Jump to content

Deep-dose equivalent

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by InternetArchiveBot (talk | contribs) at 10:42, 21 July 2019 (Rescuing 1 sources and tagging 0 as dead. #IABot (v2.0beta15)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Deep-dose equivalent (DDE) is a measure of external radiation exposure defined by US regulations. It is reported alongside eye and shallow dose equivalents on typical US dosimetry reports. It represents the dose equivalent at a tissue depth of 1 cm (1000 mg/cm2) due to external whole-body exposure to ionizing radiation.[1]

Dose due to external radiation tends to decrease with depth because of the shielding effects of outer tissues. The reference depth of 1 cm essentially discounts alpha and beta radiation that are easily shielded by the skin, clothing, and bone surface, while taking minimal credit for any self-shielding from the more penetrating gamma rays. This makes the deep-dose equivalent a conservative measure of internal organ exposure to external radiation, while eye and skin exposure to external radiation must be accounted differently. Deep-dose equivalent does include any contribution from internal contamination.

References

  1. ^ 10 CFR 20.1003. US Nuclear Regulatory Commission. 2009.

See also

  • [1] - "The confusing world of radiation dosimetry" - M.A. Boyd, 2009, U.S. Environmental Protection Agency. An account of chronological differences between USA and ICRP dosimetry systems.