User:Tonyxu114/sandbox

From Wikipedia, the free encyclopedia

Penicillium citrinum
Scientific classification
Kingdom:
Order:
Family:
Genus:
Species:
P. citrinum
Binomial name
Penicillium citrinum
Type strain
ATCC 1109, ATCC 36382, BCRC 32594, Biourge 53, CBS 139.45, CCRC 32594, CECT 2269, FRR 1841, IMI 091961, IMI 092196, KCTC 6549, LSHB Ad95, LSHB P25, LSHB P6, MUCL 29781, NRRL 1841, NRRL 1842, QM 6833, Thom 4733.14, Thom P25,WB 1842[2]
Synonyms

Penicillium citrinum var. pseudopaxilli,
Citromyces subtilis,
Penicillium aurifluum,
Penicillium phaeojanthinellum,
Penicillium sartoryi,
Penicillium sartorii,
Penicillium botryosum[1]

Penicillium citrinum[edit]

Penicillium citrinum is an anamorph, mesophilic fungus species of the genus of Penicillium[1][3][4][5][6]. Because of its mesophilic character, Penicillium citrinum is a commonly occurring filamentous fungus with world-wide distribution and probably one of the most commonly occurring eukaryotic life forms on Earth [5][4]. It is also an endophyte[7].The first statin (Mevastatin) was 1970 isolated from this species[8].

Growth and morphology[edit]

Penicillium citrinum colonies' growth on Czapek Yeast Extract Agar medium (CYA) appear radially sulcate (narrow deep furrows or radial grooves) with 25-30 mm in diameter[4] . Marginal areas velutinous,sometimes floccose centrally[4][9]. Mycelium has white periphery with central greyish-turquoise to greyish orange[4][9]. Exudates secrete at the surface of the colony appear clear, pale yellow or pale brown to reddish brown[4][9].

Colonies on Malt Extract Agar medium (MEA) grow to approx. 14-18 mm diameter, 22 mm in rare cases[4]. Mature colonies appear plane or radially sulcate, white to greyish orange in color[4]. Grey blue Condia at the margins and dull green elsewhere [4]. Colony reverse shows pale brown to deep yellow brown color[4].

Colonies grow on 25% Glycerol Nitrate Agar medium (G25N) display a size of 13-18mm in diameter, radially sulcate, velutinous or floccose centrally[4]; Mycelium in white with dull green conidia[4]; Colony reverse shows dull brown, yellow brown or olive in color[4]. No germination at 5°C[4]. Growth limited to 8-10 mm diameter with wrinkled white mycelium at 37°C[4].

Rapid growth observed on PDA media, with granular powdery colony, dark green color and pale yellow color on the back side of colony[10]; Moderate growth on Czapek Dox media, greenish organ color in granular form, yellow orange color on the back side of colony[10]

Physiology[edit]

Penicillium citrinum is a mesophilic species with minimum growth temperature at 5°C or slightly above, maximum at 37°C, optimal at 26-30°C[4]. At 25°C, the minimum aw required for growth has been reported to be 0.80-0.84[4].Also it grows over the pH range 2 - 10[4].

Penicillium citrinum produces tanzawaic acid A-D[11], ACC[12], Quinocitrinine A, Quinocitrinine B[13] and endoglucanase and exoglucanase[14][15], specific purposes unclear.

While enhancement of cholinergic neurotransmission have considered as one potential therapeutic approach against Alzheimer's disease[16], one treatment strategy is acetylcholine retention in the cholinergic synapses by acetylcholinesterase inhibitors [16]. Interestingly, Penicillium citrinum was discovered to secrete acetylcholinesterase inhibitors quinolactacins A1 & A2[16]. Specific physiological purposes of this was undocumented, but it provided insights into future clinical treatment of Alzheimer's disease.

Penicillium citrinum consistently produce citrinin[17][18]. It was found that the swarming motility of Paenibacillus polymyxa strain E681 was greatly induced by citrinin produced by Penicillium citrinum KCTC6549 in a dose-dependent manner[19]. It revealed new properties of citrinin to induce bacterial motility by transcroptional activation of related genes[19] as a unique example of bacterial-fungal interaction in nature.

A new strain of Penicillium citrinum was found in coastal sand dunes as one of the 15 isolated endophytic fungi from the roots of Ixeris repenes [7]. The fungi isolate IR-3-3 provided maximum plants growth when applied to waito-c rice and Atriplex gmelinii seedlings which is later identified to be a new strain of Penicillium citrinum (named as Penicillium citrinum KACC43900) through phylogenetic analysis of 18S rDNA sequence[7]. Analysis of the culture filtrate displayed presence of physiologically active gibberellins which are plant survival and growth-promoting metabolites indicates the endophytic properties of this new strain of Penicillium citrinum[7]. While the presence of Penicillium species in coastal sand dunes is limited, this new strain seems to help in conservation and revegetation of the rapidly eroding sand dune flora[7].

Habitat and ecology[edit]

Penicillium citrinum has been isolated from nearly every kind of food which has been surveyed for fungi[4]. Penicillium citrinum is commonly found on moldy citrus fruits and can be isolated from soil, (tropical) cereals, spices and indoor environments[5][20]. Penicillium citrinum has also been reported for its presence on nuts, blackgram in India, amaranth seeds in Argentina, cinnamon and soy sauce, in fermented and cured meats, cocoa pulp, young coconuts, soybeans, wine grapes and dried vine fruits, curd and cheese, bottled mineral water, as well as coffee beans, dried beans and peppercorns[4].

In Southeast Asia, Penicillium cirtrinum was isolated from maize, peanuts, copra soybeans, sorghum and cashews[4]. It is very widespread in Indonesian food commodities, such as dried fish, sorghum, peanuts and kemiri nuts, pepper, coriander, maize and mung beans[4]. But interestingly, the citrinin levels were never significant to cause any pathological effects[4].

Toxicity[edit]

Penicillium citrinum is the main producer of mycotoxin citrinin of moderate toxicity[4][17][18]. Citrinin is a significant renal toxin to monogastric domestic animals, including pigs[21], and dogs[22]. Domestic birds are also susceptible to citrinin which leads to watery diarrhoea, increased food consumption and reduced weight gain due to kidney degeneration in chickens[23], ducklings and turkeys[24]. Citrinin also has been reported to cause teratogenic effects in rats[25]. An impact of citrinin on human T cells was recently illustrated, however, the overall effect of citrinin on humans remain unclear[26]. This Penicillium species also causes mortality for the mosquito Culex quinquefasciatus.[27][28]

Penicillium citrinum has been reported in fungal keratitis (eye), lung infections (pneumonia), a single case of a urinary tract infection (UTI) and one of pericarditis[9]. Their contribution to the disease process may be secondary an additional underlying illness[9]. Immunocompromised individuals have greater risks of getting infected.

Further reading[edit]

  • Yamamoto, N.; Matsumoto, K.; Yamagata, Y.; Hirano, K. I.; Ichishima, E. (1993). "A heat-labile serine proteinase from Penicillium citrinum". Phytochemistry. 32 (6): 1393. doi:10.1016/0031-9422(93)85144-G.
  • Rodig, O. R.; Ellis, L. C.; Glover, I. T. (1966). "The Biosynthesis of Citrinin in Penicillium citrinum. I. Production and Degradation of Citrinin". Biochemistry. 5 (7): 2451. doi:10.1021/bi00871a040.
  • Roberts, W. T.; Mora, E. C. (1978). "Toxicity of Penicillium citrinum AUA-532 Contaminated Corn and Citrinin in Broiler Chicks". Poultry Science. 57 (5): 1221. doi:10.3382/ps.0571221.
  • Barber, J.; Carter, R. H.; Garson, M. J.; Staunton, J. (1981). "The biosynthesis of citrinin by Penicillium citrinum". Journal of the Chemical Society, Perkin Transactions 1: 2577. doi:10.1039/P19810002577.
  • Curtis, R. F.; Hassall, C. H.; Nazar, M. (1968). "The biosynthesis of phenols. Part XV. Some metabolites of Penicillium citrinum related to citrinin". Journal of the Chemical Society C: Organic: 85. doi:10.1039/J39680000085.
  • Shen, H. D.; Wang, C. W.; Chou, H.; Lin, W. L.; Tam, M. F.; Huang, M. H.; Kuo, M. L.; Wang, S. R.; Han, S. H. (2000). "Complementary DNA cloning and immunologic characterization of a new Penicillium citrinum allergen (Pen c 3)". Journal of Allergy and Clinical Immunology. 105 (4): 827. doi:10.1067/mai.2000.105220.
  • Fatal Penicillium citrinum Pneumonia with Pericarditis in a Patient with Acute Leukemia
  • J. P. Felix D'Mello (1997). Handbook of Plant and Fungal Toxicants. CRC Press. ISBN 0849385512.
  • Shen, H. D.; Wang, C. W.; Chou, H.; Lin, W. L.; Tam, M. F.; Huang, M. H.; Kuo, M. L.; Wang, S. R.; Han, S. H. (2000). "Complementary DNA cloning and immunologic characterization of a new Penicillium citrinum allergen (Pen c 3)". Journal of Allergy and Clinical Immunology. 105 (4): 827. doi:10.1067/mai.2000.105220.


See also[edit]

References[edit]

  1. ^ a b c MycoBank
  2. ^ Straininfo of Penicillium citrinum
  3. ^ UniProt
  4. ^ a b c d e f g h i j k l m n o p q r s t u v w x Hocking, John I. Pitt, Ailsa D. (1985). Fungi and food spoilage (3rd ed. ed.). Dordrecht: Springer. ISBN 0387922075. {{cite book}}: |edition= has extra text (help)CS1 maint: multiple names: authors list (link)
  5. ^ a b c Houbraken, Jos A. M. P.; Frisvad, Jens C.; Samson, Robert A. (13 August 2010). "Taxonomy of Penicillium citrinum and related species". Fungal Diversity. 44 (1): 117–133. doi:10.1007/s13225-010-0047-z.
  6. ^ ATCC
  7. ^ a b c d e Khan, Sumera; Hamayun, Muhammad; Yoon, Hyeokjun; Kim, Ho-Youn; Suh, Seok-Jong; Hwang, Seon-Kap; Kim, Jong-Myeong; Lee, In-Jung; Choo, Yeon-Sik; Yoon, Ung-Han; Kong, Won-Sik; Lee, Byung-Moo; Kim, Jong-Guk (2008). "Plant growth promotion and Penicillium citrinum". BMC Microbiology. 8 (1): 231. doi:10.1186/1471-2180-8-231.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  8. ^ Endo, A; Kuroda, M; Tsujita, Y (December 1976). "ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium". The Journal of antibiotics. 29 (12): 1346–8. PMID 1010803.
  9. ^ a b c d e Yuri. "Penicillium citrinum". blogger.com.
  10. ^ a b Tiwari, Kishan Lal; Jadhav, Shailesh Kumar; Kumar, Ashish (2011). "Morphological and Molecular Study of Different Penicillium Species". Middle-East Journal of Scientific Research. 7 (2): 203–210. ISSN 1990-9233.
  11. ^ Malmstrøm, Joan; Christophersen, Carsten; Frisvad, Jens C (June 2000). "Secondary metabolites characteristic of Penicillium citrinum, Penicillium steckii and related species". Phytochemistry. 54 (3): 301–309. doi:10.1016/s0031-9422(00)00106-0.
  12. ^ Jia, YJ; Kakuta, Y; Sugawara, M; Igarashi, T; Oki, N; Kisaki, M; Shoji, T; Kanetuna, Y; Horita, T; Matsui, H; Honma, M (March 1999). "Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum". Bioscience, biotechnology, and biochemistry. 63 (3): 542–9. PMID 10227140.
  13. ^ KOZLOVSKY, A. G.; ZHELIFONOVA, V. P.; ANTIPOVA, T. V.; ADANIN, V. M.; OZERSKAYA, S. M.; KOCHKINA, G. A.; SCHLEGEL, B.; DAHSE, H. M.; GOLLMICK, F. A.; GRÄFE, U. (2003). "Quinocitrinines A and B, New Quinoline Alkaloids from Penicillium citrinum Thom 1910, a Permafrost Fungus". The Journal of Antibiotics. 56 (5): 488–491. doi:10.7164/antibiotics.56.488.
  14. ^ de Souza, Anita; Pimentel, Pamella Suely Santa Rosa; de Andrade, Edmar; Astolfi-Filho, Spartaco; Nunes-Silva, Carlos (2014). "Purification of endoglucanase produced by Penicillium citrinum isolated from Amazon". BMC Proceedings. 8 (Suppl 4): P221. doi:10.1186/1753-6561-8-S4-P221.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  15. ^ Rosa Pimentel, Pamella; de Souza, Anita; Rosas Nascimento, Ana; de Andrade, Edmar; Astolfi-Filho, Spartaco; Nunes-Silva, Carlos (2014). "Endo and exoglucanases produced by Penicillium citrinum isolated from Amazon". BMC Proceedings. 8 (Suppl 4): P179. doi:10.1186/1753-6561-8-S4-P179.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  16. ^ a b c Kim, WG; Song, NK; Yoo, ID (October 2001). "Quinolactacins A1 and A2, new acetylcholinesterase inhibitors from Penicillium citrinum". The Journal of antibiotics. 54 (10): 831–5. PMID 11776439.
  17. ^ a b Hetherington, A. C.; Raistrick, H. (1 January 1931). "On the Production and Chemical Constitution of a New Yellow Colouring Matter, Citrinin, Produced from Glucose by Penicillium citrinum Thom". Philosophical Transactions of the Royal Society B: Biological Sciences. 220 (468–473): 269–295. doi:10.1098/rstb.1931.0025.
  18. ^ a b Mossini, Simone Aparecida Gallerani; Kemmelmeier, Carlos (2 September 2008). "Inhibition of Citrinin Production in Penicillium citrinum Cultures by Neem [Azadirachta indica A. Juss (Meliaceae)]". International Journal of Molecular Sciences. 9 (9): 1676–1684. doi:10.3390/ijms9091676.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  19. ^ a b Park, Soo-Young; Kim, Rumi; Ryu, Choong-Min; Choi, Soo-Keun; Lee, Choong-Hwan; Kim, Jong-Guk; Park, Seung-Hwan (August 2008). "Citrinin, a mycotoxin from Penicillium citrinum, plays a role in inducing motility of Paenibacillus polymyxa". FEMS Microbiology Ecology. 65 (2): 229–237. doi:10.1111/j.1574-6941.2008.00492.x.
  20. ^ schimmel-schimmelpilze.de
  21. ^ Keblys, M; Bernhoft, A; Höfer, CC; Morrison, E; Larsen, HJ; Flåøyen, A (October 2004). "The effects of the Penicillium mycotoxins citrinin, cyclopiazonic acid, ochratoxin A, patulin, penicillic acid, and roquefortine C on in vitro proliferation of porcine lymphocytes". Mycopathologia. 158 (3): 317–24. PMID 15702270.
  22. ^ Kogika, MM; Hagiwara, MK; Mirandola, RM (April 1993). "Experimental citrinin nephrotoxicosis in dogs: renal function evaluation". Veterinary and human toxicology. 35 (2): 136–40. PMID 8470356.
  23. ^ Mehdi, NA; Carlton, WW; Tuite, J (December 1981). "Citrinin mycotoxicosis in broiler chickens". Food and cosmetics toxicology. 19 (6): 723–33. PMID 7327473.
  24. ^ Mehdi, NA; Carlton, WW; Tuite, J (January 1984). "Mycotoxicoses produced in ducklings and turkeys by dietary and multiple doses of citrinin". Avian pathology : journal of the W.V.P.A. 13 (1): 37–50. PMID 18766819.
  25. ^ Singh, ND; Sharma, AK; Dwivedi, P; Patil, RD; Kumar, M (2007). "Citrinin and endosulfan induced teratogenic effects in Wistar rats". Journal of applied toxicology : JAT. 27 (2): 143–51. PMID 17186572.
  26. ^ Wichmann, G; Herbarth, O; Lehmann, I (2002). "The mycotoxins citrinin, gliotoxin, and patulin affect interferon-gamma rather than interleukin-4 production in human blood cells". Environmental toxicology. 17 (3): 211–8. PMID 12112629.
  27. ^ Maketon, Monchan; Amnuaykanjanasin, Alongkorn; Kaysorngup, Achirayar (29 September 2013). "A rapid knockdown effect of Penicillium citrinum for control of the mosquito Culex quinquefasciatus in Thailand". World Journal of Microbiology and Biotechnology. 30 (2): 727–736. doi:10.1007/s11274-013-1500-4.
  28. ^ da Costa, GL; de Oliveira, PC (1998). "Penicillium species in mosquitoes from two Brazilian regions". Journal of basic microbiology. 38 (5–6): 343–7. PMID 9871332.