Aldehyde ferredoxin oxidoreductase

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Aldehyde ferredoxin oxidoreductase
EC number
CAS number 138066-90-7
IntEnz IntEnz view
ExPASy NiceZyme view
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
PDB 1aor EBI.jpg
structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase
Symbol AFOR_N
Pfam PF02730
InterPro IPR013983
SCOP 1aor
Symbol AFOR_C
Pfam PF01314
InterPro IPR001203
SCOP 1aor

In enzymology, an aldehyde ferredoxin oxidoreductase (EC is an enzyme that catalyzes the chemical reaction

an aldehyde + H2O + 2 oxidized ferredoxin \rightleftharpoons an acid + 2 H+ + 2 reduced ferredoxin

The 3 substrates of this enzyme are aldehyde, H2O, and oxidized ferredoxin, whereas its 3 products are acid, H+, and reduced ferredoxin.

This enzyme belongs to the family of oxidoreductases, specifically those acting on the aldehyde or oxo group of donor with an iron-sulfur protein as acceptor. The systematic name of this enzyme class is aldehyde:ferredoxin oxidoreductase. This enzyme is also called AOR.

Enzymes of the aldehyde ferredoxin oxidoreductase (AOR) family contain a tungsten cofactor and an 4Fe4S cluster.[1][2] This family includes AOR, formaldehyde ferredoxin oxidoreductase (FOR), glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR), all isolated from hyperthermophilic archea;[1] carboxylic acid reductase found in clostridia;[3] and hydroxycarboxylate viologen oxidoreductase from Proteus vulgaris, the sole member of the AOR family containing molybdenum.[4] GAPOR may be involved in glycolysis,[5] but the functions of the other proteins are not yet clear. AOR has been proposed to be the primary enzyme responsible for oxidising the aldehydes that are produced by the 2-keto acid oxidoreductases.[6]


  1. ^ a b Kisker C, Schindelin H, Rees DC (1997). "Molybdenum-cofactor-containing enzymes: structure and mechanism". Annu. Rev. Biochem. 66: 233–67. doi:10.1146/annurev.biochem.66.1.233. PMID 9242907. 
  2. ^ Kletzin A, Adams MW (March 1996). "Tungsten in biological systems". FEMS Microbiol. Rev. 18 (1): 5–63. doi:10.1111/j.1574-6976.1996.tb00226.x. PMID 8672295. 
  3. ^ White H, Strobl G, Feicht R, Simon H (September 1989). "Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes". Eur. J. Biochem. 184 (1): 89–96. doi:10.1111/j.1432-1033.1989.tb14993.x. PMID 2550230. 
  4. ^ Trautwein T, Krauss F, Lottspeich F, Simon H (June 1994). "The (2R)-hydroxycarboxylate-viologen-oxidoreductase from Proteus vulgaris is a molybdenum-containing iron-sulphur protein". Eur. J. Biochem. 222 (3): 1025–32. doi:10.1111/j.1432-1033.1994.tb18954.x. PMID 8026480. 
  5. ^ Mukund S, Adams MW (April 1995). "Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus". J. Biol. Chem. 270 (15): 8389–92. doi:10.1074/jbc.270.15.8389. PMID 7721730. 
  6. ^ Ma K, Hutchins A, Sung SJ, Adams MW (September 1997). "Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase". Proc. Natl. Acad. Sci. U.S.A. 94 (18): 9608–13. doi:10.1073/pnas.94.18.9608. PMC 23233. PMID 9275170. 

Further reading[edit]

  • Mukund S, Adams MW (1991). "The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway". J. Biol. Chem. 266 (22): 14208–16. PMID 1907273. 
  • Johnson JL, Rajagopalan KV, Mukund S, Adams MW (1993). "Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic Archaea". J. Biol. Chem. 268 (7): 4848–52. PMID 8444863. 
  • Roy R, Menon AL, Adams MW (2001). "Aldehyde oxidoreductases from Pyrococcus furiosus". Methods Enzymol. 331: 132–44. doi:10.1016/S0076-6879(01)31052-2. PMID 11265456. 

This article incorporates text from the public domain Pfam and InterPro IPR013983