This article is about a particular family of continuous distributions referred to as the generalized Pareto distribution. For the hierarchy of generalized Pareto distributions, see
Pareto distribution .
Generalized Pareto distribution
Probability density function
PDF for
μ
=
0
{\displaystyle \mu =0}
and different values of
σ
{\displaystyle \sigma }
and
ξ
{\displaystyle \xi }
Parameters
μ
∈
(
−
∞
,
∞
)
{\displaystyle \mu \in (-\infty ,\infty )\,}
location (real )
σ
∈
(
0
,
∞
)
{\displaystyle \sigma \in (0,\infty )\,}
scale (real)
ξ
∈
(
−
∞
,
∞
)
{\displaystyle \xi \in (-\infty ,\infty )\,}
shape (real) Support
x
⩾
μ
(
ξ
⩾
0
)
{\displaystyle x\geqslant \mu \,\;(\xi \geqslant 0)}
μ
⩽
x
⩽
μ
−
σ
/
ξ
(
ξ
<
0
)
{\displaystyle \mu \leqslant x\leqslant \mu -\sigma /\xi \,\;(\xi <0)}
PDF
1
σ
(
1
+
ξ
z
)
−
(
1
/
ξ
+
1
)
{\displaystyle {\frac {1}{\sigma }}(1+\xi z)^{-(1/\xi +1)}}
where
z
=
x
−
μ
σ
{\displaystyle z={\frac {x-\mu }{\sigma }}}
CDF
1
−
(
1
+
ξ
z
)
−
1
/
ξ
{\displaystyle 1-(1+\xi z)^{-1/\xi }\,}
Mean
μ
+
σ
1
−
ξ
(
ξ
<
1
)
{\displaystyle \mu +{\frac {\sigma }{1-\xi }}\,\;(\xi <1)}
Median
μ
+
σ
(
2
ξ
−
1
)
ξ
{\displaystyle \mu +{\frac {\sigma (2^{\xi }-1)}{\xi }}}
Mode
{\displaystyle }
Variance
σ
2
(
1
−
ξ
)
2
(
1
−
2
ξ
)
(
ξ
<
1
/
2
)
{\displaystyle {\frac {\sigma ^{2}}{(1-\xi )^{2}(1-2\xi )}}\,\;(\xi <1/2)}
Skewness
2
(
1
+
ξ
)
(
1
−
2
ξ
)
(
1
−
3
ξ
)
(
ξ
<
1
/
3
)
{\displaystyle {\frac {2(1+\xi ){\sqrt {(}}1-{2\xi })}{(1-3\xi )}}\,\;(\xi <1/3)}
Excess kurtosis
3
(
1
−
2
ξ
)
(
2
ξ
2
+
ξ
+
3
)
(
1
−
3
ξ
)
(
1
−
4
ξ
)
−
3
(
ξ
<
1
/
4
)
{\displaystyle {\frac {3(1-2\xi )(2\xi ^{2}+\xi +3)}{(1-3\xi )(1-4\xi )}}-3\,\;(\xi <1/4)}
Entropy
{\displaystyle }
MGF
e
θ
μ
∑
j
=
0
∞
[
(
θ
σ
)
j
∏
k
=
0
j
(
1
−
k
ξ
)
]
,
(
k
ξ
<
1
)
{\displaystyle e^{\theta \mu }\,\sum _{j=0}^{\infty }\left[{\frac {(\theta \sigma )^{j}}{\prod _{k=0}^{j}(1-k\xi )}}\right],\;(k\xi <1)}
CF
e
i
t
μ
∑
j
=
0
∞
[
(
i
t
σ
)
j
∏
k
=
0
j
(
1
−
k
ξ
)
]
,
(
k
ξ
<
1
)
{\displaystyle e^{it\mu }\,\sum _{j=0}^{\infty }\left[{\frac {(it\sigma )^{j}}{\prod _{k=0}^{j}(1-k\xi )}}\right],\;(k\xi <1)}
In statistics , the generalized Pareto distribution (GPD) is a family of continuous probability distributions . It is often used to model the tails of another distribution. It is specified by three parameters: location
μ
{\displaystyle \mu }
, scale
σ
{\displaystyle \sigma }
, and shape
ξ
{\displaystyle \xi }
.[ 1] [ 2] Sometimes it is specified by only scale and shape[ 3] and sometimes only by its shape parameter. Some references give the shape parameter as
κ
=
−
ξ
{\displaystyle \kappa =-\xi \,}
.[ 4]
Definition
The standard cumulative distribution function (cdf) of the GPD is defined by[ 5]
F
ξ
(
z
)
=
{
1
−
(
1
+
ξ
z
)
−
1
/
ξ
for
ξ
≠
0
,
1
−
e
−
z
for
ξ
=
0.
{\displaystyle F_{\xi }(z)={\begin{cases}1-\left(1+\xi z\right)^{-1/\xi }&{\text{for }}\xi \neq 0,\\1-e^{-z}&{\text{for }}\xi =0.\end{cases}}}
where the support is
z
≥
0
{\displaystyle z\geq 0}
for
ξ
≥
0
{\displaystyle \xi \geq 0}
and
0
≤
z
≤
−
1
/
ξ
{\displaystyle 0\leq z\leq -1/\xi }
for
ξ
<
0
{\displaystyle \xi <0}
.
f
ξ
(
z
)
=
{
(
ξ
z
+
1
)
−
ξ
+
1
ξ
for
ξ
≠
0
,
e
−
z
for
ξ
=
0.
{\displaystyle f_{\xi }(z)={\begin{cases}(\xi z+1)^{-{\frac {\xi +1}{\xi }}}&{\text{for }}\xi \neq 0,\\e^{-z}&{\text{for }}\xi =0.\end{cases}}}
Differential equation
The cdf of the GPD is a solution of the following differential equation :
{
(
ξ
z
+
1
)
f
ξ
′
(
z
)
+
(
ξ
+
1
)
f
ξ
(
z
)
=
0
,
f
ξ
(
0
)
=
1
}
{\displaystyle \left\{{\begin{array}{l}(\xi z+1)f_{\xi }'(z)+(\xi +1)f_{\xi }(z)=0,\\f_{\xi }(0)=1\end{array}}\right\}}
Characterization
The related location-scale family of distributions is obtained by replacing the argument z by
x
−
μ
σ
{\displaystyle {\frac {x-\mu }{\sigma }}}
and adjusting the support accordingly: The cumulative distribution function is
F
(
ξ
,
μ
,
σ
)
(
x
)
=
{
1
−
(
1
+
ξ
(
x
−
μ
)
σ
)
−
1
/
ξ
for
ξ
≠
0
,
1
−
exp
(
−
x
−
μ
σ
)
for
ξ
=
0.
{\displaystyle F_{(\xi ,\mu ,\sigma )}(x)={\begin{cases}1-\left(1+{\frac {\xi (x-\mu )}{\sigma }}\right)^{-1/\xi }&{\text{for }}\xi \neq 0,\\1-\exp \left(-{\frac {x-\mu }{\sigma }}\right)&{\text{for }}\xi =0.\end{cases}}}
for
x
⩾
μ
{\displaystyle x\geqslant \mu }
when
ξ
⩾
0
{\displaystyle \xi \geqslant 0\,}
, and
μ
⩽
x
⩽
μ
−
σ
/
ξ
{\displaystyle \mu \leqslant x\leqslant \mu -\sigma /\xi }
when
ξ
<
0
{\displaystyle \xi <0}
, where
μ
∈
R
{\displaystyle \mu \in \mathbb {R} }
,
σ
>
0
{\displaystyle \sigma >0}
, and
ξ
∈
R
{\displaystyle \xi \in \mathbb {R} }
.
The probability density function (pdf) is
f
(
ξ
,
μ
,
σ
)
(
x
)
=
1
σ
(
1
+
ξ
(
x
−
μ
)
σ
)
(
−
1
ξ
−
1
)
{\displaystyle f_{(\xi ,\mu ,\sigma )}(x)={\frac {1}{\sigma }}\left(1+{\frac {\xi (x-\mu )}{\sigma }}\right)^{\left(-{\frac {1}{\xi }}-1\right)}}
,
or equivalently
f
(
ξ
,
μ
,
σ
)
(
x
)
=
σ
1
ξ
(
σ
+
ξ
(
x
−
μ
)
)
1
ξ
+
1
{\displaystyle f_{(\xi ,\mu ,\sigma )}(x)={\frac {\sigma ^{\frac {1}{\xi }}}{\left(\sigma +\xi (x-\mu )\right)^{{\frac {1}{\xi }}+1}}}}
,
again, for
x
⩾
μ
{\displaystyle x\geqslant \mu }
when
ξ
⩾
0
{\displaystyle \xi \geqslant 0}
, and
μ
⩽
x
⩽
μ
−
σ
/
ξ
{\displaystyle \mu \leqslant x\leqslant \mu -\sigma /\xi }
when
ξ
<
0
{\displaystyle \xi <0}
.
The pdf is a solution of the following differential equation :
{
f
′
(
x
)
(
−
μ
ξ
+
σ
+
ξ
x
)
+
(
ξ
+
1
)
f
(
x
)
=
0
,
f
(
0
)
=
(
1
−
μ
ξ
σ
)
−
1
ξ
−
1
σ
}
{\displaystyle \left\{{\begin{array}{l}f'(x)(-\mu \xi +\sigma +\xi x)+(\xi +1)f(x)=0,\\f(0)={\frac {\left(1-{\frac {\mu \xi }{\sigma }}\right)^{-{\frac {1}{\xi }}-1}}{\sigma }}\end{array}}\right\}}
Characteristic and Moment Generating Functions
The characteristic and moment generating functions are derived and skewness and kurtosis are obtained from MGF by Muraleedharan and Guedes Soares[ 6]
Special cases
If the shape
ξ
{\displaystyle \xi }
and location
μ
{\displaystyle \mu }
are both zero, the GPD is equivalent to the exponential distribution .
With shape
ξ
>
0
{\displaystyle \xi >0}
and location
μ
=
σ
/
ξ
{\displaystyle \mu =\sigma /\xi }
, the GPD is equivalent to the Pareto distribution with scale
x
m
=
σ
/
ξ
{\displaystyle x_{m}=\sigma /\xi }
and shape
α
=
1
/
ξ
{\displaystyle \alpha =1/\xi }
.
Generating generalized Pareto random variables
If U is uniformly distributed on
(0, 1], then
X
=
μ
+
σ
(
U
−
ξ
−
1
)
ξ
∼
GPD
(
μ
,
σ
,
ξ
≠
0
)
{\displaystyle X=\mu +{\frac {\sigma (U^{-\xi }-1)}{\xi }}\sim {\mbox{GPD}}(\mu ,\sigma ,\xi \neq 0)}
and
X
=
μ
−
σ
ln
(
U
)
∼
GPD
(
μ
,
σ
,
ξ
=
0
)
.
{\displaystyle X=\mu -\sigma \ln(U)\sim {\mbox{GPD}}(\mu ,\sigma ,\xi =0).}
Both formulas are obtained by inversion of the cdf.
In Matlab Statistics Toolbox, you can easily use "gprnd" command to generate generalized Pareto random numbers.
See also
References
^ Coles, Stuart (2001-12-12). An Introduction to Statistical Modeling of Extreme Values . Springer. p. 75. ISBN 9781852334598 .
^ Dargahi-Noubary, G. R. (1989). "On tail estimation: An improved method". Mathematical Geology . 21 (8): 829–842. doi :10.1007/BF00894450 .
^ Hosking, J. R. M.; Wallis, J. R. (1987). "Parameter and Quantile Estimation for the Generalized Pareto Distribution". Technometrics . 29 (3): 339–349. doi :10.2307/1269343 .
^ Davison, A. C. (1984-09-30). "Modelling Excesses over High Thresholds, with an Application". In de Oliveira, J. Tiago (ed.). Statistical Extremes and Applications . Kluwer. p. 462. ISBN 9789027718044 .
^ Embrechts, Paul; Klüppelberg, Claudia; Mikosch, Thomas (1997-01-01). Modelling extremal events for insurance and finance . p. 162. ISBN 9783540609315 .
^ Muraleedharan, G.; C, Guedes Soares (2014). "Characteristic and Moment Generating Functions of Generalised Pareto(GP3) and Weibull Distributions". Journal of Scientific Research and Reports . 3 (14): 1861–1874. doi :10.9734/JSRR/2014/10087 .
Further reading
External links
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families
Template:Common univariate probability distributions