Jump to content

Β-Cryptoxanthin

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Cydebot (talk | contribs) at 00:09, 30 December 2011 (Robot - Removing category E numbers per CFD at Wikipedia:Categories for discussion/Log/2011 December 19.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Cryptoxanthin[1]
Cryptoxanthin
Names
IUPAC names
(R)-3,5,5-Trimethyl-4-[3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-
1-enyl)-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-cyclohex-3-enol
Other names
(3R)-β,β-Caroten-3-ol
Cryptoxanthol
Caricaxanthin
(R)-all-trans-β-Caroten-3-ol
Hydroxy-β-carotene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
E number E161c (colours)
  • InChI=1S/C40H56O/c1-30(18-13-20-32(3)23-25-37-34(5)22-15-27-39(37,7)8)16-11-12-17-31(2)19-14-21-33(4)24-26-38-35(6)28-36(41)29-40(38,9)10/h11-14,16-21,23-26,36,41H,15,22,27-29H2,1-10H3/b12-11+,18-13+,19-14+,25-23+,26-24+,30-16+,31-17+,32-20+,33-21+/t36-/m1/s1 checkY
    Key: DMASLKHVQRHNES-FKKUPVFPSA-N checkY
  • InChI=1/C40H56O/c1-30(18-13-20-32(3)23-25-37-34(5)22-15-27-39(37,7)8)16-11-12-17-31(2)19-14-21-33(4)24-26-38-35(6)28-36(41)29-40(38,9)10/h11-14,16-21,23-26,36,41H,15,22,27-29H2,1-10H3/b12-11+,18-13+,19-14+,25-23+,26-24+,30-16+,31-17+,32-20+,33-21+/t36-/m1/s1
    Key: DMASLKHVQRHNES-FKKUPVFPBQ
  • O[C@@H]2C/C(=C(/C=C/C(=C/C=C/C(=C/C=C/C=C(/C=C/C=C(/C=C/C1=C(\C)CCCC1(C)C)C)C)C)C)C(C)(C)C2)C
Properties
C40H56O
Molar mass 552.85 g/mol
Melting point 169 °C
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Cryptoxanthin is a natural carotenoid pigment. It has been isolated from a variety of sources including the petals and flowers of plants in the genus Physalis, orange rind, papaya, egg yolk, butter, apples, and bovine blood serum.[1]

Chemistry

In terms of structure, cryptoxanthin is closely related to β-carotene, with only the addition of a hydroxyl group. It is a member of the class of carotenoids known as xanthophylls.

In a pure form, cryptoxanthin is a red crystalline solid with a metallic luster. It is freely soluble in chloroform, benzene, pyridine, and carbon disulfide.[1]

Biology and medicine

In the human body, cryptoxanthin is converted to vitamin A (retinol) and is, therefore, considered a provitamin A. As with other carotenoids, cryptoxanthin is an antioxidant and may help prevent free radical damage to cells and DNA, as well as stimulate the repair of oxidative damage to DNA.[2]

Recent findings of an inverse association between β-cryptoxanthin and lung cancer risk in several observational epidemiological studies suggest that β-cryptoxanthin could potentially act as a chemopreventive agent against lung cancer.[3] On the other hand, in the Grade IV histology group of adult patients diagnosed with malignant glioma, moderate to high intake of cryptoxanthin (for second tertile and for highest tertile compared to lowest tertile, in all cases) was associated with poorer survival.[4]

Other uses

Cryptoxanthin is also used as a substance to colour food products (INS number 161c). It is not approved for use in the EU[5] or USA[citation needed]; however, it is approved for use in Australia and New Zealand.[6]

References

  1. ^ a b c Merck Index, 11th Edition, 2612.
  2. ^ Lorenzo, Y.; Azqueta, A.; Luna, L.; Bonilla, F.; Dominguez, G.; Collins, A. R. (2008). "The carotenoid  β-cryptoxanthin stimulates the repair of DNA oxidation damage in addition to acting as an antioxidant in human cells". Carcinogenesis. 30 (2): 308–314. doi:10.1093/carcin/bgn270. PMID 19056931. {{cite journal}}: no-break space character in |title= at position 16 (help)
  3. ^ Lian, Fuzhi; Hu, Kang-Quan; Russell, Robert M.; Wang, Xiang-Dong (2006). "β-Cryptoxanthin suppresses the growth of immortalized human bronchial epithelial cells and non-small-cell lung cancer cells and up-regulates retinoic acid receptor b expression". International Journal of Cancer. 119 (9): 2084–2089. doi:10.1002/ijc.22111.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Delorenze, Gerald N; McCoy, Lucie; Tsai, Ai-Lin; Quesenberry, Charles P; Rice, Terri; Il'yasova, Dora; Wrensch, Margaret (2010,). "Daily intake of antioxidants in relation to survival among adult patients diagnosed with malignant glioma". BMC Cancer. 10: 215. doi:10.1186/1471-2407-10-215. PMC 2880992. PMID 20482871. {{cite journal}}: Check date values in: |year= (help)CS1 maint: extra punctuation (link) CS1 maint: unflagged free DOI (link)
  5. ^ UK Food Standards Agency: "Current EU approved additives and their E Numbers". Retrieved 2011-10-27.
  6. ^ Australia New Zealand Food Standards Code"Standard 1.2.4 - Labelling of ingredients". Retrieved 2011-10-27.