Jump to content

Power steering

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Acha11 (talk | contribs) at 03:28, 17 March 2009 (Design: Added explanation of how steering assist force is varied according to driver input). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Power steering is a system for reducing the steering effort on vehicles by using an external power source to assist in turning the roadwheels.

History

The earliest known patent related to power steering was filed (as recorded by the US Patent Office) on August 30, 1932, by Francis W. Davis, from Belmont, MA.[1] There is another inventor credited with the invention of power steering by the name of Charles F. Hammond (an American, born in Detroit), who filed similar patents, the first of which was filed (as recorded by the Canadian Intellectual Property Office) on February 16, 1954.[2]

Chrysler Corporation introduced the first commercially available power steering system on the 1951 Chrysler Imperial under the name Hydraguide. Most new vehicles now have power steering, owing to the trends toward front wheel drive, greater vehicle mass and wider tires, which all increase the required steering effort. Modern vehicles would be extremely difficult to maneuver at low speeds (e.g., when parking) without assistance.

Design

Most power steering systems work by using a hydraulic system to turn the vehicle's wheels. The hydraulic pressure is usually provided by a gerotor or rotary vane pump driven by the vehicle's engine. A double-acting hydraulic cylinder applies a force to the steering gear, which in turn applies a torque to the steering axis of the roadwheels. The flow to the cylinder is controlled by valves operated by the steering wheel; the more torque the driver applies to the steering wheel and the shaft it is attached to, the more fluid the valves allow through to the cylinder, and so the more force is applied to steer the wheels in the appropriate direction.

One design for measuring the torque applied to the steering wheel is to fix a torsion bar to the end of the steering shaft. As the steering wheel rotates, so does the attached steering shaft, and so does the top end of the attached torsion bar. Since the torsion bar is relatively thin and flexible and the bottom end is not completely free to rotate, the bar will soak up some of the torque; the bottom end will not rotate as far as the top end. The difference in rotation between the top and bottom ends of the torsion bar can be used to control the valve that allows fluid to flow to the cylinder which provides steering assistance; the greater the "twist" of the torsion bar, the more steering assistance will be provided.

Since the pumps employed are of the positive displacement type, the flow rate they deliver is directly proportional to the speed of the engine. This means that at high engine speeds the steering would naturally operate faster than at low engine speeds. Because this would be undesirable, a restricting orifice and flow control valve are used to direct some of the pump's output back to the hydraulic reservoir at high engine speeds. A pressure relief valve is also used to prevent a dangerous build-up of pressure when the hydraulic cylinder's piston reaches the end of the cylinder.

Some modern implementations also include an electronic pressure relief valve which can reduce the hydraulic pressure in the power steering lines as the vehicle's speed increases (this is known as variable assist power steering).

DIRAVI

In the DIRAVI system invented by Citroën, the force turning the wheels comes from the car's high pressure hydraulic system and is always the same no matter what the road speed is. As the steering wheel is turned, the wheels are turned simultaneously to a corresponding angle by a hydraulic piston. In order to give some artificial steering feel, there is a separate hydraulically operated system that tries to turn the steering wheel back to centre position. The amount of pressure applied is proportional to road speed, so that at low speeds the steering is very light, and at high speeds it is very difficult to move more than a small amount from the centre position.

As long as there is pressure in the car's hydraulic system, there is no mechanical connection between the steering wheel and the roadwheels. This system was first introduced in the Citroën SM in 1970, and was known as 'VariPower' in the UK and 'SpeedFeel' in the U.S.

While DIRAVI is not the mechanical template for all modern power steering arrangements, it did innovate the now common benefit of speed adjustable steering. The force of the centering device increases as the car's road speed increases.

Electro-hydraulic systems

Electro-hydraulic power steering systems, sometimes abbreviated EHPS, and also sometimes called "hybrid" systems, use the same hydraulic assist technology as standard systems, but the hydraulic pressure is provided by a pump driven by an electric motor instead of being belt-driven by the engine. These systems can be found in some cars by Ford, Volkswagen, Audi, Peugeot, Citroen, SEAT, Skoda, Suzuki, Opel, MINI, Toyota, and Mazda.

Servotronic

Servotronic offers true speed-dependent power steering, in which the amount of servo assist depends on road speed, and thus provides even more comfort for the driver. The amount of power assist is greatest at low speeds, for example when parking the car. The greater assist makes it easier to maneuver the car. At higher speeds, an electronic sensing system gradually reduces the level of power assist. In this way, the driver can control the car even more precisely than with conventional power steering. Servotronic is used by a number of automakers, including Audi, BMW, Volkswagen, Volvo and Porsche. Servotronic is a trademark of AM General Corp.[3]

Electric systems

Electric Power Steering systems use electric components to aid the steering, with no hydraulic systems at all. Sensors detect the motion and torque of the steering column, and a computer module applies assistive power via an electric motor coupled directly to either the steering gear or steering column. This allows varying amounts of assistance to be applied depending on driving conditions. Most notably on Fiat group cars the amount of assistance can be regulated using a button named "CITY" that switches between two different assist curves, while on Volkswagen Group (Volkswagen AG) cars the amount of assistance is automatically regulated depending on vehicle speed.

In the event of component failure, a mechanical linkage such as a rack and pinion serves as a back-up in a manner similar to that of hydraulic systems.

Reviews in the automotive press often comment that steering systems with electric assist do not have a satisfactory amount of "road feel". Road feel refers to the relationship between the force needed to steer the vehicle and the force that the driver exerts on the steering wheel. Road feel gives the driver the subjective perception that they are engaged in steering the vehicle. The amount of road feel is controlled by the computer module that operates the electric power steering system. In theory, the software should be able to adjust the amount of road feel to satisfy drivers. In practice, it has been difficult to reconcile various design constraints while producing a more pronounced road feel[citation needed]. It should be noted that the same argument has been applied to hydraulic power steering as well.

The peak power output of the electrical system of a vehicle limits the capability of electric steering assist. A 12 volt electrical system, for example, is limited to about 80 amps of current which, in turn, limits the size of the motor to less than 1 kilowatt. (12.5 volts times 80 amps equals 1000 watts.) This amount of power would be adequate for smaller vehicles. It would probably be considered insufficient for larger vehicles such as trucks and SUVs. There are other types of electrical systems such as the 42 volt system and other variants used for hybrid and electric vehicles. These have greater capacity that enable use of multi kilowatt motors needed for large and mid-size vehicles.

Electric systems have a slight advantage in fuel efficiency (almost 1 MPG) because there is no hydraulic pump constantly running, whether assistance is required or not, and this is the main reason for their introduction. Their other big advantage is the elimination of a belt-driven engine accessory, and several high-pressure hydraulic hoses between the hydraulic pump, mounted on the engine, and the steering gear, mounted on the chassis. This greatly simplifies manufacturing.

See also

References