# Pentellated 7-simplexes

(Redirected from Pentisteritruncated 7-simplex)
 7-simplex Pentellated 7-simplex Pentitruncated 7-simplex Penticantellated 7-simplex Penticantitruncated 7-simplex Pentiruncinated 7-simplex Pentiruncitruncated 7-simplex Pentiruncicantellated 7-simplex Pentiruncicantitruncated 7-simplex Pentistericated 7-simplex Pentisteritruncated 7-simplex Pentistericantellated 7-simplex Pentistericantitruncated 7-simplex Pentisteriruncinated 7-simplex Pentisteriruncitruncated 7-simplex Pentisteriruncicantellated 7-simplex Pentisteriruncicantitruncated 7-simplex

In seven-dimensional geometry, a pentellated 7-simplex is a convex uniform 7-polytope with 5th order truncations (pentellation) of the regular 7-simplex.

There are 16 unique pentellations of the 7-simplex with permutations of truncations, cantellations, runcinations, and sterications.

## Pentellated 7-simplex

Pentellated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 1260
Vertices 168
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Small terated octaexon (acronym: seto) (Jonathan Bowers)[1]

### Coordinates

The vertices of the pentellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,1,1,1,2). This construction is based on facets of the pentellated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Pentitruncated 7-simplex

pentitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,1,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 5460
Vertices 840
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Teritruncated octaexon (acronym: teto) (Jonathan Bowers)[2]

### Coordinates

The vertices of the pentitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,1,1,2,3). This construction is based on facets of the pentitruncated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Penticantellated 7-simplex

Penticantellated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,2,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 11760
Vertices 1680
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Terirhombated octaexon (acronym: tero) (Jonathan Bowers)[3]

### Coordinates

The vertices of the penticantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,1,2,2,3). This construction is based on facets of the penticantellated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Penticantitruncated 7-simplex

penticantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Terigreatorhombated octaexon (acronym: tegro) (Jonathan Bowers)[4]

### Coordinates

The vertices of the penticantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,1,2,3,4). This construction is based on facets of the penticantitruncated 8-orthoplex.

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Pentiruncinated 7-simplex

pentiruncinated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,3,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 10920
Vertices 1680
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Teriprismated octaexon (acronym: tepo) (Jonathan Bowers)[5]

### Coordinates

The vertices of the pentiruncinated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,2,2,2,3). This construction is based on facets of the pentiruncinated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Pentiruncitruncated 7-simplex

pentiruncitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,1,3,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 27720
Vertices 5040
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Teriprismatotruncated octaexon (acronym: tapto) (Jonathan Bowers)[6]

### Coordinates

The vertices of the pentiruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,2,2,3,4). This construction is based on facets of the pentiruncitruncated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Pentiruncicantellated 7-simplex

pentiruncicantellated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,2,3,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 25200
Vertices 5040
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Teriprismatorhombated octaexon (acronym: tapro) (Jonathan Bowers)[7]

### Coordinates

The vertices of the pentiruncicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,2,3,3,4). This construction is based on facets of the pentiruncicantellated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Pentiruncicantitruncated 7-simplex

pentiruncicantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,3,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 45360
Vertices 10080
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Terigreatoprismated octaexon (acronym: tegapo) (Jonathan Bowers)[8]

### Coordinates

The vertices of the pentiruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,2,3,4,5). This construction is based on facets of the pentiruncicantitruncated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Pentistericated 7-simplex

pentistericated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,4,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 4200
Vertices 840
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Tericellated octaexon (acronym: teco) (Jonathan Bowers)[9]

### Coordinates

The vertices of the pentistericated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,2,2,3). This construction is based on facets of the pentistericated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Pentisteritruncated 7-simplex

pentisteritruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,1,4,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 15120
Vertices 3360
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Tericellitruncated octaexon (acronym: tecto) (Jonathan Bowers)[10]

### Coordinates

The vertices of the pentisteritruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,2,2,3,4,4). This construction is based on facets of the pentisteritruncated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Pentistericantellated 7-simplex

pentistericantellated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,2,4,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 25200
Vertices 5040
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Tericellirhombated octaexon (acronym: tecro) (Jonathan Bowers)[11]

### Coordinates

The vertices of the pentistericantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,2,2,3,3,4). This construction is based on facets of the pentistericantellated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Pentistericantitruncated 7-simplex

pentistericantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,4,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 40320
Vertices 10080
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Tericelligreatorhombated octaexon (acronym: tecagro) (Jonathan Bowers)[12]

### Coordinates

The vertices of the pentistericantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,2,2,3,4,5). This construction is based on facets of the pentistericantitruncated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Pentisteriruncinated 7-simplex

Pentisteriruncinated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,3,4,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 15120
Vertices 3360
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Bipenticantitruncated 7-simplex as t1,2,3,6{3,3,3,3,3,3}
• Tericelliprismated octaexon (acronym: tacpo) (Jonathan Bowers)[13]

### Coordinates

The vertices of the pentisteriruncinated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,2,3,3,3,4). This construction is based on facets of the pentisteriruncinated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

## Pentisteriruncitruncated 7-simplex

pentisteriruncitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,1,3,4,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 40320
Vertices 10080
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Tericelliprismatotruncated octaexon (acronym: tacpeto) (Jonathan Bowers)[14]

### Coordinates

The vertices of the pentisteriruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,2,3,3,4,5). This construction is based on facets of the pentisteriruncitruncated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [[5]] [4] [[3]]

## Pentisteriruncicantellated 7-simplex

pentisteriruncicantellated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,2,3,4,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 40320
Vertices 10080
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Bipentiruncicantitruncated 7-simplex as t1,2,3,4,6{3,3,3,3,3,3}
• Tericelliprismatorhombated octaexon (acronym: tacpro) (Jonathan Bowers)[15]

### Coordinates

The vertices of the pentisteriruncicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,2,3,4,4,5). This construction is based on facets of the pentisteriruncicantellated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [[5]] [4] [[3]]

## Pentisteriruncicantitruncated 7-simplex

pentisteriruncicantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,3,4,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges 70560
Vertices 20160
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

### Alternate names

• Great terated octaexon (acronym: geto) (Jonathan Bowers)[16]

### Coordinates

The vertices of the pentisteriruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,2,3,4,5,6). This construction is based on facets of the pentisteriruncicantitruncated 8-orthoplex.

### Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [[5]] [4] [[3]]

## Related polytopes

These polytopes are a part of a set of 71 uniform 7-polytopes with A7 symmetry.

## Notes

1. ^ Klitzing, (x3o3o3o3o3x3o - seto)
2. ^ Klitzing, (x3x3o3o3o3x3o - teto)
3. ^ Klitzing, (x3o3x3o3o3x3o - tero)
4. ^ Klitzing, (x3x3x3oxo3x3o - tegro)
5. ^ Klitzing, (x3o3o3x3o3x3o - tepo)
6. ^ Klitzing, (x3x3o3x3o3x3o - tapto)
7. ^ Klitzing, (x3o3x3x3o3x3o - tapro)
8. ^ Klitzing, (x3x3x3x3o3x3o - tegapo)
9. ^ Klitzing, (x3o3o3o3x3x3o - teco)
10. ^ Klitzing, (x3x3o3o3x3x3o - tecto)
11. ^ Klitzing, (x3o3x3o3x3x3o - tecro)
12. ^ Klitzing, (x3x3x3o3x3x3o - tecagro)
13. ^ Klitzing, (x3o3o3x3x3x3o - tacpo)
14. ^ Klitzing, (x3x3o3x3x3x3o - tacpeto)
15. ^ Klitzing, (x3o3x3x3x3x3o - tacpro)
16. ^ Klitzing, (x3x3x3x3x3x3o - geto)

## References

• H.S.M. Coxeter:
• H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
• Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
• (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
• (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
• (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
• Norman Johnson Uniform Polytopes, Manuscript (1991)
• N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
• Klitzing, Richard. "7D uniform polytopes (polyexa)". x3o3o3o3o3x3o - seto, x3x3o3o3o3x3o - teto, x3o3x3o3o3x3o - tero, x3x3x3oxo3x3o - tegro, x3o3o3x3o3x3o - tepo, x3x3o3x3o3x3o - tapto, x3o3x3x3o3x3o - tapro, x3x3x3x3o3x3o - tegapo, x3o3o3o3x3x3o - teco, x3x3o3o3x3x3o - tecto, x3o3x3o3x3x3o - tecro, x3x3x3o3x3x3o - tecagro, x3o3o3x3x3x3o - tacpo, x3x3o3x3x3x3o - tacpeto, x3o3x3x3x3x3o - tacpro, x3x3x3x3x3x3o - geto