Ubiquitin C

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Ubiquitin C
Protein UBC PDB 1aar.png
PDB rendering based on 1aar.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols UBC ; HMG20
External IDs OMIM191340 MGI98889 HomoloGene128418 GeneCards: UBC Gene
RNA expression pattern
PBB GE UBC 208980 s at tn.png
PBB GE UBC 211296 x at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 7316 22190
Ensembl ENSG00000150991 ENSMUSG00000008348
UniProt P0CG48 P0CG50
RefSeq (mRNA) NM_021009 NM_019639
RefSeq (protein) NP_066289 NP_062613
Location (UCSC) Chr 12:
124.91 – 124.92 Mb
Chr 5:
125.39 – 125.39 Mb
PubMed search [1] [2]

Polyubiquitin-C is a protein encoded by the UBC gene in humans.[1][2][3] It is one of the sources of ubiquitin, along with UBB, UBA52, and RPS27A.[4]

Interactions[edit]

Ubiquitin C has been shown to interact with:

References[edit]

  1. ^ Board PG, Coggan M, Baker RT, Vuust J, Webb GC (May 1992). "Localization of the human UBC polyubiquitin gene to chromosome band 12q24.3". Genomics 12 (4): 639–42. doi:10.1016/0888-7543(92)90287-3. PMID 1315303. 
  2. ^ Marinovic AC, Zheng B, Mitch WE, Price SR (May 2002). "Ubiquitin (UbC) expression in muscle cells is increased by glucocorticoids through a mechanism involving Sp1 and MEK1". J Biol Chem 277 (19): 16673–81. doi:10.1074/jbc.M200501200. PMID 11872750. 
  3. ^ "Entrez Gene: UBC ubiquitin C". 
  4. ^ Kimura Y, Tanaka K (2010). "Regulatory mechanisms involved in the control of ubiquitin homeostasis". J. Biochem. 147 (6): 793–8. doi:10.1093/jb/mvq044. PMID 20418328. 
  5. ^ a b Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA. "cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination". Mol. Cell 30 (6): 689–700. doi:10.1016/j.molcel.2008.05.014. PMID 18570872. 
  6. ^ Didelot C, Lanneau D, Brunet M, Bouchot A, Cartier J, Jacquel A, Ducoroy P, Cathelin S, Decologne N, Chiosis G, Dubrez-Daloz L, Solary E, Garrido C. "Interaction of heat-shock protein 90 beta isoform (HSP90 beta) with cellular inhibitor of apoptosis 1 (c-IAP1) is required for cell differentiation". Cell Death Differ. 15 (5): 859–66. doi:10.1038/cdd.2008.5. PMID 18239673. 
  7. ^ Sekine K, Takubo K, Kikuchi R, Nishimoto M, Kitagawa M, Abe F, Nishikawa K, Tsuruo T, Naito M. "Small molecules destabilize cIAP1 by activating auto-ubiquitylation". J. Biol. Chem. 283 (14): 8961–8. doi:10.1074/jbc.M709525200. PMID 18230607. 
  8. ^ Wang WJ, Li QQ, Xu JD, Cao XX, Li HX, Tang F, Chen Q, Yang JM, Xu ZD, Liu XP. "Interaction between CD147 and P-glycoprotein and their regulation by ubiquitination in breast cancer cells". Chemotherapy 54 (4): 291–301. doi:10.1159/000151225. PMID 18689982. 
  9. ^ Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP (2011). "Systematic and quantitative assessment of the ubiquitin-modified proteome". Mol. Cell 44 (2): 325–40. doi:10.1016/j.molcel.2011.08.025. PMC 3200427. PMID 21906983. 
  10. ^ a b c Tan F, Lu L, Cai Y, Wang J, Xie Y, Wang L, Gong Y, Xu BE, Wu J, Luo Y, Qiang B, Yuan J, Sun X, Peng X. "Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells". Proteomics 8 (14): 2885–96. doi:10.1002/pmic.200700887. PMID 18655026. 
  11. ^ Zhou F, Zhang L, Wang A, Song B, Gong K, Zhang L, Hu M, Zhang X, Zhao N, Gong Y. "The association of GSK3 beta with E2F1 facilitates nerve growth factor-induced neural cell differentiation". J. Biol. Chem. 283 (21): 14506–15. doi:10.1074/jbc.M706136200. PMID 18367454. 
  12. ^ a b Sehat B, Andersson S, Girnita L, Larsson O. "Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis". Cancer Res. 68 (14): 5669–77. doi:10.1158/0008-5472.CAN-07-6364. PMID 18632619. 
  13. ^ Pennock S, Wang Z. "A tale of two Cbls: interplay of c-Cbl and Cbl-b in epidermal growth factor receptor downregulation". Mol. Cell. Biol. 28 (9): 3020–37. doi:10.1128/MCB.01809-07. PMC 2293090. PMID 18316398. 
  14. ^ Umebayashi K, Stenmark H, Yoshimori T. "Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation". Mol. Biol. Cell 19 (8): 3454–62. doi:10.1091/mbc.E07-10-0988. PMC 2488299. PMID 18508924. 
  15. ^ André H, Pereira TS. "Identification of an alternative mechanism of degradation of the hypoxia-inducible factor-1alpha". J. Biol. Chem. 283 (43): 29375–84. doi:10.1074/jbc.M805919200. PMC 2662024. PMID 18694926. 
  16. ^ Park YK, Ahn DR, Oh M, Lee T, Yang EG, Son M, Park H. "Nitric oxide donor, (+/-)-S-nitroso-N-acetylpenicillamine, stabilizes transactive hypoxia-inducible factor-1alpha by inhibiting von Hippel-Lindau recruitment and asparagine hydroxylation". Mol. Pharmacol. 74 (1): 236–45. doi:10.1124/mol.108.045278. PMID 18426857. 
  17. ^ Kim BY, Kim H, Cho EJ, Youn HD. "Nur77 upregulates HIF-alpha by inhibiting pVHL-mediated degradation". Exp. Mol. Med. 40 (1): 71–83. doi:10.3858/emm.2008.40.1.71. PMC 2679322. PMID 18305400. 
  18. ^ a b c Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, Komuves L, French DM, Ferrando RE, Lam C, Compaan D, Yu C, Bosanac I, Hymowitz SG, Kelley RF, Dixit VM. "Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies". Cell 134 (4): 668–78. doi:10.1016/j.cell.2008.07.039. PMID 18724939. 
  19. ^ a b Conze DB, Wu CJ, Thomas JA, Landstrom A, Ashwell JD. "Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation". Mol. Cell. Biol. 28 (10): 3538–47. doi:10.1128/MCB.02098-07. PMC 2423148. PMID 18347055. 
  20. ^ Xiao H, Qian W, Staschke K, Qian Y, Cui G, Deng L, Ehsani M, Wang X, Qian YW, Chen ZJ, Gilmour R, Jiang Z, Li X. "Pellino 3b negatively regulates interleukin-1-induced TAK1-dependent NF kappaB activation". J. Biol. Chem. 283 (21): 14654–64. doi:10.1074/jbc.M706931200. PMC 2386918. PMID 18326498. 
  21. ^ Windheim M, Stafford M, Peggie M, Cohen P. "Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase". Mol. Cell. Biol. 28 (5): 1783–91. doi:10.1128/MCB.02380-06. PMC 2258775. PMID 18180283. 
  22. ^ Li JG, Haines DS, Liu-Chen LY. "Agonist-promoted Lys63-linked polyubiquitination of the human kappa-opioid receptor is involved in receptor down-regulation". Mol. Pharmacol. 73 (4): 1319–30. doi:10.1124/mol.107.042846. PMC 3489932. PMID 18212250. 
  23. ^ KIAA0753 Gene - GeneCards | K0753 Protein | K0753 Antibody, (available at http://www.genecards.org/cgi-bin/carddisp.pl?gene=KIAA0753).
  24. ^ a b Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M, Alessi DR. "Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains". Biochem. J. 411 (2): 249–60. doi:10.1042/BJ20080067. PMID 18363552. 
  25. ^ a b Ivanchuk SM, Mondal S, Rutka JT. "p14ARF interacts with DAXX: effects on HDM2 and p53". Cell Cycle 7 (12): 1836–50. doi:10.4161/cc.7.12.6025. PMID 18583933. 
  26. ^ a b Song MS, Song SJ, Kim SY, Oh HJ, Lim DS. "The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex". EMBO J. 27 (13): 1863–74. doi:10.1038/emboj.2008.115. PMC 2486425. PMID 18566590. 
  27. ^ a b Yang W, Dicker DT, Chen J, El-Deiry WS. "CARPs enhance p53 turnover by degrading 14-3-3sigma and stabilizing MDM2". Cell Cycle 7 (5): 670–82. doi:10.4161/cc.7.5.5701. PMID 18382127. 
  28. ^ Stolfi C, Fina D, Caruso R, Caprioli F, Fantini MC, Rizzo A, Sarra M, Pallone F, Monteleone G. "Mesalazine negatively regulates CDC25A protein expression and promotes accumulation of colon cancer cells in S phase". Carcinogenesis 29 (6): 1258–66. doi:10.1093/carcin/bgn122. PMID 18495657. 
  29. ^ Guo X, Ramirez A, Waddell DS, Li Z, Liu X, Wang XF. "Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling". Genes Dev. 22 (1): 106–20. doi:10.1101/gad.1590908. PMC 2151009. PMID 18172167. 
  30. ^ Wagner, S. A.; Beli, P; Weinert, B. T.; Nielsen, M. L.; Cox, J; Mann, M; Choudhary, C (2011). "A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles". Molecular & Cellular Proteomics 10 (10): M111.013284. doi:10.1074/mcp.M111.013284. PMC 3205876. PMID 21890473.  edit
  31. ^ Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K, Asamura H, Yamamoto M, Hirohashi S. "Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy". Proc. Natl. Acad. Sci. U.S.A. 105 (36): 13568–73. doi:10.1073/pnas.0806268105. PMC 2533230. PMID 18757741. 
  32. ^ Patel R, Maru G. "Polymeric black tea polyphenols induce phase II enzymes via Nrf2 in mouse liver and lungs". Free Radic. Biol. Med. 44 (11): 1897–911. doi:10.1016/j.freeradbiomed.2008.02.006. PMID 18358244. 
  33. ^ Chastagner P, Israël A, Brou C. Wölfl S, ed. "AIP4/Itch regulates Notch receptor degradation in the absence of ligand". PLoS ONE 3 (7): e2735. doi:10.1371/journal.pone.0002735. PMC 2444042. PMID 18628966. 
  34. ^ Han JM, Park BJ, Park SG, Oh YS, Choi SJ, Lee SW, Hwang SK, Chang SH, Cho MH, Kim S. "AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53". Proc. Natl. Acad. Sci. U.S.A. 105 (32): 11206–11. doi:10.1073/pnas.0800297105. PMC 2516205. PMID 18695251. 
  35. ^ Abe Y, Oda-Sato E, Tobiume K, Kawauchi K, Taya Y, Okamoto K, Oren M, Tanaka N. "Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2". Proc. Natl. Acad. Sci. U.S.A. 105 (12): 4838–43. doi:10.1073/pnas.0712216105. PMC 2290789. PMID 18359851. 
  36. ^ Zhang Z, Zhang R. "Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation". EMBO J. 27 (6): 852–64. doi:10.1038/emboj.2008.25. PMC 2265109. PMID 18309296. 
  37. ^ Dohmesen C, Koeppel M, Dobbelstein M. "Specific inhibition of Mdm2-mediated neddylation by Tip60". Cell Cycle 7 (2): 222–31. doi:10.4161/cc.7.2.5185. PMID 18264029. 
  38. ^ Panasyuk G, Nemazanyy I, Filonenko V, Gout I. "Ribosomal protein S6 kinase 1 interacts with and is ubiquitinated by ubiquitin ligase ROC1". Biochem. Biophys. Res. Commun. 369 (2): 339–43. doi:10.1016/j.bbrc.2008.02.016. PMID 18279656. 
  39. ^ Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, Myung K. "Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks". Proc. Natl. Acad. Sci. U.S.A. 105 (34): 12411–6. doi:10.1073/pnas.0805685105. PMC 2518831. PMID 18719106. 
  40. ^ Unk I, Hajdú I, Fátyol K, Hurwitz J, Yoon JH, Prakash L, Prakash S, Haracska L. "Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination". Proc. Natl. Acad. Sci. U.S.A. 105 (10): 3768–73. doi:10.1073/pnas.0800563105. PMC 2268824. PMID 18316726. 
  41. ^ Brun J, Chiu R, Lockhart K, Xiao W, Wouters BG, Gray DA. "hMMS2 serves a redundant role in human PCNA polyubiquitination". BMC Mol. Biol. 9: 24. doi:10.1186/1471-2199-9-24. PMC 2263069. PMID 18284681. 
  42. ^ Yu F, Zhou J. "Parkin is ubiquitinated by Nrdp1 and abrogates Nrdp1-induced oxidative stress". Neurosci. Lett. 440 (1): 4–8. doi:10.1016/j.neulet.2008.05.052. PMID 18541373. 
  43. ^ Kawahara K, Hashimoto M, Bar-On P, Ho GJ, Crews L, Mizuno H, Rockenstein E, Imam SZ, Masliah E. "alpha-Synuclein aggregates interfere with Parkin solubility and distribution: role in the pathogenesis of Parkinson disease". J. Biol. Chem. 283 (11): 6979–87. doi:10.1074/jbc.M710418200. PMID 18195004. 
  44. ^ a b Ma Q, Zhou L, Shi H, Huo K. "NUMBL interacts with TAB2 and inhibits TNFalpha and IL-1beta-induced NF-kappaB activation". Cell. Signal. 20 (6): 1044–51. doi:10.1016/j.cellsig.2008.01.015. PMID 18299187. 
  45. ^ Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ, Vucic D. "c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation". J. Biol. Chem. 283 (36): 24295–9. doi:10.1074/jbc.C800128200. PMC 3259840. PMID 18621737. 
  46. ^ Liao W, Xiao Q, Tchikov V, Fujita K, Yang W, Wincovitch S, Garfield S, Conze D, El-Deiry WS, Schütze S, Srinivasula SM. "CARP-2 is an endosome-associated ubiquitin ligase for RIP and regulates TNF-induced NF-kappaB activation". Curr. Biol. 18 (9): 641–9. doi:10.1016/j.cub.2008.04.017. PMC 2587165. PMID 19138581. 
  47. ^ He KL, Deora AB, Xiong H, Ling Q, Weksler BB, Niesvizky R, Hajjar KA. "Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11". J. Biol. Chem. 283 (28): 19192–200. doi:10.1074/jbc.M800100200. PMC 2443646. PMID 18434302. 
  48. ^ a b Boulkroun S, Ruffieux-Daidié D, Vitagliano JJ, Poirot O, Charles RP, Lagnaz D, Firsov D, Kellenberger S, Staub O. "Vasopressin-inducible ubiquitin-specific protease 10 increases ENaC cell surface expression by deubiquitylating and stabilizing sorting nexin 3". Am. J. Physiol. Renal Physiol. 295 (4): F889–900. doi:10.1152/ajprenal.00001.2008. PMID 18667480. 
  49. ^ a b Raikwar NS, Thomas CP. "Nedd4-2 isoforms ubiquitinate individual epithelial sodium channel subunits and reduce surface expression and function of the epithelial sodium channel". Am. J. Physiol. Renal Physiol. 294 (5): F1157–65. doi:10.1152/ajprenal.00339.2007. PMC 2424110. PMID 18322022. 
  50. ^ Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE. "A human protein-protein interaction network: a resource for annotating the proteome". Cell 122 (6): 957–68. doi:10.1016/j.cell.2005.08.029. PMID 16179252. 
  51. ^ Carpentier I, Coornaert B, Beyaert R. "Smurf2 is a TRAF2 binding protein that triggers TNF-R2 ubiquitination and TNF-R2-induced JNK activation". Biochem. Biophys. Res. Commun. 374 (4): 752–7. doi:10.1016/j.bbrc.2008.07.103. PMID 18671942. 
  52. ^ Lee YS, Han JM, Son SH, Choi JW, Jeon EJ, Bae SC, Park YI, Kim S. "AIMP1/p43 downregulates TGF-beta signaling via stabilization of smurf2". Biochem. Biophys. Res. Commun. 371 (3): 395–400. doi:10.1016/j.bbrc.2008.04.099. PMID 18448069. 
  53. ^ Wang YT, Chuang JY, Shen MR, Yang WB, Chang WC, Hung JJ. "Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein 1 proteolytic process". J. Mol. Biol. 380 (5): 869–85. doi:10.1016/j.jmb.2008.05.043. PMID 18572193. 
  54. ^ Chen L, Dong W, Zou T, Ouyang L, He G, Liu Y, Qi Y. "Protein phosphatase 4 negatively regulates LPS cascade by inhibiting ubiquitination of TRAF6". FEBS Lett. 582 (19): 2843–9. doi:10.1016/j.febslet.2008.07.014. PMID 18634786. 
  55. ^ Lamothe B, Campos AD, Webster WK, Gopinathan A, Hur L, Darnay BG. "The RING domain and first zinc finger of TRAF6 coordinate signaling by interleukin-1, lipopolysaccharide, and RANKL". J. Biol. Chem. 283 (36): 24871–80. doi:10.1074/jbc.M802749200. PMC 2529010. PMID 18617513. 

Further reading[edit]

  1. ^ Cite error: The named reference genecards.org was invoked but never defined (see the help page).