Stericated 7-simplexes

From Wikipedia, the free encyclopedia
  (Redirected from Steriruncinated 7-simplex)
Jump to: navigation, search
7-simplex t0.svg
7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex t04.svg
Stericated 7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex t15.svg
Bistericated 7-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
7-simplex t014.svg
Steritruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex t125.svg
Bisteritruncated 7-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
7-simplex t024.svg
Stericantellated 7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex t135.svg
Bistericantellated 7-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
7-simplex t0124.svg
Stericantitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex t1235.svg
Bistericantitruncated 7-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
7-simplex t034.svg
Steriruncinated 7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex t0134.svg
Steriruncitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex t0234.svg
Steriruncicantellated 7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex t1245.svg
Bisteriruncitruncated 7-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
7-simplex t01234.svg
Steriruncicantitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex t12345.svg
Bisteriruncicantitruncated 7-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png

In seven-dimensional geometry, a stericated 7-simplex is a convex uniform 7-polytope with 4th order truncations (sterication) of the regular 7-simplex.

There are 14 unique sterication for the 7-simplex with permutations of truncations, cantellations, and runcinations.

Stericated 7-simplex[edit]

Stericated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,4{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 2240
Vertices 280
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names[edit]

  • Small cellated octaexon (acronym: sco) (Jonathan Bowers)[1]

Coordinates[edit]

The vertices of the stericated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,1,1,2). This construction is based on facets of the stericated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t04.svg 7-simplex t04 A6.svg 7-simplex t04 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t04 A4.svg 7-simplex t04 A3.svg 7-simplex t04 A2.svg
Dihedral symmetry [5] [4] [3]

Bistericated 7-simplex[edit]

bistericated 7-simplex
Type uniform 7-polytope
Schläfli symbol t1,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 3360
Vertices 420
Vertex figure
Coxeter group A7×2, [[36]], order 80320
Properties convex

Alternate names[edit]

  • Small bicellated hexadecaexon (acronym: sabach) (Jonathan Bowers)[2]

Coordinates[edit]

The vertices of the bistericated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,1,1,2,2). This construction is based on facets of the bistericated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t15.svg 7-simplex t15 A6.svg 7-simplex t15 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t15 A4.svg 7-simplex t15 A3.svg 7-simplex t15 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Steritruncated 7-simplex[edit]

steritruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,1,4{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 7280
Vertices 1120
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names[edit]

  • Cellitruncated octaexon (acronym: cato) (Jonathan Bowers)[3]

Coordinates[edit]

The vertices of the steritruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,1,2,3). This construction is based on facets of the steritruncated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t014.svg 7-simplex t014 A6.svg 7-simplex t014 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t014 A4.svg 7-simplex t014 A3.svg 7-simplex t014 A2.svg
Dihedral symmetry [5] [4] [3]

Bisteritruncated 7-simplex[edit]

bisteritruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t1,2,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 9240
Vertices 1680
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names[edit]

  • Bicellitruncated octaexon (acronym: bacto) (Jonathan Bowers)[4]

Coordinates[edit]

The vertices of the bisteritruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,1,2,3,3). This construction is based on facets of the bisteritruncated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t125.svg 7-simplex t125 A6.svg 7-simplex t125 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t125 A4.svg 7-simplex t125 A3.svg 7-simplex t125 A2.svg
Dihedral symmetry [5] [4] [3]

Stericantellated 7-simplex[edit]

Stericantellated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,2,4{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 10080
Vertices 1680
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names[edit]

  • Cellirhombated octaexon (acronym: caro) (Jonathan Bowers)[5]

Coordinates[edit]

The vertices of the stericantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,2,2,3). This construction is based on facets of the stericantellated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t024.svg 7-simplex t024 A6.svg 7-simplex t024 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t024 A4.svg 7-simplex t024 A3.svg 7-simplex t024 A2.svg
Dihedral symmetry [5] [4] [3]

Bistericantellated 7-simplex[edit]

Bistericantellated 7-simplex
Type uniform 7-polytope
Schläfli symbol t1,3,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 15120
Vertices 2520
Vertex figure
Coxeter group A7×2, [[36]], order 80320
Properties convex

Alternate names[edit]

  • Bicellirhombihexadecaexon (acronym: bacroh) (Jonathan Bowers)[6]

Coordinates[edit]

The vertices of the bistericantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,2,2,3,3). This construction is based on facets of the stericantellated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t135.svg 7-simplex t135 A6.svg 7-simplex t135 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t135 A4.svg 7-simplex t135 A3.svg 7-simplex t135 A2.svg
Dihedral symmetry [5] [4] [3]

Stericantitruncated 7-simplex[edit]

stericantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,4{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 16800
Vertices 3360
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names[edit]

  • Celligreatorhombated octaexon (acronym: cagro) (Jonathan Bowers)[7]

Coordinates[edit]

The vertices of the stericantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,2,3,4). This construction is based on facets of the stericantitruncated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t0124.svg 7-simplex t0124 A6.svg 7-simplex t0124 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t0124 A4.svg 7-simplex t0124 A3.svg 7-simplex t0124 A2.svg
Dihedral symmetry [5] [4] [3]

Bistericantitruncated 7-simplex[edit]

bistericantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t1,2,3,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 22680
Vertices 5040
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names[edit]

  • Bicelligreatorhombated octaexon (acronym: bacogro) (Jonathan Bowers)[8]

Coordinates[edit]

The vertices of the bistericantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,2,3,4,4). This construction is based on facets of the bistericantitruncated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t1235.svg 7-simplex t1235 A6.svg 7-simplex t1235 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t1235 A4.svg 7-simplex t1235 A3.svg 7-simplex t1235 A2.svg
Dihedral symmetry [5] [4] [3]

Steriruncinated 7-simplex[edit]

Steriruncinated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,3,4{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 5040
Vertices 1120
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names[edit]

  • Celliprismated octaexon (acronym: cepo) (Jonathan Bowers)[9]

Coordinates[edit]

The vertices of the steriruncinated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,2,2,3). This construction is based on facets of the steriruncinated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t034.svg 7-simplex t034 A6.svg 7-simplex t034 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t034 A4.svg 7-simplex t034 A3.svg 7-simplex t034 A2.svg
Dihedral symmetry [5] [4] [3]

Steriruncitruncated 7-simplex[edit]

steriruncitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,1,3,4{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 13440
Vertices 3360
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names[edit]

  • Celliprismatotruncated octaexon (acronym: capto) (Jonathan Bowers)[10]

Coordinates[edit]

The vertices of the steriruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,2,3,4). This construction is based on facets of the steriruncitruncated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t0134.svg 7-simplex t0134 A6.svg 7-simplex t0134 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t0134 A4.svg 7-simplex t0134 A3.svg 7-simplex t0134 A2.svg
Dihedral symmetry [5] [4] [3]

Steriruncicantellated 7-simplex[edit]

steriruncicantellated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,2,3,4{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 13440
Vertices 3360
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names[edit]

  • Celliprismatorhombated octaexon (acronym: capro) (Jonathan Bowers)[11]

Coordinates[edit]

The vertices of the steriruncicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,3,3,4). This construction is based on facets of the steriruncicantellated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t0234.svg 7-simplex t0234 A6.svg 7-simplex t0234 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t0234 A4.svg 7-simplex t0234 A3.svg 7-simplex t0234 A2.svg
Dihedral symmetry [5] [4] [3]

Bisteriruncitruncated 7-simplex[edit]

bisteriruncitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t1,2,4,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 20160
Vertices 5040
Vertex figure
Coxeter group A7×2, [[36]], order 80320
Properties convex

Alternate names[edit]

  • Bicelliprismatotruncated hexadecaexon (acronym: bicpath) (Jonathan Bowers)[12]

Coordinates[edit]

The vertices of the bisteriruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,2,2,3,4,4). This construction is based on facets of the bisteriruncitruncated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t1245.svg 7-simplex t1245 A6.svg 7-simplex t1245 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t1245 A4.svg 7-simplex t1245 A3.svg 7-simplex t1245 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Steriruncicantitruncated 7-simplex[edit]

steriruncicantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,3,4{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 23520
Vertices 6720
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names[edit]

  • Great cellated octaexon (acronym: gecco) (Jonathan Bowers)[13]

Coordinates[edit]

The vertices of the steriruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,3,4,5). This construction is based on facets of the steriruncicantitruncated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t01234.svg 7-simplex t01234 A6.svg 7-simplex t01234 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t01234 A4.svg 7-simplex t01234 A3.svg 7-simplex t01234 A2.svg
Dihedral symmetry [5] [4] [3]

Bisteriruncicantitruncated 7-simplex[edit]

bisteriruncicantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t1,2,3,4,5{3,3,3,3,3,3}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 35280
Vertices 10080
Vertex figure
Coxeter group A7×2, [[36]], order 80320
Properties convex

Alternate names[edit]

  • Great bicellated hexadecaexon (gabach) (Jonathan Bowers) [14]

Coordinates[edit]

The vertices of the bisteriruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,2,3,4,5,5). This construction is based on facets of the bisteriruncicantitruncated 8-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t12345.svg 7-simplex t12345 A6.svg 7-simplex t12345 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t12345 A4.svg 7-simplex t12345 A3.svg 7-simplex t12345 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Related polytopes[edit]

This polytope is one of 71 uniform 7-polytopes with A7 symmetry.

7-simplex t0.svg
t0
7-simplex t1.svg
t1
7-simplex t2.svg
t2
7-simplex t3.svg
t3
7-simplex t01.svg
t0,1
7-simplex t02.svg
t0,2
7-simplex t12.svg
t1,2
7-simplex t03.svg
t0,3
7-simplex t13.svg
t1,3
7-simplex t23.svg
t2,3
7-simplex t04.svg
t0,4
7-simplex t14.svg
t1,4
7-simplex t24.svg
t2,4
7-simplex t05.svg
t0,5
7-simplex t15.svg
t1,5
7-simplex t06.svg
t0,6
7-simplex t012.svg
t0,1,2
7-simplex t013.svg
t0,1,3
7-simplex t023.svg
t0,2,3
7-simplex t123.svg
t1,2,3
7-simplex t014.svg
t0,1,4
7-simplex t024.svg
t0,2,4
7-simplex t124.svg
t1,2,4
7-simplex t034.svg
t0,3,4
7-simplex t134.svg
t1,3,4
7-simplex t234.svg
t2,3,4
7-simplex t015.svg
t0,1,5
7-simplex t025.svg
t0,2,5
7-simplex t125.svg
t1,2,5
7-simplex t035.svg
t0,3,5
7-simplex t135.svg
t1,3,5
7-simplex t045.svg
t0,4,5
7-simplex t016.svg
t0,1,6
7-simplex t026.svg
t0,2,6
7-simplex t036.svg
t0,3,6
7-simplex t0123.svg
t0,1,2,3
7-simplex t0124.svg
t0,1,2,4
7-simplex t0134.svg
t0,1,3,4
7-simplex t0234.svg
t0,2,3,4
7-simplex t1234.svg
t1,2,3,4
7-simplex t0125.svg
t0,1,2,5
7-simplex t0135.svg
t0,1,3,5
7-simplex t0235.svg
t0,2,3,5
7-simplex t1235.svg
t1,2,3,5
7-simplex t0145.svg
t0,1,4,5
7-simplex t0245.svg
t0,2,4,5
7-simplex t1245.svg
t1,2,4,5
7-simplex t0345.svg
t0,3,4,5
7-simplex t0126.svg
t0,1,2,6
7-simplex t0136.svg
t0,1,3,6
7-simplex t0236.svg
t0,2,3,6
7-simplex t0146.svg
t0,1,4,6
7-simplex t0246.svg
t0,2,4,6
7-simplex t0156.svg
t0,1,5,6
7-simplex t01234.svg
t0,1,2,3,4
7-simplex t01235.svg
t0,1,2,3,5
7-simplex t01245.svg
t0,1,2,4,5
7-simplex t01345.svg
t0,1,3,4,5
7-simplex t02345.svg
t0,2,3,4,5
7-simplex t12345.svg
t1,2,3,4,5
7-simplex t01236.svg
t0,1,2,3,6
7-simplex t01246.svg
t0,1,2,4,6
7-simplex t01346.svg
t0,1,3,4,6
7-simplex t02346.svg
t0,2,3,4,6
7-simplex t01256.svg
t0,1,2,5,6
7-simplex t01356.svg
t0,1,3,5,6
7-simplex t012345.svg
t0,1,2,3,4,5
7-simplex t012346.svg
t0,1,2,3,4,6
7-simplex t012356.svg
t0,1,2,3,5,6
7-simplex t012456.svg
t0,1,2,4,5,6
7-simplex t0123456.svg
t0,1,2,3,4,5,6

Notes[edit]

  1. ^ Klitizing, (x3o3o3o3x3o3o - sco)
  2. ^ Klitizing, (x3o3x3o3x3o3o - sabach)
  3. ^ Klitizing, (x3x3o3o3x3o3o - cato)
  4. ^ Klitizing, (o3x3x3o3o3x3o - bacto)
  5. ^ Klitizing, (x3o3x3o3x3o3o - caro)
  6. ^ Klitizing, (o3x3o3x3o3x3o - bacroh)
  7. ^ Klitizing, (x3x3x3o3x3o3o - cagro)
  8. ^ Klitizing, (o3x3x3x3o3x3o - bacogro)
  9. ^ Klitizing, (x3o3o3x3x3o3o - cepo)
  10. ^ Klitizing, (x3x3x3o3x3o3o - capto)
  11. ^ Klitizing, (x3o3x3x3x3o3o - capro)
  12. ^ Klitizing, (o3x3x3o3x3x3o - bicpath)
  13. ^ Klitizing, (x3x3x3x3x3o3o - gecco)
  14. ^ Klitizing, (o3x3x3x3x3x3o - gabach)

References[edit]

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 7D, uniform polytopes (polyexa) x3o3o3o3x3o3o - sco, x3o3x3o3x3o3o - sabach, x3x3o3o3x3o3o - cato, o3x3x3o3o3x3o - bacto, x3o3x3o3x3o3o - caro, o3x3o3x3o3x3o - bacroh, x3x3x3o3x3o3o - cagro, o3x3x3x3o3x3o - bacogro, x3o3o3x3x3o3o - cepo, x3x3x3o3x3o3o - capto, x3o3x3x3x3o3o - capro, o3x3x3o3x3x3o - bicpath, x3x3x3x3x3o3o - gecco, o3x3x3x3x3x3o - gabach

External links[edit]