CNP / ACP nuclear reactors

From Wikipedia, the free encyclopedia
(Redirected from ACP1000)

The CNP Generation II nuclear reactors (and Generation III successor ACP) were a series of nuclear reactors developed by China National Nuclear Corporation (CNNC), and are predecessors of the more current Hualong One design.


The CNP-300 is a pressurized water nuclear reactor developed by the China National Nuclear Corporation (CNNC).

It is China's first domestic commercial nuclear reactor design, with development beginning in the 1970s based on a nuclear submarine reactor design.[1][2]

The reactor has a thermal capacity of 999 MW and a gross electrical capacity of 325 MW, with a net output of about 300 MWe and a single-loop design and .[3]

The first CNP-300 unit started operations in Qinshan Nuclear Power Plant in 1991.[1]

The CNP-300 was the first Chinese nuclear reactor to be exported, with the installation of the first unit at Chashma Nuclear Power Plant in Pakistan.[4] The unit began operation in 2000. Another unit was completed in 2011 and two more units began operation in 2016 and 2017 at the same plant.


The CNP-600 is a generation II reactor pressurized water nuclear reactor developed by the China National Nuclear Corporation (CNNC).

It is based both on China's first commercial domestic nuclear reactor design, the CNP-300[2] and the M310 reactor design used in Daya Bay Nuclear Power Plant.[5][6]

The reactor has a capacity of 650 MW, a 2-loop design and 121 fuel assemblies. Other features include single containment, 40-year design life and a 12-month fuel cycle.

The first CNP-600 unit began operation at Qinshan Nuclear Power Plant in 2002, with other 3 units coming online between 2004 and 2011. There have been built two further CNP-600 reactors at Changjiang Nuclear Power Plant, which went into regular operation in 2015 and 2016.


From the CNP-600, CNNC developed a Generation III successor named the ACP-600.

Similar to the CNP-600, the reactor will contain 121 fuel assemblies, but will be designed to operate on a longer 18-24 month fuel cycle. Other features include double containment, active and passive safety systems, improved response capability in the case of a station blackout event, digital instrumentation and control, and a 60-year design life.

No examples of this reactor type had been built.[7]


CNNC's largest CNP development was a three-loop 1000 MW version of the design designated CNP-1000. Work on the project began in the 1990s with the help of vendors Westinghouse and Framatome (now AREVA).[7]

The first CNP-1000 units were due to be built at Fangjiashan (the same site as Qinshan). However, the design was subsequently changed to CGN's CPR-1000. Later, 4 units of the CNP-1000 were later built at Fuqing NPP. Further work on the CNP-1000 was stopped in favour of the ACP-1000.[7]


In 2013, CNNC announced that it had independently developed the ACP-1000, with Chinese authorities claiming full intellectual property rights over the design.

The reactor has a gross output of 1100MW, a 3-loop design and 177 fuel assemblies (12 ft active length), and is designed to operate on an 18-month refuelling cycle for economic competitiveness.[7]

As a result of the success of the Hualong One project, no ACP-1000 reactors have been built to date. CNNC had originally planned to use the ACP-1000 in Fuqing reactor 5 and 6 but switched over to the Hualong One.[7]

Merger of ACP-1000 and ACPR-1000 into Hualong One[edit]

Since 2011, CNNC has been progressively merging its ACP-1000 nuclear power station design[8] with the CGN ACPR-1000 design, while allowing some differences, under direction of the Chinese nuclear regulator. Both are three-loop designs originally based on the same French M310 design used in Daya Bay with 157 fuel assemblies, but went through different development processes (CNNC's ACP-1000 has a more domestic design with 177 fuel assemblies while CGN's ACPR-1000 is a closer copy with 157 fuel assemblies).[9] In early 2014, it was announced that the merged design was moving from preliminary design to detailed design. Power output will be 1150 MWe, with a 60-year design life, and would use a combination of passive and active safety systems with a double containment. CNNC's 177 fuel assembly design was retained.

Initially the merged design was to be called the ACC-1000,[10][11][12] but ultimately it was named Hualong One. In August 2014 the Chinese nuclear regulator review panel classified the design as a Generation III reactor design, with independently owned intellectual property rights.[13][14] As a result of the success of the merger, ACP-1000 and ACPR-1000 designs are no longer being offered.

See also[edit]


  1. ^ a b "Chinese reactor design evolution - Nuclear Engineering International". Retrieved 28 May 2018.
  2. ^ a b Biello, David (29 March 2011). "China forges ahead with nuclear energy". Nature. doi:10.1038/news.2011.194. Retrieved 28 May 2018.
  3. ^ "Status of Small and Medium Sized Reactor Designs" (PDF). International Atomic Energy Agency. September 2011. Retrieved 28 May 2018.
  4. ^ "UxC: SMR Design Profile". Retrieved 29 May 2018.
  5. ^ "China's commercial reactors" (PDF). Nuclear Engineering International. Retrieved 29 May 2018.
  6. ^ (IAEA), International Atomic Energy Agency. "- Nuclear Power - IAEA". Retrieved 29 May 2018.
  7. ^ a b c d e "Chinese reactor design evolution - Nuclear Engineering International".
  8. ^ Wang Yanjun; et al. (22 May 2013). "I&C application status in NPPs in China" (PDF). China Nuclear Power Engineering Co. Archived (PDF) from the original on 12 October 2013. Retrieved 11 October 2013.
  9. ^ "Nuclear Power in China". World Nuclear Association. 24 September 2013. Archived from the original on 3 November 2013. Retrieved 30 September 2013.
  10. ^ "CGN Chairman He Yu Makes Proposal for Promoting Export of China-designed Nuclear Power Technology ACC1000". CGN. 6 March 2014. Archived from the original on 8 April 2014. Retrieved 7 April 2014.
  11. ^ "Nuclear Power in China". World Nuclear Association. April 2014. Archived from the original on 3 November 2013. Retrieved 7 April 2014.
  12. ^ Caroline Peachey (22 May 2014). "Chinese reactor design evolution". Nuclear Engineering International. Archived from the original on 28 December 2019. Retrieved 23 May 2014.
  13. ^ "China's new nuclear baby". World Nuclear News. 2 September 2014. Archived from the original on 8 September 2019. Retrieved 9 March 2015.
  14. ^ "Independent Gen-III Hualong-1 reactor technology passes national review". CGN. 22 August 2014. Archived from the original on 2 April 2015. Retrieved 9 March 2015.