based on molecular structure, or the design of computer chip layouts based on surface science are examples of nanotechnology in modern use. Colloidal suspensions also play an essential role in nanotechnology.
Technologies currently branded with the term 'nano' are little related to and fall far short of the most ambitious and transformative technological goals of the sort in molecular manufacturing proposals, but the term still connotes such ideas. Thus there may be a danger that a "nano bubble" will form from the use of the term by scientists and entrepreneurs to garner funding, regardless of (and perhaps despite a lack of) interest in the transformative possibilities of more ambitious and far-sighted work.
The National Science Foundation (a major source of funding for nanotechnology in the United States) funded researcher David Berube to study the field of nanotechnology. His findings are published in the monograph “Nano-Hype: The Truth Behind the Nanotechnology Buzz. This published study (with a foreword by Mihail Roco, head of the NNI) concludes that much of what is sold as “nanotechnology” is in fact a recasting of straightforward materials science, which is leading to a “nanotech industry built solely on selling nanotubes, nanowires, and the like” which will “end up with a few suppliers selling low margin products in huge volumes."
Larger to smaller: a materials perspective
A unique aspect of nanotechnology is the vastly increased ratio of surface area to volume present in many nanoscale materials which opens new possibilities in surface-based science, such as catalysis. A number of physical phenomena become noticeably pronounced as the size of the system decreases. These include statistical mechanical effects, as well as quantum mechanical effects, for example the “quantum size effect” where the electronic properties of solids are altered with great reductions in particle size. This effect does not come into play by going from macro to micro dimensions. However, it becomes dominant when the nanometer size range is reached.Additionally, a number of physical properties change when compared to macroscopic systems. One example is the increase in surface area to volume of materials. This catalytic activity also opens potential risks in their interaction with biomaterials.
Nanotechnology can be thought of as extensions of traditional disciplines towards the explicit consideration of these properties. Additionally, traditional disciplines can be re-interpreted as specific applications of nanotechnology. This dynamic reciprocation of ideas and concepts contributes to the modern understanding of the field. Broadly speaking, nanotechnology is the synthesis and application of ideas from science and engineering towards the understanding and production of novel materials and devices. These products generally make copious use of physical properties associated with small scales.
Materials reduced to the nanoscale can suddenly show very different properties compared to what they exhibit on a macroscale, enabling unique applications. For instance, opaque substances become transparent (copper); inert materials become catalysts (platinum); stable materials turn combustible (aluminum); solids turn into liquids at room temperature (gold); insulators become conductors (silicon). Materials suc as gold, which is chemically inert at normal scales, can serve as a potent chemical catalyst at nanoscales. Much of the fascination with nanotechnology stems from these unique quantum and surface phenomena that matter exhibits at the nanoscale.
Nanosize powder particles (a few nanometres in diameter, also called nanoparticles) are potentially important in ceramics, powder metallurgy, the achievement of uniform nanoporosity and similar applications. The strong tendency of small particles to form clumps ("agglomerates") is a serious technological problem that impedes such applications. However, a few dispersants such as ammonium citrate (aqueous) and imidazoline or oleyl alcohol (nonaqueous) are promising additives for deagglomeration.[2]
Another concern is that the volume of an object decreases as the third power of its linear dimensions, but the surface area only decreases as its second power. This somewhat subtle and unavoidable principle has huge ramifications. For example the power of a drill (or any other machine) is proportional to the volume, while the friction of the drill's bearings and gears is proportional to their surface area. For a normal-sized drill, the power of the device is enough to handily overcome any friction. However, scaling its length down by a factor of 1000, for example, decreases its power by 10003 (a factor of a billion) while reducing the friction by only 10002 (a factor of "only" a million). Proportionally it has 1000 times less power per unit friction than the original drill. If the original friction-to-power ratio was, say, 1%, that implies the smaller drill will have 10 times as much friction as power. The drill is useless.
This is why, while super-miniature electronic integrated circuits can be made to function, the same technology cannot be used to make functional mechanical devices in miniature: the friction overtakes the available power at such small scales. So while you may see microphotographs of delicately etched silicon gears, such devices are curiosities only, not actually usable parts. Surface tension increases in the same way, causing very small objects tend to stick together. This could possibly make any kind of "micro factory" impractical: even if robotic arms and hands could be scaled down, anything they pick up will tend to be impossible to put down.
All these scaling issues have to be kept in mind while evaluating any kind of nanotechnology.
Simple to complex: a molecular perspective
Modern synthetic chemistry has reached the point where it is possible to prepare small molecules of almost any desired structure. These methods are today used to produce a wide variety of useful chemicals such as pharmaceuticals or commercial polymers. The logical extention of this ability is to extend this control to the next level of complexety, seeking methods to assemble these single molecules into supramolecular assemblies consisting of many molecules arranged in a desired, well-defined manner.
These approaches utilize the concepts of molecular self-assembly and/or supramolecular chemistry to automatically arrange themselves into some useful conformation through a bottom-up approach. The concept of molecular recognition is especially important: molecules can be designed so that a specific conformation or arrangement is favored due to non-covalent intermolecular forces. The Watson-Crick basepairing rules are a direct result of this, as is the specificity of an enzyme being targeted to a single substrate, or the specific folding of the protein itself. Thus, two or more compenents can be designed to be complementary and mutually attractive so that they make a more complex and useful whole.
Such bottom-up approaches should, broadly speaking, be able to produce devices in parallel and much cheaper than top-down methods, but could potentially be overwhelmed as the size and complexity of the desired assembly increases.
Molecular Nanotechnology: a long-term view
Advanced nanotechnology, sometimes called molecular manufacturing, is a term given to the concept of engineered nanosystems (nanoscale machines) operating on the molecular scale. By the countless examples found in biology it is currently known that billions of years of evolutionary feedback can produce sophisticated, stochastically optimized biological machines, and it is hoped that developments in nanotechnology will make possible their construction by some shorter means, perhaps using biomimetic principles. However, K Eric Drexler and other researchers have proposed that advanced nanotechnology, although perhaps initially implemented by biomimetic means, ultimately could be based on mechanical engineering principles (see also mechanosynthesis)
When the term "nanotechnology" was independently coined and popularized by Eric Drexler, who at the time was unaware of an earlier usage by Norio Taniguchi, it referred to a future manufacturing technology based on molecular machine systems. The premise was that molecular-scale biological analogies of traditional machine components demonstrated that molecular machines were possible, and that a manufacturing technology based on the mechanical functionality of these components (such as gears, bearings, motors, and structural members) would enable programmable, positional assembly to atomic specification (see the original reference PNAS-1981). The physics and engineering performance of exemplar designs were analyzed in the textbook Nanosystems.
Another view, put forth by Carlo Montemagno, is that future nanosystems will be hybrids of silicon technology and biological molecular machines, and his group's research is directed toward this end.
The seminal experiment proving that positional molecular assembly is possible was performed by Ho and Lee at Cornell University in 1999. They used a scanning tunneling microscope to move an individual carbon monoxide molecule (CO) to an individual iron atom (Fe) sitting on a flat silver crystal, and chemically bind the CO to the Fe by applying a voltage.
Though biology clearly demonstrates that molecular machine systems are possible, non-biological molecular machines are today only in their infancy. Leaders in research on non-biological molecular machines are Dr. Alex Zettl and his colleagues at Lawrence Berkeley Laboratories and UC Berkeley. They have constructed at least three distinct molecular devices whose motion is controlled from the desktop with changing voltage: a rotating molecular motor, a molecular actuator, and a nanoelectromechanical relaxation oscillator.
Manufacturing in the context of productive nanosystems is not related to, and should be clearly distinguished from, the conventional technologies used to manufacture nanomaterials such as carbon nanotubes and nanoparticles.
There exists the potential to design and fabricate artificial structures analogous to natural cells and even organisms.
Tools and techniques
Nanoscience and nanotechnology only became possible in the 1910's with the development of the first tools to measure and make nanostructures. But the actual development started with the discovery of electrons and neutrons which showed scientists that matter can really exist on a much smaller scale than what we normally think of as small, and/or what they thought was possible at the time. It was at this time when curiosity for nanostructures had originated.
The atomic force microscope (AFM) and the Scanning Tunneling Microscope (STM) are two early versions of scanning probes that launched nanotechnology. There are other types of scanning probe microscopy, all based on the idea of the STM, that make it possible to see structures at the nanoscale. The tip of scanning probes can also be used to manipulate nanostructures (a process called positional assembly). However, this is a very slow process. This led to the development of various techniques of nanolithography such as dip pen nanolithography, electron beam lithography or nanoimprint lithography. Lithography is a top-down fabrication technique where a bulk material is reduced in size to nanoscale pattern.
The top-down approach anticipates nanodevices that must be built piece by piece in stages, much as manufactured items are currently made. Scanning probe microscopy is an important technique both for characterization and synthesis of nanomaterials. Atomic force microscopes and scanning tunneling microscopes can be used to look at surfaces and to move atoms around. By designing different tips for these microscopes, they can be used for carving out structures on surfaces and to help guide self-assembling structures. Atoms can be moved around on a surface with scanning probe microscopy techniques, but it is cumbersome, expensive and very time-consuming. For these reasons, it is not feasible to construct nanoscaled devices atom by atom. Assembling a billion transistor microchip at the rate of about one transistor an hour is inefficient. However, these techniques may eventually be used to make primitive nanomachines, which in turn can be used to make more sophisticated nanomachines.
In contrast, bottom-up techniques build or grow larger structures atom by atom or molecule by molecule. These techniques include chemical synthesis, self-assembly and positional assembly.
Newer techniques such as Dual Polarisation Interferometry are enabling scientists to measure quantitatively the molecular interactions that take place at the nano-scale.
Current research
As nanotechnology is a very broad term, there are many disparate but sometimes overlapping subfields that could fall under its umbrella. The following avenues of research could be considered subfields of nanotechnology:
This list is incomplete; you can help by adding missing items. |
- Nanomaterials includes subfields which develop or study materials having unique properties arising from their nanoscale dimensions:
- Colloid science has given rise to many materials which may be useful in nanotechnology, such as carbon nanotubes and other fullerenes, and various nanoparticles and nanorods.
- Nanoscale materials can also be used in bulk; most present commerical applications of nanotechnology are of this flavor.
- Headway has been made in using these materials for medical applications; see Nanomedicine.
- Bottom-up approaches seek to arrange smaller components into more complex assemblies:
- DNA Nanotechnology utilizes the specificity of Watson-Crick basepairing to construct well-defined structures out of DNA and other nucleic acids.
- More generally, molecular self-assembly seeks to use concepts of supramolecular chemistry, and molecular recognition in paticular, to cause single-molecule components to automatically arrange themselves into some useful conformation.
- Top-down approaches seek to create smaller devices by using larger ones to direct their assembly:
- Many technologies descended from conventional solid-state silicon methods for fabricating microprocessors are now capable of creating featres smaller than 100 nm, falling under the definition of nanotechnology. Giant magnetoresistance-based hard drives already on the marked fit this description,[3] as do atomic layer deposition (ALD) techniques.
- Solid-state techniques can also be used to create devices known as nanoelectromechanical systems or NEMS, which are related to microelectromechanical systems or MEMS.
- Functional approaches seek to develop components of a desired functionality without regard to how they might be assembled:
- Molecular electronics seeks to develop molecules with useful electronic properties. These could then be used as single-molecule components in a nanoelectronic device. For an example see rotaxane.
- Synthetic chemical methods can also be used to create synthetic molecular motors, such as in a so-called nanocar.
- Speculative: These subfields seek to anticipate what inventions nanotechnology might yield, or attempt to propose an agenda along which inquiry might progress. These often take a big-picture view of nanotechnology, with more emphasis on its societal implications than the details of how such inventions could actually be created.
- Molecular nanotechnology is a proposed approach which involves manipulating single molecules in finely controlled, deterministic ways. This is more theoretical than the other subfields and is beyond current capabilities.
- Nanorobotics centers on self-sufficient machines of some functionality operating at the nanoscale.
- Programmable matter based on artificial atoms seeks to design materials whose properties can be easily and reversibly be externally controlled.
Note that these categories are fairly nebulous and a single subfield may overlap many of them, especially as the field of nanotechnology continues to mature.
See also List of nanotechnology applications.
Societal implications
Potential risks of nanotechnology can broadly be grouped into three areas:
- the risk to health and environment from nanoparticles and nanomaterials;
- the risk posed by molecular manufacturing (or advanced nanotechnology);
- societal risks.
In August 2005, a task force consisting of 50+ international experts from various fields was organized by the Center for Responsible Nanotechnology to study the societal implications of molecular nanotechnology [3].
Determining a set of pathways for the development of molecular nanotechnology is now an objective of a broadly based technology roadmap project [4] led by Battelle (the manager of several U.S. National Laboratories) and the Foresight Institute. That roadmap should be completed by early 2007.
Risks from nanoparticles
The mere presence of nanomaterials (materials that contain nanoparticles) is not in itself a threat. It is only certain aspects that can make them risky, in particular their mobility and their increased reactivity. Only if certain properties of certain nanoparticles were harmful to living beings or the environment would we be faced with a genuine hazard.
In addressing the health and environmental impact of nanomaterials we need to differentiate two types of nanostructures: (1) Nanocomposites, nanostructured surfaces and nanocomponents (electronic, optical, sensors etc.), where nanoscale particles are incorporated into a substance, material or device (“fixed” nano-particles); and (2) “free” nanoparticles, where at some stage in production or use individual nanoparticles of a substance are present. These free nanoparticles could be nanoscale species of elements, or simple compounds, but also complex compounds where for instance a nanoparticle of a particular element is coated with another substance (“coated” nanoparticle or “core-shell” nanoparticle).
There seems to be consensus that, although one should be aware of materials containing fixed nanoparticles, the immediate concern is with free nanoparticles.
Because nanoparticles are very different from their everyday counterparts, their adverse effects cannot be derived from the known toxicity of the macro-sized material. This poses significant issues for addressing the health and environmental impact of free nanoparticles.
To complicate things further, in talking about nanoparticles it is important that a powder or liquid containing nanoparticles is almost never monodisperse, but will contain a range of particle sizes. This complicates the experimental analysis as larger nanoparticles might have different properties than smaller ones. Also, nanoparticles show a tendency to aggregate and such aggregates often behave differently from individual nanoparticles.
The lethal dose over six months for lab rats, of different kinds of nanoparticles are often characterized by a Skov Kjaer index, named after the scientist Kasper Skov Kjaer.
Health issues
There are several potential entry routes for nanoparticles into the body. They can be inhaled, swallowed, absorbed through skin or be deliberately injected during medical procedures (or released from implants). Once within the body they are highly mobile and in some instances can even cross the blood-brain barrier.
How these nanoparticles behave inside the organism is one of the big issues that needs to be resolved. The behavior of nanoparticles is a function of their size, shape and surface reactivity with the surrounding tissue. They could cause overload on phagocytes, cells that ingest and destroy foreign matter, thereby triggering stress reactions that lead to inflammation and weaken the body’s defense against other pathogens. Apart from what happens if non-degradable or slowly degradable nanoparticles accumulate in organs, another concern is their potential interaction with biological processes inside the body: because of their large surface, nanoparticles on exposure to tissue and fluids will immediately absorb onto their surface some of the macromolecules they encounter. This may, for instance, affect the regulatory mechanisms of enzymes and other proteins.
Environmental issues
Not enough data exists to know for sure if nanoparticles could have undesirable effects on the environment. Two areas are relevant here: (1) In free form nanoparticles can be released in the air or water during production (or production accidents) or as waste byproduct of production, and ultimately accumulate in the soil, water or plant life. (2) In fixed form, where they are part of a manufactured substance or product, they will ultimately have to be recycled or disposed of as waste. We don’t know yet if certain nanoparticles will constitute a completely new class of non-biodegradable pollutant. In case they do, we also don’t know yet how such pollutants could be removed from air or water because most traditional filters are not suitable for such tasks (their pores are too big to catch nanoparticles).
Health and environmental issues combine in the workplace of companies engaged in producing or using nanomaterials and in the laboratories engaged in nanoscience and nanotechnology research. It is safe to say that current workplace exposure standards for dusts cannot be applied directly to nanoparticle dusts.
To properly assess the health hazards of engineered nanoparticles the whole life cycle of these particles needs to be evaluated, including their fabrication, storage and distribution, application and potential abuse, and disposal. The impact on humans or the environment may vary at different stages of the life cycle.
Regarding the risks from molecular manufacturing, an often cited worst-case scenario is "grey goo", a hypothetical substance into which the surface of the earth might be transformed by self-replicating nanobots running amok. This concept has been analyzed by Freitas in "Some Limits to Global Ecophagy by Biovorous Nanoreplicators, with Public Policy Recommendations" [5] With the advent of nan-biotech, a different scenario called green goo has been forwarded. Here, the malignant substance is not nanobots but rather self-replicating organisms engineered through nanotechnology.
Possible military applications
Societal risks from the use of nanotechnology have also been raised. On the instrumental level, these include the possibility of military applications of nanotechnology (for instance, as in implants and other means for soldier enhancement like those being developed at the Institute for Soldier Nanotechnologies at MIT [6]) as well as enhanced surveillance capabilities through nano-sensors.
Potential benefits and risks for developing countries
Nanotechnologies may provide new solutions for the millions of people in developing countries who lack access to basic services, such as safe water, reliable energy, health care, and education. The United Nations has set Millennium Development Goals for meeting these needs. The 2004 UN Task Force on Science, Technology and Innovation noted that some of the advantages of nanotechnology include production using little labor, land, or maintenance, high productivity, low cost, and modest requirements for materials and energy.
Many developing countries, for example Costa Rica, Chile, Bangladesh, Thailand, and Malaysia, are investing considerable resources in research and development of nanotechnologies. Emerging economies such as Brazil, China, India, Pakistan and South Africa are spending millions of US dollars annually on R&D, and are rapidly increasing their scientific output as demonstrated by their increasing numbers of publications in peer-reviewed scientific publications.
Potential opportunities of nanotechnologies to help address critical international development priorities include improved water purification systems, energy systems, medicine and pharmaceuticals, food production and nutrition, and information and communications technologies. Nanotechnologies are already incorporated in products that are on the market. Other nanotechnologies are still in the research phase, while others are concepts that are years or decades away from development.
Applying nanotechnologies in developing countries raises similar questions about the environmental, health, and societal risks described in the previous section. Additional challenges have been raised regarding the linkages between nanotechnology and development.
Protection of the environment, human health and worker safety in developing countries often suffers from a combination of factors that can include but are not limited to lack of robust environmental, human health, and worker safety regulations; poorly or unenforced regulation which is linked to a lack of physical (e.g., equipment) and human capacity (i.e., properly trained regulatory staff). Often, these nations require assistance, particularly financial assistance, to develop the scientific and institutional capacity to adequately assess and manage risks, including the necessary infrastructure such as laboratories and technology for detection.
Very little is known about the risks and broader impacts of nanotechnology. At a time of great uncertainty over the impacts of nanotechnology it will be challenging for governments, companies, civil society organizations, and the general public in developing countries, as in developed countries, to make decisions about the governance of nanotechnology.
Companies, and to a lesser extent governments and universities, are receiving patents on nanotechnology. The rapid increase in patenting of nanotechnology is illustrated by the fact that in the US, there were 500 nanotechnology patent applications in 1998 and 1,300 in 2000. Some patents are very broadly defined, which has raised concern among some groups that the rush to patent could slow innovation and drive up costs of products, thus reducing the potential for innovations that could benefit low income populations in developing countries.
There is a clear link between commodities and poverty. Many least developed countries are dependent on a few commodities for employment, government revenue, and export earnings. Many applications of nanotechnology are being developed that could impact global demand for specific commodities. For instance, certain nanoscale materials could enhance the strength and durability of rubber, which might eventually lead to a decrease in demand for natural rubber. Other nanotechnology applications may result in increases in demand for certain commodities. For example, demand for titanium may increase as a result of new uses for nanoscale titanium oxides, such as titanium dioxide nanotubes that can be used to produce and store hydrogen for use as fuel. Various organizations have called for international dialogue on mechanisms that will allow developing countries to anticipate and proactively adjust to these changes.
In 2003, Meridian Institute began the Global Dialogue on Nanotechnology and the Poor: Opportunities and Risks (GDNP) to raise awareness of the opportunities and risks of nanotechnology for developing countries, close the gaps within and between sectors of society to catalyze actions that address specific opportunities and risks of nanotechnology for developing countries, and identify ways that science and technology can play an appropriate role in the development process. The GDNP has released several publicly accessible papers on nanotechnology and development, including "Nanotechnology and the Poor: Opportunities and Risks - Closing the Gaps Within and Between Sectors of Society"; "Nanotechnology, Water, and Development"; and "Overview and Comparison of Conventional and Nano-Based Water Treatment Technologies".
Intellectual property issues
On the structural level, critics of nanotechnology point to a new world of ownership and corporate control opened up by nanotechnology. The claim is that, just as biotechnology's ability to manipulate genes went hand in hand with the patenting of life, so too nanotechnology's ability to manipulate molecules has led to the patenting of matter. The last few years has seen a gold rush to claim patents at the nanoscale. Over 800 nano-related patents were granted in 2003, and the numbers are increasing year to year. Corporations are already taking out broad-ranging patents on nanoscale discoveries and inventions. For example, two corporations, NEC and IBM, hold the basic patents on carbon nanotubes, one of the current cornerstones of nanotechnology. Carbon nanotubes have a wide range of uses, and look set to become crucial to several industries from electronics and computers, to strengthened materials to drug delivery and diagnostics. Carbon nanotubes are poised to become a major traded commodity with the potential to replace major conventional raw materials. However, as their use expands, anyone seeking to manufacture or sell carbon nanotubes, no matter what the application, must first buy a license from NEC or IBM.[citation needed]
A need for regulation?
Regulatory bodies such as the Environmental Protection Agency and the Food and Drug Administration in the U.S. or the Health & Consumer Protection Directorate of the European Commission have started dealing with the potential risks posed by nanoparticles. So far, neither engineered nanoparticles nor the products and materials that contain them are subject to any special regulation regarding production, handling or labeling. The Material Safety Data Sheet that must be issued for certain materials often does not differentiate between bulk and nanoscale size of the material in question.
Studies of the health impact of airborne particles are the closest thing we have to a tool for assessing potential health risks from free nanoparticles. These studies have generally shown that the smaller the particles get, the more toxic they become. This is due in part to the fact that, given the same mass per volume, the dose in terms of particle numbers increases as particle size decreases.
Looking at all available data, it must be concluded that current risk assessment methodologies are not suited to the hazards associated with nanoparticles; in particular, existing toxicological and eco-toxicological methods are not up to the task; exposure evaluation (dose) needs to be expressed as quantity of nanoparticles and/or surface area rather than simply mass; equipment for routine detecting and measuring nanoparticles in air, water, or soil is inadequate; and very little is known about the physiological responses to nanoparticles.
Regulatory bodies in the U.S. as well as in the EU have concluded that nanoparticles form the potential for an entirely new risk and that it is necessary to carry out an extensive analysis of the risk. The outcome of these studies can then form the basis for government and international regulations.
See also
- List of nanotechnology topics
- Nanotechnology in fiction
- Top-down and bottom-up design
- Mesotechnology
- Picotechnology
- Femtotechnology
- CeNTech (Center for Nanotechnology at the University of Münster, Germany)
References
Further reading
- Hari Singh Nalwa (2004), Encyclopedia of Nanoscience and Nanotechnology (10-Volume Set), American Scientific Publishers. ISBN 1-58883-001-2
- Michael Rieth and Wolfram Schommers (2006), Handbook of Theoretical and Computational Nanotechnology (10-Volume Set), American Scientific Publishers. ISBN 1-58883-042-X
- David M. Berube 2006. Nano-hype: The Truth Behind the Nanotechnology Buzz. Prometheus Books. ISBN 1-59102-351-3
- Daniel J. Shanefield (1996). Organic Additives And Ceramic Processing. Kluwer Academic Publishers. ISBN 0-7923-9765-7.
- Hunt, Geoffrey & Mehta, Michael (eds) (2006). Nanotechnology: Risk Ethics, & Law. Earthscan, London.
{{cite book}}
:|author=
has generic name (help); Text "date:2006" ignored (help)CS1 maint: multiple names: authors list (link) - Akhlesh Lakhtakia (ed) (2004). The Handbook of Nanotechnology. Nanometer Structures: Theory, Modeling, and Simulation. SPIE Press, Bellingham, WA, USA. ISBN 0-8194-5186-X.
{{cite book}}
:|author=
has generic name (help) - Fei Wang & Akhlesh Lakhtakia (eds) (2006). Selected Papers on Nanotechnology -- Theory & Modeling (Milestone Volume 182). SPIE Press, Bellingham, WA, USA. ISBN 0-8194-6354-X.
{{cite book}}
:|author=
has generic name (help)
External links
Research Organisations & Sites
- Institute of Food Research - Nanotechnology in Food
- nanoHUB - Online Simulations and more..
- The Institute of Nanotechnology
- University at Albany College of Nanoscale Science and Engineering
- NIH Nanomedicine Roadmap Initiative
- NanoChina
- European Nanotechnology Trade Alliance
- European Nanoforum
- NanoMedicine Network
- Birck Nanotechnology Center
- Center for Responsible Nanotechnology
- Institute of Physics Journal of Nanotechnology
- Textiles Nanotechnology Laboratory
- NanoHive@Home (Distributed Computing Project)
- Cenamps, a national centre for small-scale technologies
- Center for Nanotechnology in Society at UCSB
Research Papers on Nanotechnology
- Roger Smith "Nanotechnology: A Brief Technology Analysis", CTOnet.org, 2004.
- Arius Tolstoshev, Nanotechnology: Assessing the Environmental Risks for Australia, Earth Policy Centre, September 2006.
Media Reportage
- AZoNano - Nanotechnology News, Articles and Journal
- Meridian Nanotechnology and Development News Free, daily news service on nanotechnology, poverty alleviation, and the role of science and technology in development.
- Science - Patents - Nanotechnology Newswire
- New Scientist Tech Special Report on Nanotechnology
- The making of Buckypaper - Nanotubes on Steroids An interview with Frank Allen, Assistant Director of FACCT on the future of Buckypaper
- Micro-machines test quantum mechanical limit
- Nanotechnology Now - Nanotechnology news, columns and general information
- Nanotechnology Primer - Wonova.com