Jump to content

Vehicular automation

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by BattyBot (talk | contribs) at 18:08, 14 October 2016 (fixed CS1 errors: dates to meet MOS:DATEFORMAT (also General fixes) using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The ESA Seeker autonomous rover during tests at Paranal.[1]

Vehicular automation involves the use of mechatronics, artificial intelligence, and multi-agent system to assist a vehicle's operator. These features and the vehicles employing them may be labeled as intelligent or smart. A vehicle using automation for difficult tasks, especially navigation, may be referred to as semi-autonomous. A vehicle relying solely on automation is consequently referred to as robotic or autonomous. After the invention of the integrated circuit, the sophistication of automation technology increased. Manufacturers and researchers subsequently added a variety of automated functions to automobiles and other vehicles.

Ground vehicles

Ground vehicles employing automation and teleoperation include shipyard gantries, mining trucks, bomb-disposal robots, robotic insects, and driverless tractors.

There are a lot of autonomous and semi-autonomous ground vehicles being made for the purpose of transporting passengers. One such example is the free-ranging on grid (FROG) technology which consists of autonomous vehicles, a magnetic track and a supervisory system. The FROG system is deployed for industrial purposes in factory sites and has been in used since 1999 on the ParkShuttle,[2] a PRT-style public transport system in the city of Capelle aan den IJssel to connect the Rivium business park with the neighboring city of Rotterdam (where the route terminates at the Kralingse Zoom metro station). The system experienced a crash in 2005[3] that proved to be caused by a human error.[4]

Applications for automation in ground vehicles include the following:

Research is ongoing and prototypes of autonomous ground vehicles exist.

Cars

Extensive automation for cars focuses on either introducing robotic cars or modifying modern car designs to be semi-autonomous. Semi-autonomous designs could be implemented sooner as they rely less on technology that is still at the forefront of research. An example is the Dual mode monorail. Groups such as RUF (Denmark), BiWay (UK), ATN (New Zealand) and TriTrack (USA) are working on projects consisting of private cars that dock onto monorail tracks and are driven autonomously. As a method of automating cars without extensively modifying the cars as much as a robotic car, Automated highway systems (AHS) aims to construct lanes on highways that would be equipped with, for example, magnets to guide the vehicles. Automation vehicles have auto-brakes named as Auto Vehicles Braking System (AVBS). Highway computers would manage the traffic and direct the cars to avoid crashes.

The European Commission has established a smart car development program called the Intelligent Car Flagship Initiative.[5] The goals of that program include:

There are plenty of further uses for automation in relation to cars. These include:

Trucks

The concept for autonomous vehicles has also been applied for commercial uses, like for autonomous or nearly autonomous trucks. As recorded in June 1995 in Popular Science Magazine, self-driving trucks were being developed for combat convoys, whereby only the lead truck would be driven by a human and the following trucks would rely on satellite, an inertial guidance system and ground-speed sensors.[8] Caterpillar Inc. made early developments in 2013 with the Robotics Institute at Carnegie Mellon University to improve efficiency and reduce cost at various mining and construction sites.[9] Companies such as Suncor Energy, a Canadian energy company, and Rio Tinto Group were among the first to replace human-operated trucks with driverless commercial trucks run by computers.[10] In April 2016, trucks from major manufacturers including Volvo and the Daimler Company completed a week of autonomous driving across Europe, organized by the Dutch, in an effort to get self-driving trucks on the road. With developments in self-driving trucks progressing, U.S. self-driving truck sales is forecasted to reach 60,000 by 2035 according to a report released by IHS Inc. Automotive in June 2016.[11]

Automated guided vehicle

An automated guided vehicle or automatic guided vehicle (AGV) is a mobile robot that follows markers or wires in the floor, or uses vision, magnets, or lasers for navigation. They are most often used in industrial applications to move materials around a manufacturing facility or warehouse. Application of the automatic guided vehicle has broadened during the late 20th century.

Aircraft

Aircraft has received much attention for automation, especially for navigation. A system capable of autonomously navigating a vehicle (especially aircraft) is known as autopilot.

Watercraft

Autonomous boats can provide security, do research, or perform hazardous or repetitive tasks (such as guiding a large ship into a harbor or transporting cargo).

Submersibles

Underwater vehicles have been a focus for automation for tasks such as pipeline inspection and underwater mapping. See Autonomous underwater vehicle.

Trains

An example of an automated train is the Docklands Light Railway in London.

Limitations

One of the current limitations for vehicular automation is the electrical power required to run the processors.[12]

See also

References

  1. ^ "Self-steering Mars Rover tested at ESO's Paranal Observatory". ESO Announcement. Retrieved 21 June 2012.
  2. ^ "'Parkshuttle gaat weer rijden'". RTV Rijnmond (in Dutch). September 1, 2021. Retrieved October 11, 2011.
  3. ^ "Driverless robot buses crash < Life in Holland, News, Science & technology < Wolfstad Blog". Wolfstad.com. 2005-12-06. Retrieved 2011-11-20.
  4. ^ "Driverless robot buses crash, Part 2 < Life in Holland, News, Science & technology < Wolfstad Blog". Wolfstad.com. 2005-12-17. Retrieved 2011-11-20.
  5. ^ IHS Automotive News, February 23, 2006, accessed October 9, 2006
  6. ^ "Vauxhall Vectra | Auto Express News | News". Auto Express. 2005-11-29. Retrieved 2011-11-20.
  7. ^ "Nissan | News Press Release". Nissan-global.com. 2006-03-15. Retrieved 2011-11-20.
  8. ^ Nelson, Ray (June 1995). "Leave The Driving To Us". Popular Science. p. 26. {{cite magazine}}: Cite magazine requires |magazine= (help)
  9. ^ Gingrich, Newt (7 October 2014). Breakout: Pioneers of the Future, Prison Guards of the Past, and the Epic Battle That Will Decide America's Fate. Regnery Publishing. p. 114. ISBN 978-1621572817.
  10. ^ "Suncor Seeks Cost Cutting With Robot Trucks in Oil-Sands Mine". Bloomberg-.com. 2013-10-13. Retrieved 2016-06-14.
  11. ^ "HS Clarifies Autonomous Vehicle Sales Forecast – Expects 21 Million Sales Globally in the Year 2035 and Nearly 76 Million Sold Globally Through 2035". ihs-.com. 2016-06-09. Retrieved 2016-06-14.
  12. ^ "NVIDIA Receives DARPA Contract Worth up to $20 Million for High-Performance Embedded Processor Research."