Jump to content

SYMPK

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by OAbot (talk | contribs) at 16:49, 16 April 2020 (Open access bot: doi added to citation with #oabot.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

SYMPK
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesSYMPK, SPK, SYM, symplekin, Pta1, symplekin scaffold protein
External IDsOMIM: 602388; MGI: 1915438; HomoloGene: 37969; GeneCards: SYMPK; OMA:SYMPK - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004819

NM_026605
NM_001360713

RefSeq (protein)

NP_004810

NP_001347642
NP_080881

Location (UCSC)Chr 19: 45.82 – 45.86 MbChr 7: 18.76 – 18.79 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Symplekin is a protein that in humans is encoded by the SYMPK gene.[5][6]

Function

This gene encodes a nuclear protein that functions in the regulation of polyadenylation and promotes gene expression. The protein forms a high-molecular weight complex with components of the polyadenylation machinery. It is thought to serve as a scaffold for recruiting regulatory factors to the polyadenylation complex. It also participates in 3'-end maturation of histone mRNAs, which do not undergo polyadenylation. The protein also localizes to the cytoplasmic plaques of tight junctions in some cell types.[6]

Model organisms

Model organisms have been used in the study of SYMPK function. A conditional knockout mouse line, called Sympktm1a(EUCOMM)Wtsi[11][12] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[13][14][15]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[9][16] Twenty five tests were carried out on mutant mice and two significant abnormalities were observed.[9] No homozygous mutant embryos were identified during gestation, and thus none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice; no additional significant abnormalities were observed in these animals.[9]

Interactions

SYMPK has been shown to interact with CSTF2[17], HSF1[18] and Oct4[19]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000125755Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000023118Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Ueki K, Ramaswamy S, Billings SJ, Mohrenweiser HW, Louis DN (May 1997). "Chromosomal localization to 19q13.3, partial genomic structure and 5' cDNA sequence of the human symplekin gene". Somatic Cell and Molecular Genetics. 23 (3): 229–31. doi:10.1007/BF02721375. PMID 9330635.
  6. ^ a b "Entrez Gene: SYMPK symplekin".
  7. ^ "Salmonella infection data for Sympk". Wellcome Trust Sanger Institute.
  8. ^ "Citrobacter infection data for Sympk". Wellcome Trust Sanger Institute.
  9. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  10. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  11. ^ "International Knockout Mouse Consortium".
  12. ^ "Mouse Genome Informatics".
  13. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  14. ^ Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  15. ^ Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  16. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  17. ^ Takagaki Y, Manley JL (Mar 2000). "Complex protein interactions within the human polyadenylation machinery identify a novel component". Molecular and Cellular Biology. 20 (5): 1515–25. doi:10.1128/MCB.20.5.1515-1525.2000. PMC 85326. PMID 10669729.
  18. ^ Xing H, Mayhew CN, Cullen KE, Park-Sarge OK, Sarge KD (Mar 2004). "HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with symplekin". The Journal of Biological Chemistry. 279 (11): 10551–5. doi:10.1074/jbc.M311719200. PMID 14707147.
  19. ^ Yu J, Lu W, Ge T, et al., (2019). "Interaction Between Sympk and Oct4 Promotes Mouse Embryonic Stem Cell Proliferation". STEM CELLS;37(6): 743-753 https://doi.org/10.1002/stem.2992

Further reading