User:Nightwalker/IEEE 802.3
Appearance
Copper based twisted pair Ethernet Standards
[edit]Name | Standard | Status | Speed (Mbit/s)[A] | Pairs required | Lanes per direction | Data rate efficiency (bit/s/Hz)[B] |
Line code | Symbol rate per lane (MBd) | Bandwidth[C] (MHz) | Max distance (m) | Cable[D] | Cable rating (MHz) | Usage |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
StarLAN-1 1BASE5 | 802.3e-1987 | obsolete | 1 | 2 | 1 | 1 | PE | 1 | 1 | 250 | voice grade | ~12 | LAN |
StarLAN-10 | 802.3e-1988 | obsolete | 10 | 2 | 1 | 1 | PE | 10 | 10 | ~100 | voice grade | ~12 | LAN |
LattisNet | pre 802.3i-1990 | obsolete | 10 | 2 | 1 | 1 | PE | 10 | 10 | 100 | voice grade | ~12 | LAN |
10BASE-T | 802.3i-1990 (CL14) | legacy | 10 | 2 | 1 | 1 | PE | 10 | 10 | 100 | Cat 3 | 16 | LAN [2] |
10BASE-T1S | 802.3cg-2019 | current | 10 | 1 | 1 | 0.8 | 4B5B DME | 25 | 12.5 | 15 or 25[E] | Cat 5 | 25 | Automotive, IoT, M2M |
10BASE-T1L | 802.3cg-2019 | current | 10 | 1 | 1 | 2.66 | 4B3T PAM-3 | 7.5 | 3.75 | 1000 | Cat 5 | 20 | Automotive, IoT, M2M |
100BASE-T1 | 802.3bw-2015 (CL96) | current | 100 | 1 | 1 | 2.66 | 4B3B PAM-3 | 75 | 37.5 | 15 | Cat 5e | 100 | Automotive, IoT, M2M |
100BaseVG | 802.12-1995 | obsolete | 100 | 4 | 4 | 1.66 | 5B6B Half-duplex only | 30 | 15 | 100 | Cat 3 | 16 | Market failure |
100BASE-T4 | 802.3u-1995 | obsolete | 100 | 4 | 3 | 2.66 | 8B6T PAM-3 Half-duplex only | 25 | 12.5 | 100 | Cat 3 | 16 | Market failure |
100BASE-T2 | 802.3y-1997 | obsolete | 100 | 2 | 2 | 4 | LFSR PAM-5 | 25 | 12.5 | 100 | Cat 3 | 16 | Market failure |
100BASE-TX | 802.3u-1995 | current | 100 | 2 | 1 | 3.2 | 4B5B MLT-3 NRZ-I | 125 | 31.25 | 100 | Cat 5 | 100 | LAN |
1000BASE‑TX | 802.3ab-1999, TIA/EIA 854 (2001) |
obsolete | 1000 | 4 | 2 | 4 | PAM-5 | 250 | 125 | 100 | Cat 6 | 250 | Market failure |
1000BASE‑T | 802.3ab-1999 (CL40) | current | 1000 | 4 | 4 | 4 | TCM 4D-PAM-5 | 125 | 62.5 | 100 | Cat 5 | 100 | LAN |
1000BASE-T1 | 802.3bp-2016 | current | 1000 | 1 | 1 | 2.66 | PAM-3 80B/81B RS-FEC | 750 | 375 | 40 | Cat 6A | 500 | Automotive, IoT, M2M |
2.5GBASE-T | 802.3bz-2016 | current | 2500 | 4 | 4 | 6.25 | 64B65B PAM-16 128-DSQ | 200 | 100 | 100 | Cat 5e | 100 | LAN |
5GBASE-T | 802.3bz-2016 | current | 5000 | 4 | 4 | 6.25 | 64B65B PAM-16 128-DSQ | 400 | 200 | 100 | Cat 6 | 250 | LAN |
10GBASE-T | 802.3an-2006 | current | 10000 | 4 | 4 | 6.25 | 64B65B PAM-16 128-DSQ | 800 | 400 | 100 | Cat 6A | 500 | LAN |
25GBASE-T | 802.3bq-2016 (CL113) | current | 25000 | 4 | 4 | 6.25 | PAM-16 RS-FEC (192, 186) LDPC | 2000 | 1000 | 30 | Cat 8 | 2000 | LAN, Data Centre |
40GBASE-T | 802.3bq-2016 (CL113) | current | 40000 | 4 | 4 | 6.25 | PAM-16 RS-FEC (192, 186) LDPC | 3200 | 1600 | 30 | Cat 8 | 2000 | LAN, Data Centre |
Name | Standard | Status | Speed (Mbit/s)[A] | Pairs required | Lanes per direction | Data rate efficiency (bit/s/Hz)[B] |
Line code | Symbol rate per lane (MBd) | Bandwidth[C] (MHz) | Max distance (m) | Cable[D] | Cable rating (MHz) | Usage |
- ^ a b Transfer speed = lanes × bits per hertz × spectral bandwidth
- ^ a b Effective bits per hertz per lane after loss to encoding overhead.
- ^ a b The spectral bandwidth is the maximum rate at which the signal will complete one hertz cycle. It is typical half the symbol rate, because one can send a symbol both at the positive and negative peak of the cycle. Exceptions are 10BASE-T where it is equal because it uses Manchester code, and 100BASE-TX where it is one quarter because it uses MLT-3 encoding.
- ^ a b At shorter cable length, it is possible to use cables of a lower grade than that is required for 100 m. For example it is possible to use 10GBASE-T on a Cat 6 cable of 55 m or less. Likewise 5GBASE-T is expected to work with Cat 5e in most use cases.
- ^ Cite error: The named reference
t1s
was invoked but never defined (see the help page).
Fibre-based and other Ethernet Standards
[edit]Fibre type | Introduced | Performance |
---|---|---|
MMF FDDI 62.5/125 µm | 1987 | 160 MHz·km @ 850 nm |
MMF OM1 62.5/125 µm | 1989 | 200 MHz·km @ 850 nm |
MMF OM2 50/125 µm | 1998 | 500 MHz·km @ 850 nm |
MMF OM3 50/125 µm | 2003 | 1500 MHz·km @ 850 nm |
MMF OM4 50/125 µm | 2008 | 3500 MHz·km @ 850 nm |
MMF OM5 50/125 µm | 2016 | 3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm |
SMF OS1 9/125 µm | 1998 | 1.0 dB/km @ 1300/1550 nm |
SMF OS2 9/125 µm | 2000 | 0.4 dB/km @ 1300/1550 nm |
Name | Standard | Status | Media | Connector | Transceiver Module |
Reach in m |
# Media (⇆) |
# Lambdas (→) |
# Lanes (→) |
Notes |
---|---|---|---|---|---|---|---|---|---|---|
Classic coaxial Ethernet - (Data rate: 10 Mbit/s - Line code: PE - Line rate: 20 MBd - Full-Duplex / Half-Duplex) | ||||||||||
10BASE5 Thick Ethernet DIX Standard |
802.3-1983 (CL8) |
obsolete 09/2003 |
Coax RG-8X (50 Ω) |
AUI, N, Vampire tap |
MAU | 500 | 1 | N/A | 1 | LAN; original standard; electrical bus topology with collision detection; uses a single coaxial cable into which you literally tap a connection by drilling into the cable to connect to the core and screen. |
10BASE2 Thin Ethernet ThinNet Cheapernet |
802.3a-1988 (CL10) |
obsolete 09/2011 |
Coax RG-58 (50 Ω) |
BNC, EAD/TAE-E |
MAU | 185 | 1 | N/A | 1 | LAN; dominant standard from the mid to late 1980s; electrical bus topology with collision detection; coaxial cable connects machines together, each machine using a T-connector to connect to its NIC. Requires terminators at each end. |
Classic fibre Ethernet - (Data rate: 10 Mbit/s - Line code: PE - Line rate: 20 MBd - Full-Duplex / Half-Duplex) | ||||||||||
FOIRL | 802.3d-1987 (CL9.9) |
superseded | Fibre 850 nm |
ST | MAU | OF: 1k | 2 | 1 | 1 | original standard for Ethernet over fibre; uses any optical fibre with up to 4 dB/km attenuation and at least 150 MHz bandwidth; superseded by 10BASE-FL |
10BASE-FL | 802.3j-1993 (CL15/18) |
largely obsolete |
Fibre 850 nm |
ST | FDDI: 2k | 2 | 1 | 1 | Nodes | |
10BASE-FB | 802.3j-1993 (CL15/17) |
largely obsolete |
Fibre 850 nm |
ST | FDDI: 2k | 2 | 1 | 1 | synchronous inter-repeater connections | |
10BASE-FP | 802.3j-1993 (CL15/16) |
obsolete | Fibre 850 nm |
ST | FDDI: 1k | 2 | 1 | 1 | passive, repeaterless star network; Market Failure, never implemented | |
Fast Ethernet - (Data rate: 100 Mbit/s - Line code: 4B5B × NRZ-I - Line rate: 125 MBd - Full-Duplex / Half-Duplex) | ||||||||||
100BASE‑FX | 802.3u-1995 (CL24/26) |
current | Fibre 1300 nm |
ST SC MT-RJ MIC (FDDI) |
— | FDDI: 2k (FDX) | 2 | 1 | 1 | max. 412 m for half-duplex connections to ensure collision detection; specification largely derived from FDDI. Modal bandwidth: 800 MHz·km [3][4] |
OM1: 4k | ||||||||||
50/125: 5k | ||||||||||
100BASE‑LFX | proprietary (non IEEE) |
current | Fibre 1310 nm |
LC (SFP) ST SC |
SFP | OM1: 2k | 2 | 1 | 1 | vendor-specific FP laser transmitter Full-duplex Modal bandwidth: 800 MHz·km [5] |
OM2: 2k | ||||||||||
62.5/125: 4k | ||||||||||
50/125: 4k | ||||||||||
OSx: 40k [4] | ||||||||||
100BASE-SX | TIA-785 (2000) |
legacy | Fibre 850 nm |
ST SC LC |
— | OM1: 300 | 2 | 1 | 1 | optics sharable with 10BASE-FL, thus making it possible to have an auto-negotiation scheme and use 10/100 fibre adapters. |
OM2: 300 | ||||||||||
100BASE-LX10 | 802.3ah-2004 (CL58) |
phase-out | Fibre 1310 nm |
LC | SFP | OSx: 10k | 2 | 1 | 1 | full-duplex only |
100BASE-BX10 | 802.3ah-2004 (CL58) |
phase-out | Fibre TX: 1310 nm RX: 1550 nm |
LC | SFP | OSx: 40k | 2 | 1 | 1 | full-duplex only; optical multiplexer used to split TX and RX signals into different wavelengths. |
Gigabit Ethernet (GbE) - (Data rate: 1000 Mbit/s - Line code: 8B/10B × NRZ - Line rate: 1.25 GBd - Full-Duplex (or Half-Duplex)) | ||||||||||
1000BASE‑CX | 802.3z-1998 (CL39) |
legacy | TWP shielded balanced (150 Ω) |
8P8C DE-9 FC/HSSDC CX4 (SFF-8470) (IEC 61076-3-103) |
— | 25 | 4 | N/A | 4 | Data centres; predates 1000BASE-T; rarely used. |
1000BASE‑KX | 802.3ap-2007 (CL70) |
current | Cu-Backplane | — | — | 1 | 1 | N/A | 4 | PCBs |
1000BASE‑SX | 802.3z-1998 (CL38) |
current | Fibre 770 – 860 nm |
ST SC LC MT-RJ [6] |
SFP direct-plug |
OM1: 275 | 2 | 1 | 1 | |
OM2: 550 | ||||||||||
OM3: 1k [7] | ||||||||||
1000BASE‑LSX | proprietary (non IEEE) |
current | Fibre 1310 nm |
LC | SFP | OM1: 2k [8] | 2 | 1 | 1 | vendor-specific; FP laser transmitter |
OM2: 1k [9] | ||||||||||
OM4: 2k [10] | ||||||||||
1000BASE‑LX | 802.3z-1998 (CL38) |
current | Fibre 1270 – 1355 nm |
SC LC |
SFP GBIC direct-plug |
OM1: 550 | 2 | 1 | 1 | |
OM2: 550 | ||||||||||
OM3: 550 | ||||||||||
OSx: 5k | ||||||||||
1000BASE‑LX10 | 802.3ah-2004 (CL59) |
current | Fibre 1260 – 1360 nm |
LC | SFP | OM1: 550 | 2 | 1 | 1 | identical with -LX but with increased power/sensitivity; commonly simply referred to as -LX or -LH prior to 802.3ah |
OM2: 550 | ||||||||||
OM3: 550 | ||||||||||
OSx: 10k | ||||||||||
1000BASE-BX10 | 802.3ah-2004 (CL59) |
current | Fibre TX: 1260 – 1360 nm RX: 1480 – 1500 nm |
LC | SFP | OSx: 10k | 1 | 1 | 1 | often simply referred to as -BX |
1000BASE‑EX | proprietary (non IEEE) |
current | Fibre 1310 nm |
SC LC |
SFP GBIC |
OSx: 40k | 2 | 1 | 1 | vendor-specific |
1000BASE‑ZX / ‑EZX | proprietary (non IEEE) |
current | Fibre 1550 nm |
SC LC |
SFP GBIC |
OSx: 70k | 2 | 1 | 1 | vendor-specific |
1000BASE‑RHx | 802.3bv-2017 (CL115) |
current | Fibre 650 nm |
FOT (PMD/MDI) |
— | POF: ≤ 50 | 1 | 1 | 1 | Automotive, Industry, Home; [11][12] Line code: 64b65b × PAM16 Line rate: 325 MBd Variants: -RHA (50 m), -RHB (40 m), -RHC (15 m). |
1000BASE-PX | 802.3ah-2004 802.3bk-2013 (CL60) |
current | Fibre TX: 1270 nm RX: 1577 nm |
SC | SFP XFP |
OSx: 10k – 40k |
1 | 1 | 1 | EPON; FTTH; using point-to-multipoint topology. |
1000BASE‑CWDM [13][14] |
ITU-T G.694.2 | current | Fibre 1270 – 1610 nm |
LC | SFP | OSx: 40k – 100k |
2 | 1 | 1 | CWDM makes it possible to have multiple parallel channels over 2 fibres; spectral bandwidth 11 nm; capable of 18 parallel channels |
1000BASE‑DWDM [15][14] |
ITU-T G.694.1 | current | Fibre 1528 – 1565 nm |
LC | SFP | OSx: 40k – 120k |
2 | 1 | 1 | DWDM makes it possible to have multiple parallel channels over 2 fibres; spectral bandwidth 0.2 nm; capable of 45 to 160 parallel channels |
10 Gigabit Ethernet (10 GbE) - (Data rate: 10 Gbit/s - Line code: 64b/66b × NRZ - Line rate: 10.3125 GBd - Full-Duplex) [16][17][18] | ||||||||||
10GBASE-KX4 | 802.3ap-2007 (CL48/71) |
legacy | Cu-Backplane | — | — | 1 | 4 | N/A | 4 | PCBs; Line code: 8b/10b × NRZ Line rate: 4× 3.125 GBd = 12.5 GBd |
10GBASE-KR | 802.3ap-2007 (CL49/72) |
current | Cu-Backplane | — | — | 1 | 1 | 1 | 1 | PCBs |
10GPASS-XR | 802.3bn-2016 (CL100-102) |
current | Coax | — | — | ? | 1 | 1 | 1 | EPON Protocol over Coax (EPoC) – up to 10 Gbit/s downstream and 1.6 Gbit/s upstream for a passive optical, point-to-multipoint network using passband OFDM with up to 16384-QAM |
10GBASE-CX4 | 802.3ak-2004 (CL48/54) |
legacy | twinaxial balanced |
CX4 (SFF-8470) (IEC 61076-3-113) (IB) |
X2 XFP |
15 | 4 | N/A | 4 | Data centres; Line code: 8b/10b × NRZ Line rate: 4× 3.125 GBd = 12.5 GBd |
10GSFP+Cu Direct Attach |
SFF-8431 (2006) |
current | twinaxial balanced |
SFP+ (SFF-8431) |
SFP+ | 7 15 100 |
1 | 1 | 1 | Data centres; Cable types: passive twinaxial (7 m), active (15 m), active optical (AOC): (100 m) |
10GBASE-SRL | proprietary (non IEEE) |
current | Fibre 850 nm |
SC LC |
SFP+ XENPAK X2 XFP |
OM1: 11 | 2 | 1 | 1 | |
OM2: 27 | ||||||||||
OM3: 100 | ||||||||||
OM4: 150 | ||||||||||
10GBASE-SR | 802.3ae-2002 (CL49/52) |
current | Fibre 850 nm |
SC LC |
SFP+ XENPAK X2 XPAK XFP |
OM1: 33 | 2 | 1 | 1 | Modal bandwidth (reach): 160 MHz·km (26 m), 200 MHz·km (33 m), 400 MHz·km (66 m), 500 MHz·km (82 m), 2000 MHz·km (300 m), 4700 MHz·km (400 m) |
OM2: 82 | ||||||||||
OM3: 300 | ||||||||||
OM4: 400 | ||||||||||
10GBASE-LRM | 802.3aq-2006 (CL49/68) |
current | Fibre 1300 nm |
SC LC |
SFP+ XENPAK X2 |
OM2: 220 | 2 | 1 | 1 | [20] Modal bandwidth: 500 MHz·km |
OM3: 220 | ||||||||||
10GBASE-LX4 | 802.3ae-2002 (CL48/53) |
legacy | Fibre 1269.0 – 1282.4 nm 1293.5 – 1306.9 nm 1318.0 – 1331.4 nm 1342.5 – 1355.9 nm |
SC | XENPAK X2 |
OM2: 300 | 2 | 4 | 4 | WDM; [20] Line code: 8b/10b × NRZ Line rate: 4× 3.125 GBd = 12.5 GBd Modal bandwidth: 500 MHz·km |
OS2: 10k | ||||||||||
10GBASE-SW | 802.3ae-2002 (CL50/52) |
current | Fibre 850 nm |
SC LC |
SFP+ XPAK |
OM1: 33 | 2 | 1 | 1 | WAN; WAN-PHY; Line rate: 9.5846 GBd direct mapping as OC-192 / STM-64 SONET/SDH streams. -ZW: -EW with higher performance optics |
OM2: 82 | ||||||||||
OM3: 300 | ||||||||||
OM4: 400 | ||||||||||
10GBASE-LW | 802.3ae-2002 (CL50/52) |
current | Fibre 1310 nm |
SC LC |
SFP+ XENPAK XPAK |
OS2: 10k | 2 | 1 | 1 | |
10GBASE-EW | 802.3ae-2002 (CL50/52) |
current | Fibre 1550 nm |
SC LC |
SFP+ | OS2: 40k | 2 | 1 | 1 | |
10GBASE-ZW | proprietary (non IEEE) |
current | OS2: 80k | |||||||
10GBASE-LR | 802.3ae-2002 (CL49/52) |
current | Fibre 1310 nm |
SC LC |
SFP+ XENPAK X2 XPAK XFP |
OS2: 10k | 2 | 1 | 1 | |
10GBASE-PR | 802.3av-2009 | current | Fibre TX: 1270 nm RX: 1577 nm |
SC | SFP+ XFP |
OS2: 20k | 1 | 1 | 1 | 10G EPON |
10GBASE-ER | 802.3ae-2002 (CL49/52) |
current | Fibre 1550 nm |
SC LC |
SFP+ XENPAK X2 XFP |
OS2: 40k | 2 | 1 | 1 | |
10GBASE-ZR | proprietary (non IEEE) |
current | OS2: 80k | -ER with higher performance optics | ||||||
25 Gigabit Ethernet (25 GbE) - (Data rate: 25 Gbit/s - Line code: 64b/66b with and without RS-FEC(528,514) × NRZ - Line rate: 25.78125 GBd - Full-Duplex) [21] | ||||||||||
25GAUI | 802.3by-2016 (CL109A/B) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 2 | N/A | 1 | PCBs |
25GBASE-KR | 802.3by-2016 (CL111) |
current | Cu-Backplane | — | — | 1 | 1 | N/A | 1 | PCBs |
25GBASE-KR-S | 802.3by-2016 (CL111) |
current | Cu-Backplane | — | — | 1 | 1 | N/A | 1 | PCBs; without RS-FEC (802.3by CL108) |
25GBASE-CR Direct Attach |
802.3by-2016 (CL110) |
current | twinaxial balanced |
SFP28 (SFF-8402) |
SFP28 | 5 | 2 | N/A | 1 | Data centres (inter-rack) |
25GBASE-CR-S Direct Attach |
802.3by-2016 (CL110) |
current | twinaxial balanced |
SFP28 (SFF-8402) |
SFP28 | 3 | 1 | N/A | 1 | Data centres (in-rack); without RS-FEC (802.3by CL108) |
25GBASE-SR | 802.3by-2016 (CL112) |
current | Fibre 850 nm |
LC | SFP28 | OM3: 70 | 2 | 1 | 1 | |
OM4: 100 | ||||||||||
25GBASE-LR | 802.3cc-2017 (CL114) |
current | Fibre 1295 – 1325 nm |
LC | SFP28 | OS2: 10k | 2 | 1 | 1 | |
25GBASE-ER | 802.3cc-2017 (CL114) |
current | Fibre 1295 - 1310 nm |
LC | SFP28 | OS2: 40k | 2 | 1 | 1 | |
40 Gigabit Ethernet (40 GbE) - (Data rate: 40 Gbit/s - Line code: 64b/66b × NRZ - Line rate: 4× 10.3125 GBd = 41.25 GBd - Full-Duplex) [21][22][23][24] | ||||||||||
40GBASE-CR4 Direct Attach |
802.3ba-2010 (CL82/85) |
phase-out | twinaxial balanced |
QSFP+ (SFF-8635) |
QSFP+ | 10 | 8 | N/A | 4 | Data centres (inter-rack); possible breakout / lane separation to 4× 10G through splitter cable (QSFP+ to 4× SFP+); involves CL73 for auto-negotiation and CL72 for link training. |
40GBASE-KR4 | 802.3ba-2010 (CL82/84) |
phase-out | Cu-Backplane | — | — | 1 | 8 | N/A | 4 | PCBs; possible breakout / lane separation to 4× 10G through splitter cable (QSFP+ to 4× SFP+); involves CL73 for auto-negotiation, and CL72 for link training. |
40GBASE-SR4 | 802.3ba-2010 (CL82/86) |
phase-out | Fibre 850 nm |
MPO/MTP (MPO-12) |
CFP QSFP+ |
OM3: 100 | 8 | 1 | 4 | possible breakout / lane separation to 4× 10G through splitter cable (MPO/MTP to 4× LC-pairs). |
OM4: 150 | ||||||||||
40GBASE-eSR4 | proprietary (non IEEE) |
phase-out | QSFP+ | OM3: 300 | possible breakout / lane separation to 4× 10G through splitter cable (MPO/MTP to 4× LC-pairs). | |||||
OM4: 400 | ||||||||||
40GBASE-SR2-BiDi (BiDirectional) |
proprietary (non IEEE) |
phase-out | Fibre 850 nm 900 nm |
LC | QSFP+ | OM3: 100 | 2 | 2 | 2 | WDM duplex fibre each used to transmit and receive on two wavelengths; The major selling point of this variant is its ability to run over existing 10G multi-mode fibre (i.e. allowing easy migration from 10G to 40G). |
OM4: 150 | ||||||||||
40GBASE-SWDM4 | proprietary (MSA, Nov 2017) |
phase-out | Fibre 844-858 nm 874-888 nm 904-918 nm 934-948 nm |
LC | QSFP+ | OM3: 240 | 2 | 4 | 4 | SWDM[25] |
OM4: 350 | ||||||||||
OM5: 440 | ||||||||||
40GBASE-LR4 | 802.3ba-2010 (CL82/87) |
phase-out | Fibre 1271 nm 1291 nm 1311 nm 1331 nm ±6.5 nm each |
LC | CFP QSFP+ |
OSx: 10k | 2 | 4 | 4 | WDM |
40GBASE-ER4 | 802.3bm-2015 (CL82/87) |
phase-out | QSFP+ | OSx: 40k | WDM | |||||
40GBASE-LX4 / -LM4 | proprietary (non IEEE) |
phase-out | QSFP+ | OM3: 140 | WDM as primarily designed for single mode (-LR4), this mode of operation is out of specification for some transceivers. | |||||
OM4: 160 | ||||||||||
OSx: 10k | ||||||||||
40GBASE-PLR4 (parallel -LR4) |
proprietary (non IEEE) |
phase-out | Fibre 1310 nm |
MPO/MTP (MPO-12) |
QSFP+ | OSx: 10k | 8 | 1 | 4 | possible breakout / lane separation to 4× 10G through splitter cable (MPO/MTP to 4× LC-pairs). |
40GBASE-FR | 802.3bg-2011 (CL82/89) |
phase-out | Fibre 1550 nm |
LC | CFP | OSx: 2k | 2 | 1 | 1 | capability to receive 1310 nm light besides 1550 nm; allows inter-operation with a longer reach 1310 nm PHY (TBD); use of 1550 nm implies compatibility with existing test equipment and infrastructure. |
50 Gigabit Ethernet (50 GbE) - (Data rate: 50 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 26.5625 GBd - Full-Duplex) [22][26] | ||||||||||
LAUI-2 | 802.3cd-2018 (CL135B/C) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 2 | N/A | 2 | PCBs; Line code: NRZ (no FEC) Line rate: 2x 25.78125 GBd = 51.5625 GBd |
50GAUI-2 | 802.3cd-2018 (CL135D/E) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 2 | N/A | 2 | PCBs; Line code: NRZ (FEC encoded) Line rate: 2x 26.5625 GBd = 53.1250 GBd |
50GAUI-1 | 802.3cd-2018 (CL135F/G) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 1 | N/A | 1 | PCBs |
50GBASE-KR | 802.3cd-2018 (CL133/137) |
current | Cu-Backplane | — | — | 1 | 1 | N/A | 1 | PCBs; total channel insertion loss ≤ 30 dB at half sampling rate = 13.28125 GHz (Nyquist). |
50GBASE-CR | 802.3cd-2018 (CL133/136) |
current | twinaxial balanced |
QSFP28, microQSFP, QSFP-DD, OSFP (SFF-8635) |
QSFP28 | 3 | 1 | N/A | 1 | Data centres (in-rack) |
50GBASE-SR | 802.3cd-2018 (CL133/138) |
current | Fibre 850 nm |
LC | QSFP+ | OM3: 70 | 2 | 1 | 1 | |
OM4: 100 | ||||||||||
50GBASE-LR | 802.3cd-2018 (CL133/139) |
current | Fibre 1304.5 – 1317.5 nm |
LC | QSFP+ | OS2: 10k | 2 | 1 | 1 | |
50GBASE-FR | 802.3cd-2018 (CL133/139) |
current | Fibre 1304.5 – 1317.5 nm |
LC | QSFP+ | OS2: 2k | 2 | 1 | 1 | |
50GBASE-ER | 802.3cn-2019 (CL133/139) |
current | Fibre 1304.5 – 1317.5 nm |
LC | QSFP+ | OS2: 40k | 2 | 1 | 1 |
Fibre-based and other Ethernet Standards (100 GbE)
[edit]Fibre type | Introduced | Performance |
---|---|---|
MMF FDDI 62.5/125 µm | 1987 | 160 MHz·km @ 850 nm |
MMF OM1 62.5/125 µm | 1989 | 200 MHz·km @ 850 nm |
MMF OM2 50/125 µm | 1998 | 500 MHz·km @ 850 nm |
MMF OM3 50/125 µm | 2003 | 1500 MHz·km @ 850 nm |
MMF OM4 50/125 µm | 2008 | 3500 MHz·km @ 850 nm |
MMF OM5 50/125 µm | 2016 | 3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm |
SMF OS1 9/125 µm | 1998 | 1.0 dB/km @ 1300/1550 nm |
SMF OS2 9/125 µm | 2000 | 0.4 dB/km @ 1300/1550 nm |
Name | Standard | Status | Media | Connector | Transceiver Module |
Reach in m |
# Media (⇆) |
# Lambdas (→) |
# Lanes (→) |
Notes |
---|---|---|---|---|---|---|---|---|---|---|
100 Gigabit Ethernet (100 GbE) (1st Generation: 10GbE-based) - (Data rate: 100 Gbit/s - Line code: 64b/66b × NRZ - Line rate: 10x 10.3125 GBd = 103.125 GBd - Full-Duplex) [21][22][26] | ||||||||||
100GBASE-CR10 Direct Attach |
802.3ba-2010 (CL85) |
phase-out | twinaxial balanced |
CXP (SFF-8642) CFP2 CFP4 QSFP+ |
CXP CFP2 CFP4 QSFP+ |
7 | 20 | N/A | 10 | Data centres (inter-rack); CXP connector uses center 10 out of 12 channels. |
100GBASE-SR10 | 802.3ba-2010 (CL82/86) |
phase-out | Fibre 850 nm |
MPO/MTP (MPO-24) |
CXP CFP CFP2 CFP4 CPAK |
OM3: 100 | 20 | 1 | 10 | |
OM4: 150 | ||||||||||
10×10G | proprietary (MSA, Jan 2010) |
phase-out | Fibre 1523 nm , 1531 nm 1539 nm , 1547 nm 1555 nm , 1563 nm 1571 nm , 1579 nm 1587 nm , 1595 nm |
LC | CFP | OSx: 2k / 10k / 40k |
2 | 10 | 10 | WDM Multi-vendor standard[27] |
100 Gigabit Ethernet (100 GbE) (2nd Generation: 25GbE-based) - (Data rate: 100 Gbit/s - Line code: 256b/257b × RS-FEC(528,514) × NRZ - Line rate: 4x 25.78125 GBd = 103.125 GBd - Full-Duplex) [21][22][26][28] | ||||||||||
100GBASE-KR4 | 802.3bj-2014 (CL93) |
current | Cu-Backplane | — | — | 1 | 8 | N/A | 4 | PCBs; total insertion loss of up to 35 dB at 12.9 GHz |
100GBASE-KP4 | 802.3bj-2014 (CL94) |
current | Cu-Backplane | — | — | 1 | 8 | N/A | 4 | PCBs; Line code: RS-FEC(544,514) × PAM4 × 92/90 framing and 31320/31280 lane identification Line rate: 4x 13.59375 GBd = 54.375 GBd total insertion loss of up to 33 dB at 7 GHz |
100GBASE-CR4 Direct Attach |
802.3bj-2010 (CL92) |
current | twinaxial balanced |
QSFP28 (SFF-8665) CFP2 CFP4 |
— | 5 | 8 | N/A | 4 | Data centres (inter-rack) |
100GBASE-SR4 | 802.3bm-2015 (CL95) |
current | Fibre 850 nm |
MPO/MTP (MPO-12) |
QSFP28 CFP2 CFP4 CPAK |
OM3: 70 | 8 | 1 | 4 | |
OM4: 100 | ||||||||||
100GBASE-SR2-BiDi (BiDirectional) |
proprietary (non IEEE) |
current | Fibre 850 nm 900 nm |
LC | QSFP28 | OM3: 70 | 2 | 2 | 2 | WDM Line rate: 2x (2x 26.5625 GBd with PAM4) Duplex fiber with both being used to transmit and receive; The major selling point of this variant is its ability to run over existing LC multi-mode fiber (i.e. allowing easy migration from 10G/25G to 100G). |
OM4: 100 | ||||||||||
OM5: 150 | ||||||||||
100GBASE-SWDM4 | proprietary (MSA, Nov 2017) |
current | Fibre 844 – 858 nm 874 – 888 nm 904 – 918 nm 934 – 948 nm |
LC | QSFP28 | OM3: 75 | 2 | 4 | 4 | SWDM[25] |
OM4: 100 | ||||||||||
OM5: 150 | ||||||||||
100GBASE-SR1.2 (Bidirectional) |
802.3bm-2015 | current | Fibre 850 nm 900 nm |
LC | QSFP28 | OM3: 70 | 2 | 2 | 2 | WDM Line rate: 2x (2x 26.5625 GBd with PAM4)[29] Duplex fiber with both being used to transmit and receive; The major selling point of this variant is its ability to run over existing LC multi-mode fiber (allowing easy migration from 10G/25G to 100G). This BiDi variant is compatible with breakout from 400GBASE-4.2.[30] |
OM4: 100 | ||||||||||
OM5: 100 | ||||||||||
100GBASE-LR4 | 802.3ba-2010 (CL88) |
current | Fibre 1295.56 nm 1300.05 nm 1304.59 nm 1309.14 nm |
LC | QSFP28 CFP CFP2 CFP4 CPAK |
OSx: 10k | 2 | 4 | 4 | WDM Line code: 64b/66b × NRZ |
100GBASE-ER4 | 802.3ba-2010 (CL88) |
current | QSFP28 CFP CFP2 |
OSx: 40k | 2 | 4 | 4 | WDM Line code: 64b/66b × NRZ | ||
100GBASE-PSM4 | proprietary (MSA, Jan 2014) |
current | Fibre 1310 nm |
MPO/MTP (MPO-12) |
QSFP28 CFP4 |
OSx: 500 | 8 | 1 | 4 | Data centres; Line code: 64b/66b × NRZ or 256b/257b × RS-FEC(528,514) × NRZ Multi-vendor standard [31] |
100GBASE-CWDM4 | proprietary (MSA, Mar 2014) |
current | Fibre 1271 nm 1291 nm 1311 nm 1331 nm ±6.5 nm each |
LC | QSFP28 CFP2 CFP4 |
OSx: 2k | 2 | 4 | 4 | Data centres; WDM Multi-vendor standard[32][33] |
100GBASE-4WDM-10 | proprietary (MSA, Oct 2018) |
current | QSFP28 CFP4 |
OSx: 10k | 2 | 4 | 4 | WDM Multi-vendor standard[34] | ||
100GBASE-4WDM-20 | proprietary (MSA, Jul 2017) |
current | Fibre 1295.56 nm 1300.05 nm 1304.58 nm 1309.14 nm ±1.03 nm each |
OSx: 20k | WDM Multi-vendor standard[35] | |||||
100GBASE-4WDM-40 | proprietary (non IEEE) (MSA, Jul 2017) |
current | OSx: 40k | WDM Multi-vendor standard[35] | ||||||
100GBASE-CLR4 | proprietary (MSA, Apr 2014) |
current | Fibre 1271 nm 1291 nm 1311 nm 1331 nm ±6.5 nm each |
QSFP28 | OSx: 2k | 2 | 4 | 4 | Data centres; WDM Line code: 64b/66b × NRZ or 256b/257b × RS-FEC(528,514) × NRZ Interoperable with 100GBASE-CWDM4 when using RS-FEC; Multi-vendor standard[32][36] | |
100GBASE-CWDM4 | proprietary (OCP MSA, Mar 2014) |
current | Fibre 1504 – 1566 nm |
LC | QSFP28 | OSx: 2k | 2 | 4 | 4 | Data centres; WDM Line code: 64b/66b × NRZ or 256b/257b × RS-FEC(528,514) × NRZ Derived from 100GBASE-CWDM4 to allow cheaper transceivers; Multi-vendor standard[37] |
100 Gigabit Ethernet (100 GbE) (3rd Generation: 50GbE-based) - (Data rate: 100 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 26.5625 GBd x2 = 106.25 GBd - Full-Duplex) [22][26] | ||||||||||
100GBASE-KR2 | 802.3cd-2018 (CL137) |
current | Cu-Backplane | — | — | 1 | 4 | N/A | 2 | PCBs |
100GBASE-CR2 | 802.3cd-2018 (CL136) |
current | twinaxial balanced |
QSFP28, microQSFP, QSFP-DD, OSFP (SFF-8665) |
— | 3 | 4 | N/A | 2 | Data centres (in-rack) |
100GBASE-SR2 | 802.3cd-2018 (CL138) |
current | Fibre 850 nm |
MPO 4 fibres |
QSFP28 | OM3: 70 | 4 | 1 | 2 | |
OM4: 100 | ||||||||||
100 Gigabit Ethernet (100 GbE) (4th Generation: 100GbE-based) - (Data rate: 100 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 1x 53.1250 GBd x2 = 106.25 GBd - Full-Duplex) | ||||||||||
100GBASE-KR1 | 802.3ck-2022 (CL163) |
current | Cu-Backplane | — | — | 2 | N/A | 1 | total insertion loss ≤ 28 dB at 26.56 GHz. | |
100GBASE-CR1 | 802.3ck-2022 (CL162) |
current | twinaxial balanced |
SFP112, SFP-DD112, DSFP, QSFP112, QSFP-DD800, OSFP |
— | 2 | 2 | N/A | 1 | |
100GBASE-VR1 | 802.3db-2022 (CL167) |
current | Fibre 842 – 948 nm |
LC | QSFP28 | OM3: 30 | 2 | 1 | 1 | |
OM4: 50 | ||||||||||
100GBASE-SR1 | 802.3db-2022 (CL167) |
current | Fibre 844 – 863 nm |
LC | QSFP28 | OM3: 60 | 2 | 1 | 1 | |
OM4: 100 | ||||||||||
100GBASE-DR | 802.3cd-2018 (CL140) |
current | Fibre 1311 nm |
LC | QSFP28 | OSx: 500 | 2 | 1 | 1 | |
100GBASE-FR1 | 802.3cu-2021 (CL140) |
current | Fibre 1311 nm |
LC | QSFP28 | OSx: 2k | 2 | 1 | 1 | Multi-vendor standard[38] |
100GBASE-LR1 | 802.3cu-2021 (CL140) |
current | Fibre 1311 nm |
LC | QSFP28 | OSx: 10k | 2 | 1 | 1 | Multi-vendor standard[38] |
100GBASE-LR1-20 | proprietary (MSA, Nov 2020) |
current | Fibre 1311 nm |
LC | QSFP28 | OSx: 20k | 2 | 1 | 1 | Multi-vendor standard[39] |
100GBASE-ER1-30 | proprietary (MSA, Nov 2020) |
current | Fibre 1311 nm |
LC | QSFP28 | OSx: 30k | 2 | 1 | 1 | Multi-vendor standard[39] |
100GBASE-ER1-40 | proprietary (MSA, Nov 2020) |
current | Fibre 1311 nm |
LC | QSFP28 | OSx: 40k | 2 | 1 | 1 | Multi-vendor standard[39] |
100GBASE-ZR | 802.3ct-2021 (CL153/154) |
current | Fibre 1546.119 nm |
LC | CFP | OS2: 80k+ | 2 | 1 | 1 | Line code: DP-DQPSK × SC-FEC Line rate: 27.9525 GBd Reduced bandwidth and line rate for ultra long distances.[40] |
Fibre-based and other Ethernet Standards (> 100 GbE)
[edit]Fibre type | Introduced | Performance |
---|---|---|
MMF FDDI 62.5/125 µm | 1987 | 160 MHz·km @ 850 nm |
MMF OM1 62.5/125 µm | 1989 | 200 MHz·km @ 850 nm |
MMF OM2 50/125 µm | 1998 | 500 MHz·km @ 850 nm |
MMF OM3 50/125 µm | 2003 | 1500 MHz·km @ 850 nm |
MMF OM4 50/125 µm | 2008 | 3500 MHz·km @ 850 nm |
MMF OM5 50/125 µm | 2016 | 3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm |
SMF OS1 9/125 µm | 1998 | 1.0 dB/km @ 1300/1550 nm |
SMF OS2 9/125 µm | 2000 | 0.4 dB/km @ 1300/1550 nm |
Name | Standard | Status | Media | Connector | Transceiver Module |
Reach in m |
# Media (⇆) |
# Lambdas (→) |
# Lanes (→) |
Notes |
---|---|---|---|---|---|---|---|---|---|---|
200 Gigabit Ethernet (200 GbE) (1st Generation: 25GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × NRZ - Line rate: 8x 26.5625 GBd = 212.5 GBd - Full-Duplex) [22][26][41] | ||||||||||
200GAUI-8 | 802.3bs-2017 (CL120B/C) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 16 | N/A | 8 | PCBs |
200 Gigabit Ethernet (200 GbE) (2nd Generation: 50GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 26.5625 GBd x2 = 212.5 GBd - Full-Duplex) [22][26][41] | ||||||||||
200GAUI-4 | 802.3bs-2017 (CL120D/E) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 8 | N/A | 4 | PCBs |
200GBASE-KR4 | 802.3cd-2018 (CL137) |
current | Cu-Backplane | — | — | 1 | 8 | N/A | 4 | PCBs; total insertion loss of ≤ 30 dB at 13.28125 GHz |
200GBASE-CR4 | 802.3cd-2018 (CL136) |
current | twinaxial copper cable |
QSFP-DD, QSFP56, microQSFP, OSFP |
N/A | 3 | 8 | N/A | 4 | Data centres (in-rack) |
200GBASE-SR4 | 802.3cd-2018 (CL138) |
current | Fibre 850 nm |
MPO/MTP (MPO-12) |
QSFP56 | OM3: 70 | 8 | 1 | 4 | |
OM4: 100 | ||||||||||
200GBASE-DR4 | 802.3bs-2017 (CL121) |
current | Fibre 1304.5 – 1317.5 nm |
MPO/MTP (MPO-12) |
QSFP56 | OS2: 500 | 8 | ? | 4 | |
200GBASE-FR4 | 802.3bs-2017 (CL122) |
current | Fibre 1271 – 1331 nm |
LC | QSFP56 | OS2: 2k | 2 | 4 | 4 | WDM |
200GBASE-LR4 | 802.3bs-2017 (CL122) |
current | Fibre 1295.56 – 1309.14 nm |
LC | QSFP56 | OS2: 10k | 2 | 4 | 4 | WDM |
200GBASE-ER4 | 802.3cn-2019 (CL122) |
current | Fibre 1295.56 – 1309.14 nm |
LC | QSFP56 | OS2: 40k | 2 | 4 | 4 | WDM |
200 Gigabit Ethernet (200 GbE) (3rd Generation: 100GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 53.1250 GBd x2 = 212.5 GBd - Full-Duplex) [22][26][41] | ||||||||||
200GAUI-2 | 802.3ck-2022 (CL120F/G) |
current | Chip-to-chip/ Chip-to-module interface |
— | N/A | 0.25 | 4 | N/A | 2 | PCBs |
200GBASE-KR2 | 802.3ck-2022 (CL163) |
current | Cu backplane | — | — | 1 | 4 | N/A | 2 | PCBs; total insertion loss of ≤ 28 dB at 26.56 GHz |
200GBASE-CR2 | 802.3ck-2022 (CL162) |
current | twinaxial copper cable | QSFP-DD, QSFP112, SFP-DD112, DSFP, OSFP |
N/A | 2 | 4 | N/A | 2 | |
200GBASE-VR2 | 802.3db-2022 (CL167) |
current | Fiber 850 nm |
MPO (MPO-12) |
QSFP QSFP-DD SFP-DD112 |
OM3: 30 | 4 | 1 | 2 | |
OM4: 50 | ||||||||||
200GBASE-SR2 | 802.3db-2022 (CL167) |
current | Fiber 850 nm |
MPO (MPO-12) |
QSFP QSFP-DD SFP-DD112 |
OM3: 60 | 4 | 1 | 2 | |
OM4: 100 | ||||||||||
200 Gigabit Ethernet (200 GbE) (4th Generation: 200GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x1 = 212.5 GBd - Full-Duplex) | ||||||||||
200GAUI-1 | 802.3dj (CL176D/E) |
development | Chip-to-chip/ Chip-to-module interface |
— | N/A | 0.25 | 2 | N/A | 1 | PCBs |
200GBASE-KR1 | 802.3dj (CL178) |
development | Cu backplane | — | — | N/A | 2 | N/A | 1 | PCBs; total insertion loss of ≤ 40 dB at 53.125 GHz |
200GBASE-CR1 | 802.3dj (CL179) |
development | twinaxial copper cable | ? | N/A | 1 | 2 | N/A | 1 | |
200GBASE-DR1 | 802.3dj (CL180) |
development | Fiber 1310 nm |
? | ? | OS2: 500 | 2 | 1 | 1 | |
400 Gigabit Ethernet (400 GbE) (1st Generation: 25GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × NRZ - Line rate: 16x 26.5625 GBd = 425 GBd - Full-Duplex) [22] | ||||||||||
400GAUI-16 | 802.3bs-2017 (CL120B/C) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 32 | N/A | 16 | PCBs |
400GBASE-SR16 | 802.3bs-2017 (CL123) |
current | Fibre 850 nm |
MPO/MTP (MPO-32) |
CFP8 | OM3: 70 | 32 | 1 | 16 | |
OM4: 100 | ||||||||||
OM5: 100 | ||||||||||
400 Gigabit Ethernet (400 GbE) (2nd Generation: 50GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 8x 26.5625 GBd x2 = 425.0 GBd - Full-Duplex) [22] | ||||||||||
400GAUI-8 | 802.3bs-2017 (CL 120D/E) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 16 | N/A | 8 | PCBs |
400GBASE-KR8 | proprietary (ETC) (CL120) |
current | Cu-Backplane | — | — | 1 | 8 | N/A | 8 | WDM |
400GBASE-SR8 | 802.3cm-2020 (CL138) |
current | Fiber 850 nm |
MPO/MTP (MPO-16) |
QSFP-DD, OSFP |
OM3: 70 | 16 | 1 | 8 | |
OM4: 100 | ||||||||||
OM5: 100 | ||||||||||
400GBASE-SR4.2 (Bidirectional) |
802.3cm-2020 (CL150) |
current | Fiber 850 nm 912 nm |
MPO/MTP (MPO-12) |
QSFP-DD | OM3: 70 | 8 | 2 | 8 | Bidirectional WDM |
OM4: 100 | ||||||||||
OM5: 150 | ||||||||||
400GBASE-FR8 | 802.3bs-2017 (CL122) |
current | Fibre 1273.54 – 1309.14 nm |
LC | QSFP-DD, OSFP |
OS2: 2k | 2 | 8 | 8 | WDM |
400GBASE-LR8 | 802.3bs-2017 (CL122) |
current | Fibre 1273.54 – 1309.14 nm |
LC | QSFP-DD, OSFP |
OS2: 10k | 2 | 8 | 8 | WDM |
400GBASE-ER8 | 802.3cn-2019 (CL122) |
current | Fibre 1273.54 – 1309.14 nm |
LC | QSFP-DD | OS2: 40k | 2 | 8 | 8 | WDM |
400 Gigabit Ethernet (400 GbE) (3rd Generation: 100GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 53.1250 GBd x2 = 425.0 GBd - Full-Duplex) [22] | ||||||||||
400GAUI-4 | 802.3ck-2022 (CL120F/G) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 8 | N/A | 4 | PCBs |
400GBASE-KR4 | 802.3ck-2022 (CL163) |
current | Cu-Backplane | — | — | 1 | 8 | N/A | 4 | PCBs; total insertion loss of ≤ 28 dB at 26.56 GHz |
400GBASE-CR4 | 802.3ck-2022 (CL162) |
current | twinaxial copper cable |
QSFP-DD, QSFP112, OSFP |
N/A | 2 | 8 | N/A | 4 | Data centres (in-rack) |
400GBASE-VR4 | 802.3db-2022 (CL167) |
current | Fibre 850 nm |
MPO (MPO-12) |
QSFP-DD | OM3: 30 | 8 | 1 | 4 | |
OM4: 50 | ||||||||||
OM5: 50 | ||||||||||
400GBASE-SR4 | 802.3db-2022 (CL167) |
current | Fibre 850 nm |
MPO (MPO-12) |
QSFP-DD | OM3: 60 | 8 | 1 | 4 | |
OM4: 100 | ||||||||||
OM5: 100 | ||||||||||
400GBASE-DR4 | 802.3bs-2017 (CL124) |
current | Fibre 1304.5 – 1317.5 nm |
MPO/MTP (MPO-12) |
QSFP-DD, OSFP |
OS2: 500 | 8 | 1 | 4 | |
400GBASE-DR4-2 | 802.3df (CL124) |
current | Fibre 1304.5 – 1317.5 nm |
MPO/MTP (MPO-12) |
QSFP-DD OSFP |
OS2: 2k | 8 | 1 | 4 | |
400GBASE-XDR4 400GBASE-DR4+ |
proprietary (non IEEE) |
current | Fibre 1304.5 – 1317.5 nm |
MPO/MTP (MPO-12) |
QSFP-DD OSFP |
OSx: 2k | 8 | 1 | 4 | |
400GBASE-FR4 | 802.3cu-2021 (CL151) |
current | Fibre 1271−1331 nm |
LC | QSFP-DD, OSFP |
OS2: 2k | 2 | 4 | 4 | Multi-Vendor Standard[42] |
400GBASE-LR4-6 | 802.3cu-2021 (CL151) |
current | Fibre 1271−1331 nm |
LC | QSFP-DD | OSx: 6k | 2 | 4 | 4 | |
400GBASE-LR4-10 | proprietary (MSA, Sept 2020) |
current | Fibre 1271−1331 nm |
LC | QSFP-DD | OSx: 10k | 2 | 4 | 4 | Multi-Vendor Standard[43] |
400GBASE-ZR | 802.3cw (CL155/156) |
development | Fibre | LC | QSFP-DD, OSFP |
OSx: 80k | 2 | 1 | 2 | 59.84375 GBd (DP-16QAM) |
400 Gigabit Ethernet (400 GbE) (4th Generation: 200GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x2 = 425 GBd - Full-Duplex) | ||||||||||
400GAUI-2 | 802.3dj (CL176D/E) |
development | Chip-to-chip/ Chip-to-module interface |
— | N/A | 0.25 | 2 | N/A | 1 | PCBs |
400GBASE-KR2 | 802.3dj (CL178) |
development | Cu backplane | — | — | N/A | 4 | N/A | 2 | PCBs; total insertion loss of ≤ 40 dB at 53.125 GHz |
400GBASE-CR2 | 802.3dj (CL179) |
development | twinaxial copper cable | ? | N/A | 1 | 4 | N/A | 2 | |
400GBASE-DR2 | 802.3dj (CL180) |
development | Fiber 1310 nm |
? | ? | OS2: 500 | 4 | 1 | 2 | |
800 Gigabit Ethernet (800 GbE) (3rd Generation: 100GbE-based) - (Data rate: 800 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 8x 53.1250 GBd x2 = 425.0 GBd - Full-Duplex) [22] | ||||||||||
800GAUI-8 | 802.3df (CL120F/G) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 16 | N/A | 8 | PCBs |
800GBASE-KR8 | 802.3df (CL163) |
current | Cu-Backplane | — | — | 1 | 16 | N/A | 8 | PCBs; total insertion loss of ≤ 28 dB at 26.56 GHz |
800GBASE-CR8 | 802.3df (CL162) |
current | twinaxial copper cable |
QSFP−DD800 OSFP |
N/A | 2 | 16 | N/A | 8 | Data centres (in-rack) |
800GBASE-VR8 | 802.3df (CL167) |
current | Fibre 850 nm |
MPO (MPO-16) |
QSFP-DD OSFP |
OM3: 30 | 16 | 1 | 8 | |
OM4: 50 | ||||||||||
OM5: 50 | ||||||||||
800GBASE-SR8 | 802.3df (CL167) |
current | Fibre 850 nm |
MPO (MPO-16) |
QSFP-DD OSFP |
OM3: 60 | 16 | 1 | 8 | |
OM4: 100 | ||||||||||
OM5: 100 | ||||||||||
800GBASE-DR8 | 802.3df (CL124) |
current | Fibre 1304.5 – 1317.5 nm |
MPO/MTP (MPO-16) |
QSFP-DD OSFP |
OS2: 500 | 16 | 1 | 8 | |
800GBASE-DR8-2 | 802.3df (CL124) |
current | Fibre 1304.5 – 1317.5 nm |
MPO/MTP (MPO-16) |
QSFP-DD OSFP |
OS2: 2k | 16 | 1 | 8 | |
800 Gigabit Ethernet (800 GbE) (4th Generaton: 200GbE-based) - (Data rate: 800 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x4 = 850 GBd - Full-Duplex) | ||||||||||
800GAUI-4 | 802.3dj (CL176D/E) |
development | Chip-to-chip/ Chip-to-module interface |
— | N/A | 0.25 | 8 | N/A | 4 | PCBs |
800GBASE-KR4 | 802.3dj (CL178) |
development | Cu backplane | — | — | N/A | 8 | N/A | 4 | PCBs; total insertion loss of ≤ 40 dB at 53.125 GHz |
800GBASE-CR4 | 802.3dj (CL179) |
development | twinaxial copper cable | ? | N/A | 1 | 8 | N/A | 4 | |
800GBASE-DR4 | 802.3dj (CL180) |
development | Fiber 1310 nm |
? | ? | OS2: 500 | 8 | 1 | 4 | |
1.6 Terabit Ethernet (1.6 TbE) (4th Generaton: 200GbE-based) - (Data rate: 1.6 Tbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x8 = 1700 GBd - Full-Duplex) | ||||||||||
1.6TAUI-8 | 802.3dj (CL176D/E) |
development | Chip-to-chip/ Chip-to-module interface |
— | N/A | 0.25 | 16 | N/A | 8 | PCBs |
1.6TBASE-KR8 | 802.3dj (CL178) |
development | Cu backplane | — | — | N/A | 16 | N/A | 8 | PCBs; total insertion loss of ≤ 40 dB at 53.125 GHz |
1.6TBASE-CR8 | 802.3dj (CL179) |
development | twinaxial copper cable | ? | N/A | 1 | 16 | N/A | 8 | |
1.6TBASE-DR8 | 802.3dj (CL180) |
development | Fiber 1310 nm |
? | ? | OS2: 500 | 16 | 1 | 8 |
References
[edit]- ^ a b c d Charles E. Spurgeon (2014). Ethernet: The Definitive Guide (2nd ed.). O'Reilly Media. ISBN 978-1-4493-6184-6.
- ^ "Introduction To Fast Ethernet" (PDF). Contemporary Control Systems, Inc. 2001-11-01. Retrieved 2018-08-25.
- ^ "Introduction To Fast Ethernet" (PDF). Contemporary Control Systems, Inc. 2001-11-01. Retrieved 2018-08-25.
- ^ a b "Datasheet for EDS-408A-MM-ST". MOXA. 2019-08-06. Retrieved 2020-03-21.
- ^ "Datasheet for SFP-1FE Series" (PDF). MOXA. 2018-10-12. Retrieved 2020-03-21.
- ^ "Gigabit Ethernet Multimode SFP MT-RJ Transceiver" (PDF). tyco Electronics. 2003-11-01. Retrieved 2018-08-26.
- ^ "Multimode Optical Fiber Selection & Specification" (PDF). Corning Cable Systems LLC. 2012. Retrieved 2022-12-23.
- ^ "Datasheet for SFP-1G Series" (PDF). MOXA. 2018-10-12. Retrieved 2020-03-21.
- ^ "Datasheet for SFP-1G Series" (PDF). MOXA. 2018-10-12. Retrieved 2020-03-21.
- ^ "SFP1G-SX-31". FS.com. 2019-01-01. Retrieved 2020-03-21.
- ^ "1000BASE-RH PHY system simulations" (PDF). IEEE 802.3bv Task Force. 2015-09-08. Retrieved 2018-08-25.
- ^ "Optical Ethernet in Automotive" (PDF). Knowledge Development for POF S.L. (KDPOF). 2017-07-03. Retrieved 2018-08-25.
- ^ "CWDM SFP Datasheet". Cisco. 2005-12-29. Retrieved 22 March 2020.
- ^ a b "DWDM Technology And DWDM Network Overview". FS.com. FS.com. 28 November 2016. Retrieved 22 March 2020.
- ^ "DWDM-SFP Data Sheet". Cisco. Cisco. Retrieved 22 March 2020.
- ^ "Cisco 10-Gigabit Ethernet Transceiver Modules Compatibility Matrix". Cisco. 2018-08-19. Retrieved 2018-08-26.
- ^ "Confused by 10GbE optics modules?". Network World. 2010-06-12. Retrieved 2018-08-26.
- ^ "Common 10G Fiber Transceiver: 10G XENPAK, 10G X2, 10G XFP, 10G SFP+". Blog of Fiber Transceivers. 2013-06-18. Retrieved 2018-08-26.
- ^ "End-of-Sale and End-of-Life Announcement for the Cisco 10GBASE XENPAK Modules". Cisco. 2015-04-01. Retrieved 2018-08-26.
- ^ a b "Network Topologies and Distances" (PDF). MC Communications. 2007-11-14. Retrieved 2018-08-25.
- ^ a b c d "Evolution of Ethernet Speeds: What's New and What's Next" (PDF). Alcatel-Lucent. 2015-06-03. Retrieved 2018-08-28.
- ^ a b c d e f g h i j k l "Exploring The IEEE 802 Ethernet Ecosystem" (PDF). IEEE. 2017-06-04. Retrieved 2018-08-29.
- ^ "Cisco 40-Gigabit Ethernet Transceiver Modules Compatibility Matrix". Cisco. 2018-08-23. Retrieved 2018-08-26.
- ^ "A Quick Overview of 40GbE & 40GbE Components". Blog of Fiber Transceivers. 2016-01-13. Retrieved 2018-09-21.
- ^ a b "SWDM Alliance MSA". SWDM Alliance. Retrieved 2020-07-27.
- ^ a b c d e f g "Multi-Port Implementations of 50/100/200GbE" (PDF). Brocade. 2016-05-22. Retrieved 2018-08-29.
- ^ "10x10G 10km CFP Transceiver" (PDF). Oplink. 2012-02-20. Retrieved 2018-08-28.
- ^ "IEEE Communications Magazine December 2013, Vol. 51, No. 12 - Next Generation Backplane and Copper Cable Challenges" (PDF). IEEE Communications Society. 2013-12-01. Retrieved 2018-08-28.
- ^ "Cisco 100GBASE QSFP-100G Modules Data Sheet". Cisco. Retrieved 2022-09-16.
- ^ "Cisco 100Gbps QSFP100 SR1.2 BiDi Pluggable Transceiver At-a-Glance". Cisco. Retrieved 2022-09-16.
- ^ "100G PSM4 Specification" (PDF). PSM4 MSA Group. 2014-09-15. Retrieved 2018-08-28.
- ^ a b "What's the Difference Between 100G CLR4 and CWDM4?". fiber-optic-transceiver-module.com. 2017-02-12. Retrieved 2018-08-28.
- ^ "100G CWDM4 MSA Technical Specifications" (PDF). CWDM4 MSA Group. 2015-11-24. Retrieved 2018-08-28.
- ^ Ghiasi, Ali. "100G 4WDM-10 MSA Technical Specifications Release 1.0" (PDF). 4wdm-msa.org. 4-Wavelength WDM MSA. Retrieved 5 April 2021.
- ^ a b Hiramoto, Kiyo. "100G 4WDM-20 & 4WDM-40 MSA Technical Specifications" (PDF). 4wdm-msa.org. 4-Wavelength WDM MSA. Retrieved 5 April 2021.
- ^ "100G CLR4 QSFP28 Optical Transceivers" (PDF). Accelink. 2017-06-30. Retrieved 2018-08-28.
- ^ "Open Optics MSA Design Guide" (PDF). Open Compute Project - Mellanox Technologies. 2015-03-08. Retrieved 2018-08-28.
- ^ a b "100G-FR and 100G-LR Technical Specifications". 100G Lambda MSA Group. Retrieved 2021-05-26.
- ^ a b c Nowell, Mark. "100G-LR1-20, 100G-ER1-30, 100G-ER1-40 Technical Specifications". 100glambda.com. 100G Lambda MSA. Retrieved 26 May 2021.
- ^ "QPSK vs DP-QPSK - difference between QPSK and DP-QPSK modulation". RF Wireless World. 2018-07-15. Retrieved 2018-08-29.
- ^ a b c "100Gb/s Electrical Signaling" (PDF). IEEE 802.3 NEA Ad hoc. Retrieved 2021-12-08.
- ^ Nowell, Mark. "400G-FR4 Technical Specification". 100glambda.com. 100G Lambda MSA Group. Retrieved 26 May 2021.
- ^ Nowell, Mark. "400G-LR4-10 Technical Specification". 100glambda.com. 100G Lambda MSA Group. Retrieved 26 May 2021.