Jump to content

2021 in archosaur paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 215: Line 215:
* A study on the impact of tooth loss on the diversification of Mesozoic birds is published by Brocklehurst & Field (2021), who find no evidence for a link between toothlessness and accelerated [[cladogenesis]], as well as no evidence for models whereby acquisitions of toothlessness among Mesozoic birds were driven by an overarching selective trend.<ref>{{Cite journal|last1=Brocklehurst |first1=N. |last2=Field |first2=D. J. |year=2021 |title=Macroevolutionary dynamics of dentition in Mesozoic birds reveal no long-term selection towards tooth loss |journal=iScience |volume=24 |issue=3 |pages=Article 102243 |doi=10.1016/j.isci.2021.102243 }}</ref>
* A study on the impact of tooth loss on the diversification of Mesozoic birds is published by Brocklehurst & Field (2021), who find no evidence for a link between toothlessness and accelerated [[cladogenesis]], as well as no evidence for models whereby acquisitions of toothlessness among Mesozoic birds were driven by an overarching selective trend.<ref>{{Cite journal|last1=Brocklehurst |first1=N. |last2=Field |first2=D. J. |year=2021 |title=Macroevolutionary dynamics of dentition in Mesozoic birds reveal no long-term selection towards tooth loss |journal=iScience |volume=24 |issue=3 |pages=Article 102243 |doi=10.1016/j.isci.2021.102243 }}</ref>
* A study on the identity of purported [[gastrolith]]s reported in a referred specimen of ''[[Bohaiornis]] guoi'' from the Early Cretaceous of China is published by Liu ''et al.'' (2021).<ref>{{Cite journal|last1=Liu |first1=S. |last2=Li |first2=Z. |last3=Bailleul |first3=A. M. |last4=Wang |first4=M. |last5=O’Connor |first5=J. |year=2021 |title=Investigating Possible Gastroliths in a Referred Specimen of ''Bohaiornis guoi'' (Aves: Enantiornithes) |journal=Frontiers in Earth Science |volume=9 |pages=Article 635727 |doi=10.3389/feart.2021.635727 }}</ref>
* A study on the identity of purported [[gastrolith]]s reported in a referred specimen of ''[[Bohaiornis]] guoi'' from the Early Cretaceous of China is published by Liu ''et al.'' (2021).<ref>{{Cite journal|last1=Liu |first1=S. |last2=Li |first2=Z. |last3=Bailleul |first3=A. M. |last4=Wang |first4=M. |last5=O’Connor |first5=J. |year=2021 |title=Investigating Possible Gastroliths in a Referred Specimen of ''Bohaiornis guoi'' (Aves: Enantiornithes) |journal=Frontiers in Earth Science |volume=9 |pages=Article 635727 |doi=10.3389/feart.2021.635727 }}</ref>
* A study on the bone [[histology]] and growth of the skeleton of ''[[Mirarce]] eatoni'' is published by Atterholt ''et al.'' (2021).<ref>{{Cite journal|last1=Atterholt |first1=J. |last2=Poust |first2=A. W. |last3=Erickson |first3=G. M. |last4=O’Connor |first4=J. K. |year=2021 |title=Intraskeletal Osteohistovariability Reveals Complex Growth Strategies in a Late Cretaceous Enantiornithine |journal=Frontiers in Earth Science |volume=9 |pages=Article 640220 |doi=10.3389/feart.2021.640220 }}</ref>
* A fossil ostrich specimen with exceptional soft-tissue preservation is described from the [[Miocene]] Liushu Formation (Linxia Basin, China) by Li ''et al.'' (2021).<ref>{{Cite journal|last1=Li |first1=Z.-H. |last2=Bailleul |first2=A. M. |last3=Stidham |first3=T. A. |last4=Wang |first4=M. |last5=Deng |first5=T. |year=2021 |title=Exceptional preservation of an extinct ostrich from the Late Miocene Linxia Basin of China |journal=Vertebrata PalAsiatica |volume=in press |doi=10.19615/j.cnki.1000-3118.210309 }}</ref>
* A fossil ostrich specimen with exceptional soft-tissue preservation is described from the [[Miocene]] Liushu Formation (Linxia Basin, China) by Li ''et al.'' (2021).<ref>{{Cite journal|last1=Li |first1=Z.-H. |last2=Bailleul |first2=A. M. |last3=Stidham |first3=T. A. |last4=Wang |first4=M. |last5=Deng |first5=T. |year=2021 |title=Exceptional preservation of an extinct ostrich from the Late Miocene Linxia Basin of China |journal=Vertebrata PalAsiatica |volume=in press |doi=10.19615/j.cnki.1000-3118.210309 }}</ref>
* A [[femur]] of a giant ostrich, significantly larger than the living [[common ostrich]], is described from the Pleistocene [[Nihewan Formation]] ([[China]]) by [[Éric Buffetaut|Buffetaut]] & Angst (2021), who assign it to ''[[Pachystruthio]]'' indet. and interpret this finding as evidence of wide geographical distribution of giant ostriches in the Early Pleistocene of Eurasia.<ref>{{Cite journal|last1=Buffetaut |first1=E. |last2=Angst |first2=D. |year=2021 |title=A giant ostrich from the Lower Pleistocene Nihewan Formation of North China, with a review of the fossil ostriches of China |journal=Diversity |volume=13 |issue=2 |pages=Article 47 |doi=10.3390/d13020047 |doi-access=free }}</ref>
* A [[femur]] of a giant ostrich, significantly larger than the living [[common ostrich]], is described from the Pleistocene [[Nihewan Formation]] ([[China]]) by [[Éric Buffetaut|Buffetaut]] & Angst (2021), who assign it to ''[[Pachystruthio]]'' indet. and interpret this finding as evidence of wide geographical distribution of giant ostriches in the Early Pleistocene of Eurasia.<ref>{{Cite journal|last1=Buffetaut |first1=E. |last2=Angst |first2=D. |year=2021 |title=A giant ostrich from the Lower Pleistocene Nihewan Formation of North China, with a review of the fossil ostriches of China |journal=Diversity |volume=13 |issue=2 |pages=Article 47 |doi=10.3390/d13020047 |doi-access=free }}</ref>

Revision as of 14:34, 23 March 2021

List of years in archosaur paleontology
In reptile paleontology
2018
2019
2020
2021
2022
2023
2024
In paleontology
2018
2019
2020
2021
2022
2023
2024
In science
2018
2019
2020
2021
2022
2023
2024
+...

This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2021, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2021.

General research

  • A study on the relationship between full potential joint mobility and the poses used during locomotion in extant American alligator and helmeted guineafowl, evaluating its implications for reconstructions of locomotion of extinct archosaurs, is published by Manafzadeh, Kambic & Gatesy (2021).[1]
  • A study estimating moment arms for major pelvic limb muscles in extant and fossil archosaurs, aiming to investigate the idea that bird-line archosaurs switched from hip-based to knee-based locomotion between Archosauria (especially Neotheropoda) and Aves, is published by Allen, Kilbourne & Hutchinson (2021).[2]
  • A study aiming to determine how ontogenetic changes in skeletal anatomy influence muscle size, leverage, orientation, and locomotor function during the development of flight in extant chukar partridge is published by Heers et al. (2021), who evaluate the implications of their findings on current knowledge of how extinct winged theropods might have achieved bird-like behaviors before acquiring fully bird-like anatomies.[3]

Pseudosuchians

Research

  • A study on the phylogenetic relationships of pseudosuchian archosaurs, aiming to determine drivers of body size evolution in this group, is published by Stockdale & Benton (2021).[4]
  • The first occurrence of the track type "Chirotherium" lulli (inferred to be produced by a pseudosuchian archosaur) from western North America is reported from the Owl Rock Member of the Chinle Formation (Utah, United States) by Milner et al. (2021).[5]
  • An osteoderm of Typothorax coccinarum with punctures and scores which are likely bite marks is described from the Upper Triassic Chinle Formation (Arizona, United States) by Drymala, Bader & Parker (2021), who interpret this finding as supporting the hypothesis that aetosaurs were prey items of large archosauromorphs.[6]
  • Reyes, Parker & Marsh (2021) describe the first complete articulated skull of Typothorax coccinarum from the Owl Rock Member of the Chinle Formation (Petrified Forest National Park), and evaluate the implications of this specimen for the knowledge of the relationships and morphological diversity of aetosaurs.[7]
  • Description and a study on the taxonomic status of the crocodylians from the Neogene Irrawaddy Formation (Myanmar), including one of the oldest records of the genus Gavialis reported to date, is published by Iijima et al. (2021).[8]
  • Revision of the taxonomy and a study on the phylogenetic relationships of the Miocene tomistomines from Italy and Malta is published by Nicholl et al. (2021).[9]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Chinatichampsus[10]

Gen. et sp. nov

Valid

Stocker, Brochu & Kirk

Eocene (Uintan-Duchesnean)

Devil's Graveyard Formation

 United States
( Texas)

A caiman. The type species is C. wilsonorum.

Cricosaurus rauhuti[11]

Sp. nov

Valid

Herrera, Aiglstorfer & Bronzati

Late Jurassic (Tithonian)

Mörnsheim Formation

 Germany

Non-avian dinosaurs

Research

  • A study on the composition of several gastroliths from the Morrison are published by Malone, Strasser, Malone, D’Emic, Brown, and Craddock, who point to the differences between them and the surrounding rock and similarities to another site 1,000 km eastwards to suggest evidence of migration in sauropod dinosaurs.[12]
  • A study on the impact of the disparity between neonates and adults on the structure and diversity of dinosaur communities is published by Schroeder, Lyons & Smith (2021), who claim that communities with giant theropods lacked carnivores weighing 100 to 1000 kg, and argue that juveniles of giant theropod species likely filled the mesocarnivore niche, resulting in reduced overall taxonomic diversity.[13]
  • A study aiming to determine whether the presence of keratan sulfate is exclusive evidence for the presence of medullary bone in dinosaur fossils (and therefore whether it can be used to identify dinosaur specimens as gravid females) is published by Canoville et al. (2021).[14]
  • A study on the variation in tail anatomy and length across the Dinosauria is published by Hone, Persons & Le Comber (2021).[15]
  • A study on the possibilities of determination of the presence of sexual dimorphism in dinosaurs, evaluating whether the previous method used for dinosaurs correctly recognizes living animals as dimorphic, is published by Motani (2021).[16]
  • A study on dinosaur trackways that show changes in direction from Jurassic and Cretaceous sites in North and South America, Europe and Asia is published by Lockley et al. (2021).[17]
  • A study on the distribution of dinosaurs across the latest Cretaceous of North America is published by García‐Girón et al. (2021).[18]
  • A study aiming to determine whether plant-eating dinosaurs could have moved seeds long distances is published by Perry (2021).[19]
  • New fossil material of theropod and sauropod dinosaurs, including a caudal vertebra with pneumatic internal structures rarely observed outside Late Cretaceous South American saltasaurines, is described from the Campanian Quseir Formation (Egypt) by Salem et al. (2021).[20]
  • Putative large-sized sauropodomorph specimen from the Carnian strata at the ‘Cerro da Alemoa’ locality (southern Brazil) is reinterpreted as a herrerasaurid specimen (the largest reported from the Candelária Sequence to date) by Garcia et al. (2021).[21]
  • Spinosaurid neck vertebrae distinct from known vertebrae of Spinosaurus aegyptiacus and exhibiting an unusual combination of positionally variable characters are described from the Kem Kem Group (Morocco) by McFeeters (2021), who interprets this finding as evidence of a greater degree of intraspecific variation in the vertebrae of S. aegyptiacus than previously recognized, or alternatively, evidence for the occurrence of two spinosaurid taxa in the Kem Kem Group.[22]
  • Spinosaurid caudal vertebrae are described from the Lower Cretaceous Sao Khua Formation (Thailand) by Samathi, Sander & Chanthasit (2021), who also reinterpret the putative ceratosaur Camarillasaurus cirugedae as a spinosaurid.[23]
  • Hone & Holtz (2021) evaluate the evidence for the competing interpretations of the ecology of Spinosaurus, and reject the interpretation of this theropod as a specialised aquatic pursuit predator.[24]
  • Fragmentary specimens of tyrannosaurid theropods from the Dinosaur Park Formation of the Alberta, Canada) in the collection of the San Diego Natural History Museum were described by Yun (2021).[25]
  • Bones of tyrannosaurid theropods with extensive tooth marks matching the teeth of tyrannosaurids are described from the Upper Cretaceous of the San Juan Basin (northwestern New Mexico, United States) by Dalman & Lucas (2021), who interpret this finding as evidence for cannibalistic behavior among tyrannosaurids.[26]
  • Caneer, Moklestad & Lucas (2021) describe structures which are not readily assignable to any known ichnotaxon from the Upper Cretaceous of the Raton Basin (New Mexico), and interpret them as one footprint and two forearm/hand prints probably produced by a large tyrannosaurid theropod standing up from a prone position.[27]
  • Perinatal tyrannosaurid bones and teeth are described from the Upper Cretaceous Two Medicine Formation (Montana, United States) and Horseshoe Canyon Formation (Alberta, Canada) by Funston et al. (2021), who evaluate the implications of these findings for the knowledge of the minimum hatchling size of tyrannosaurids, their nesting habits and development of their teeth.[28]
  • A study on changes of mandibular biomechanical properties and tooth morphology in Albertosaurus sarcophagus and Gorgosaurus libratus during their ontogeny is published by Therrien et al. (2021), who interpret their findings as indicating the occurrence of ontogenetic dietary shift in albertosaurine tyrannosaurids.[29]
  • A study on the mechanical properties of the mandibles of tyrannosaurine tyrannosaurids representing different ontogenetic stages (including small juvenile) is published by Rowe & Snively (2021).[30]
  • A metatarsal of juvenile tyrannosaurid theropod from the Dinosaur Park Formation of the Alberta, Canada, possibly referable to Daspletosaurus torosus was described by Yun (2021).[31]
  • A study on pelvic musculature in non-avian maniraptorans is published by Rhodes, Henderson & Currie (2021).[32]
  • Reconstructions of the muscular system of the hindlimb, forelimb and the shoulder girdle of Nothronychus are presented by Smith (2021).[33][34]
  • Review of the diversity and composition of South American sauropodomorph faunas throughout the Late Triassic is published by Pol et al. (2021).[35]
  • A study on the timing of the earliest occurrence of Triassic sauropodomorphs in their northernmost range (Fleming Fjord Formation, Greenland), and on possible relationship between climate changes and early sauropodomorph dispersal to the temperate belt of the Northern Hemisphere, is published by Kent & Clemmensen (2021).[36]
  • New skull material of Plateosaurus, including the first two juvenile skulls of members of this genus, is described from the locality of Frick (Switzerland) by Lallensack et al. (2021), who attempt to determine whether the locality of Frick and German localities of Trossingen and Halberstadt contain specimens of Plateosaurus belonging to a single species.[37]
  • A study on the cranial anatomy of Anchisaurus polyzelus and the development of cranial characters in sauropodomorph ontogeny is published by Fabbri et al. (2021)[38]
  • Redescription of the anatomy of the braincase of Limaysaurus tessonei is published by Paulina-Carabajal & Calvo (2021).[39]
  • Description of the anatomy of the referred specimen of Diamantinasaurus matildae and a study on the phylogenetic relationships of this species is published by Poropat et al. (2021), who name a new clade Diamantinasauria, which includes it alongside Savannasaurus and Sarmientosaurus.[40]
  • Fossil material of a giant titanosaur sauropod, distinct from Andesaurus and probably exceeding Patagotitan in size, is described from the Cenomanian Candeleros Formation (Argentina) by Otero et al. (2021).[41]
  • Description of new fossil material and a study on the phylogenetic relationships of Tengrisaurus starkovi is published by Averianov, Sizov & Skutschas (2021).[42]
  • A stegosaurian humerus is described from the Cañadón Calcáreo Formation (Argentina) by Rauhut, Carballido & Pol (2021), extending the fossil record of Stegosauria to the Late Jurassic of South America.[43]
  • A study on the morphology, macro- and microwear, and microanatomy of the stegosaur teeth from the Teete locality (Lower Cretaceous Batylykh Formation; Sakha, Russia), evaluating their implications for the knowledge of the paleobiology of the Teete stegosaur, is published by Skutschas et al. (2021).[44]
  • Riguetti et al. (2021) describe nodosaurid tracks from the Maastrichtian El Molino Formation (Bolivia), increasing known diversity of ankylosaur tracks from South America.[45]
  • Several fragmentary skulls and skull elements of Hungarosaurus, providing new information on the morphological diversity, development and possible function of the ornamentation of nodosaurid skulls, are described by Ősi et al. (2021).[46]
  • A study on dental microwear and jaw movement of Jinyunpelta, and on its implications for the knowledge of the evolution of the feeding mechanism of ankylosaurids, is published by Kubo et al. (2021).[47]
  • Articulated postcranial skeleton of an indeterminate ankylosaurid dinosaur is described from the Barun Goyot Formation (Mongolia) by Park et al. (2021), who interpret this specimen as indicating that Asian ankylosaurids evolved rigid bodies with a reduced number of pedal phalanges, as well as the existence of at least two forms of flank armor in ankylosaurids, and discuss possible adaptations for digging in ankylosaurids.[48]
  • A study on the skeletal anatomy and phylogenetic relationships of Haya griva is published by Barta & Norell (2021).[49]
  • Redescription of the anatomy and a study on the phylogenetic relationships of Lophorhothon atopus, based on data from the holotype and from a new specimen, is published by Gates & Lamb (2021).[50]
  • Redescription of Parasaurolophus cyrtocristatus, based on data from a new skull from the Campanian Fruitland Formation (New Mexico, United States), is published by Gates, Evans & Sertich (2021).[51]
  • A study on the injuries of the holotype specimen of Bonapartesaurus rionegrensis, and on their implications for the knowledge of its paleobiology, is published by Cruzado-Caballero et al. (2021).[52]
  • A study aiming to determine the taxonomic validity of the species Sphaerotholus buchholtzae and S. edmontonensis is published by Woodruff et al. (2021).[53]
  • Vinther, Nicholls & Kelly (2021) describe the first fossil cloacal vent in an exceptionally preserved non-avian dinosaur specimen (a specimen of Psittacosaurus from the Early Cretaceous Jehol deposits of Liaoning, China).[54]
  • A study on jaws and teeth of juvenile and adult specimens of Psittacosaurus lujiatunensis, aiming to determine whether this dinosaur underwent a dietary shift during its ontogeny, is published by Landi et al. (2021).[55]
  • A study on the whole-skull shape in a large sample of specimens of Protoceratops andrewsi is published by Knapp, Knell & Hone (2021), who argue that the frill of P. andrewsi shows several characteristics consistent with a socio-sexual trait.[56]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Arackar[57]

Gen. et sp. nov

Valid

Rubilar-Rogers et al.

Late Cretaceous (CampanianMaastrichtian)

Hornitos Formation

 Chile

A lithostrotian titanosaur sauropod. Genus includes new species A. licanantay.

Dzharatitanis[58]

Gen. et sp. nov

Valid

Averianov & Sues

Late Cretaceous (Turonian)

Bissekty Formation

 Uzbekistan

A rebbachisaurid sauropod. The type species is D. kingi.

File:Dzharatitanis kingi restoration.jpg

Ninjatitan[59]

Gen. et sp. nov

Valid

Gallina, Canale, & Carballido

Early Cretaceous (BerriasianValanginian)

Bajada Colorada Formation

 Argentina

The earliest known titanosaur sauropod found. The type species is N. zapatai.

Shri[60]

Gen. et sp. nov

Valid

Turner, Montanari & Norell

Late Cretaceous

Barun Goyot

 Mongolia

A dromaeosaurid theropod. Genus includes new species S. devi.

Tamarro[61]

Gen. et sp. nov

Valid

Sellés et al.

Late Cretaceous (Maastrichtian)

Talarn

 Spain

A troodontid theropod. The type species is T. insperatus.

File:Tamarro insperatus.jpg

Birds

Research

  • A study on the diversification rates of birds throughout their evolutionary history is published by Yu, Zhang & Xu (2021).[62]
  • A study on patterns and modes of the evolution of skeletal morphology and limb proportions in Mesozoic birds is published by Wang et al. (2021).[63]
  • A study on the variation in tooth crown shape of Mesozoic birds, and its implications for the knowledge of their diets, is published by Zhou et al. (2021).[64]
  • A study on the impact of tooth loss on the diversification of Mesozoic birds is published by Brocklehurst & Field (2021), who find no evidence for a link between toothlessness and accelerated cladogenesis, as well as no evidence for models whereby acquisitions of toothlessness among Mesozoic birds were driven by an overarching selective trend.[65]
  • A study on the identity of purported gastroliths reported in a referred specimen of Bohaiornis guoi from the Early Cretaceous of China is published by Liu et al. (2021).[66]
  • A study on the bone histology and growth of the skeleton of Mirarce eatoni is published by Atterholt et al. (2021).[67]
  • A fossil ostrich specimen with exceptional soft-tissue preservation is described from the Miocene Liushu Formation (Linxia Basin, China) by Li et al. (2021).[68]
  • A femur of a giant ostrich, significantly larger than the living common ostrich, is described from the Pleistocene Nihewan Formation (China) by Buffetaut & Angst (2021), who assign it to Pachystruthio indet. and interpret this finding as evidence of wide geographical distribution of giant ostriches in the Early Pleistocene of Eurasia.[69]
  • A study on the phylogenetic relationships of Brontornis burmeisteri is published by Agnolin (2021), who interprets this taxon as a member of Galloanserae.[70]
  • A study on the morphology of the dromornithid brain, based on data from dromornithid endocast material spanning from the late Oligocene to the late Miocene, is published by Handley & Worthy (2021).[71]
  • Redescription of Columba congi is published by Shen, Stidham & Li (2021).[72]
  • Oswald et al. (2021) recover a nearly complete mitochondrial genome of the Haitian cave rail (Nesotrochis steganinos) from fossils, and find this bird to be a relative of the families Sarothruridae and Aptornithidae rather than a rallid as previously thought.[73]
  • A study on the anatomy and pneumaticity of the skull and on the paleoneurology of the fossil banded penguin Spheniscus urbinai is published by Acosta Hospitaleche, Paulina‐Carabajal & Yury‐Yáñez (2021).[74]
  • Redescription of the type specimen of Macrornis tanaupus from the Eocene Totland Bay Formation (Hampshire, United Kingdom) is published by Buffetaut & Angst (2021), who interpret this fossil as a partial tibiotarsus of a large terrestrial bird, possibly a phorusrhacid.[75]
  • A review of the knowledge of phorusrhacid skull anatomy is presented by Degrange (2021).[76]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Bitumenpicus[77]

Gen. et sp. nov

In press

Campbell & Bocheński

Late Pleistocene

La Brea Tar Pits

 United States
( California)

A woodpecker. Genus includes new species B. minimus.

Breacopus[77]

Gen. et sp. nov

In press

Campbell & Bocheński

Late Pleistocene

La Brea Tar Pits

 United States
( California)

A woodpecker. Genus includes new species B. garretti.

Crosnoornis[78]

Gen. et sp. nov

In press

Bocheński et al.

Oligocene (Rupelian)

 Poland

A passerine, an early member of Suboscines. The type species is C. nargizia.

Melanerpes shawi[77]

Sp. nov

In press

Campbell & Bocheński

Late Pleistocene

La Brea Tar Pits

 United States
( California)

A woodpecker, a species of Melanerpes.

Parapsittacopes[79]

Gen. et sp. nov

Valid

Mayr

Early Eocene

London Clay

 United Kingdom

A relative of Psittacopes, Pumiliornis and Morsoravis. Genus includes new species P. bergdahli.

Procellaria altirostris[80]

Sp. nov

Valid

Tennyson & Tomotani

Pliocene (Piacenzian)

Tangahoe Formation

 New Zealand

A species of Procellaria.

Ueekenkcoracias[81]

Gen. et sp. nov

Degrange et al.

Eocene (Ypresian)

Huitrera Formation

 Argentina

A member of the stem group of Coracii. The type species is U. tambussiae.

Tynskya waltonensis[82]

Sp. nov

In press

Mayr

Eocene (Ypresian)

London Clay

 United Kingdom

A species of the messelasturid Tynskya.

Pterosaurs

Research

New taxa

Other archosaurs

Research

New taxa

References

  1. ^ Manafzadeh, A. R.; Kambic, R. E.; Gatesy, S. M. (2021). "A new role for joint mobility in reconstructing vertebrate locomotor evolution". Proceedings of the National Academy of Sciences of the United States of America. 118 (7): e2023513118. doi:10.1073/pnas.2023513118. PMC 7896293. PMID 33558244.
  2. ^ Allen, V. R.; Kilbourne, B. M.; Hutchinson, J. R. (2021). "The evolution of pelvic limb muscle moment arms in bird-line archosaurs". Science Advances. 7 (12): eabe2778. doi:10.1126/sciadv.abe2778. PMID 33741593.
  3. ^ Heers, A. M.; Varghese, S. L.; Hatier, L. K.; Cabrera, J. J. (2021). "Multiple Functional Solutions During Flightless to Flight-Capable Transitions". Frontiers in Ecology and Evolution. 8: Article 573411. doi:10.3389/fevo.2020.573411.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  4. ^ Stockdale, M. T.; Benton, M. J. (2021). "Environmental drivers of body size evolution in crocodile-line archosaurs". Communications Biology. 4 (1): Article number 38. doi:10.1038/s42003-020-01561-5. PMC 7790829. PMID 33414557.
  5. ^ Milner, A. R. C.; Irmis, R. B.; Lockley, M. G.; Klein, H.; Slauf, D. L.; Romilio, A. (2021). "First report of "Chirotherium" lulli from the Upper Triassic Chinle Formation of San Juan County, Utah". New Mexico Museum of Natural History and Science Bulletin. 82: 275–284.
  6. ^ Drymala, S. M.; Bader, K.; Parker, W. G. (2021). "Bite marks on an aetosaur (Archosauria, Suchia) osteoderm: assessing Late Triassic predator-prey ecology through ichnology and tooth morphology". Palaios. 36 (1): 28–37. doi:10.2110/palo.2020.043.
  7. ^ Reyes, W. A.; Parker, W. G.; Marsh, A. D. (2021). "Cranial Anatomy and Dentition of the Aetosaur Typothorax coccinarum (Archosauria: Pseudosuchia) from the Upper Triassic (Revueltian–Mid Norian) Chinle Formation of Arizona". Journal of Vertebrate Paleontology. in press: e1876080. doi:10.1080/02724634.2020.1876080.
  8. ^ Iijima, M.; Takai, M.; Nishioka, Y.; Thaung-Htike; Zin-Maung-Maung-Thein; Egi, N.; Kusuhashi, N.; Tsubamoto, T.; Kono, R. T.; Hirayama, R. (2021). "Taxonomic overview of Neogene crocodylians in Myanmar". Journal of Vertebrate Paleontology. in press: e1879100. doi:10.1080/02724634.2021.1879100.
  9. ^ Nicholl, C. S. C.; Rio, J. P.; Mannion, P. D.; Delfino, M. (2021). "A re-examination of the anatomy and systematics of the tomistomine crocodylians from the Miocene of Italy and Malta". Journal of Systematic Palaeontology. 18 (22): 1853–1889. doi:10.1080/14772019.2020.1855603. S2CID 231636898.
  10. ^ Stocker, M. R.; Brochu, C. A.; Kirk, E. C. (2021). "A new caimanine alligatorid from the Middle Eocene of Southwest Texas and implications for spatial and temporal shifts in Paleogene crocodyliform diversity". PeerJ. 9: e10665. doi:10.7717/peerj.10665. PMC 7812925. PMID 33520458.
  11. ^ Herrera, Y.; Aiglstorfer, M.; Bronzati, M. (2021). "A new species of Cricosaurus (Thalattosuchia: Crocodylomorpha) from southern Germany: the first three-dimensionally preserved Cricosaurus skull from the Solnhofen Archipelago". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2021.1883138.
  12. ^ Malone, Joshua R.; Strasser, Jeffrey C.; Malone, David H.; D’Emic, Michael D.; Brown, Lauren; Craddock, John P. "Jurassic dinosaurs on the move: Gastrolith provenance and long-distance migration". Terra Nova. n/a (n/a). doi:10.1111/ter.12522. ISSN 1365-3121.
  13. ^ Schroeder, K.; Lyons, S. K.; Smith, F. A. (2021). "The influence of juvenile dinosaurs on community structure and diversity". Science. 371 (6532): 941–944. doi:10.1126/science.abd9220. PMID 33632845.
  14. ^ Canoville, A.; Zanno, L. E.; Zheng, W.; Schweitzer, M. H. (2021). "Keratan sulfate as a marker for medullary bone in fossil vertebrates". Journal of Anatomy. in press. doi:10.1111/joa.13388. PMID 33398875.
  15. ^ Hone, D. W. E.; Persons, W. S.; Le Comber, S. C. (2021). "New data on tail lengths and variation along the caudal series in the non-avialan dinosaurs". PeerJ. 9: e10721. doi:10.7717/peerj.10721. PMC 7891087. PMID 33628634.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  16. ^ Motani, R. (2021). "Sex estimation from morphology in living animals and dinosaurs". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zlaa181.
  17. ^ Lockley, M. G.; Xing, L.; Kim, K. S.; Meyer, C. A. (2021). "Tortuous trackways: evidence and implications of deviations, turns and changes in direction by dinosaurian trackmakers". Historical Biology: An International Journal of Paleobiology. in press: 1–14. doi:10.1080/08912963.2020.1865945.
  18. ^ García‐Girón, J.; Heino, J.; Alahuhta, J.; Chiarenza, A. A.; Brusatte, S. L. (2021). "Palaeontology meets metacommunity ecology: the Maastrichtian dinosaur fossil record of North America as a case study". Palaeontology. in press. doi:10.1111/pala.12526.
  19. ^ Perry, G. L. W. (2021). "How far might plant-eating dinosaurs have moved seeds?". Biology Letters. 17 (1): Article ID 20200689. doi:10.1098/rsbl.2020.0689. PMC 7876603. PMID 33401998.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  20. ^ Salem, B. S.; O'Connor, P. M.; Gorscak, E.; El-Sayed, S.; Sertich, J. J. W.; Seiffert, E.; Sallam, H. M. (2021). "Dinosaur remains from the Upper Cretaceous (Campanian) of the Western Desert, Egypt". Cretaceous Research. 123: Article 104783. doi:10.1016/j.cretres.2021.104783.
  21. ^ Garcia, M. S.; Müller, R. T.; Pretto, F. A.; Da-Rosa, Á. A. S.; Dias-Da-Silva, S. (2021). "Taxonomic and phylogenetic reassessment of a large-bodied dinosaur from the earliest dinosaur-bearing beds (Carnian, Upper Triassic) from southern Brazil". Journal of Systematic Palaeontology. 19 (1): 1–37. doi:10.1080/14772019.2021.1873433.
  22. ^ McFeeters, B. (2021). "New mid-cervical vertebral morphotype of Spinosauridae from the Kem Kem Group of Morocco". Vertebrate Anatomy Morphology Palaeontology. 8: 182–193. doi:10.18435/vamp29370.
  23. ^ Samathi, A.; Sander, P. M.; Chanthasit, P. (2021). "A spinosaurid from Thailand (Sao Khua Formation, Early Cretaceous) and a reassessment of Camarillasaurus cirugedae from the Early Cretaceous of Spain". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2021.1874372.
  24. ^ Hone, D. W. E.; Holtz, T. R. (2021). "Evaluating the ecology of Spinosaurus: Shoreline generalist or aquatic pursuit specialist?". Palaeontologia Electronica. 24 (1): Article number 24(1):a03. doi:10.26879/1110.
  25. ^ Yun, C.-G. (2021). "Tyrannosaurid theropod specimens in the San Diego Natural History Museum from the Dinosaur Park Formation (Campanian) of Alberta, Canada". New Mexico Museum of Natural History and Science Bulletin. 82: 569–578.
  26. ^ Dalman, S. G.; Lucas, S. G. (2021). "New evidence for cannibalism in tyrannosaurid dinosaurs from the Upper Cretaceous (Campanian/Maastrichtian) San Juan Basin of New Mexico". New Mexico Museum of Natural History and Science Bulletin. 82: 39–56.
  27. ^ Caneer, T.; Moklestad, T.; Lucas, S. G. (2021). "Tracks in the Upper Cretaceous of the Raton Basin possibly show tyrannosaurid rising from a prone position". New Mexico Museum of Natural History and Science Bulletin. 82: 29–37.
  28. ^ Funston, G. F.; Powers, M. J.; Whitebone, S. A.; Brusatte, S. L.; Scannella, J. B.; Horner, J. R.; Currie, P. J. (2021). "Baby tyrannosaurid bones and teeth from the Late Cretaceous of western North America". Canadian Journal of Earth Sciences. in press: 1–22. doi:10.1139/cjes-2020-0169.
  29. ^ Therrien, F.; Zelenitsky, D. K.; Voris, J. T.; Tanaka, K. (2021). "Mandibular force profiles and tooth morphology in growth series of Albertosaurus sarcophagus and Gorgosaurus libratus (Tyrannosauridae: Albertosaurinae) provide evidence for an ontogenetic dietary shift in tyrannosaurids". Canadian Journal of Earth Sciences. in press. doi:10.1139/cjes-2020-0177.
  30. ^ Rowe, A. J.; Snively, E. (2021). "Biomechanics of juvenile tyrannosaurid mandibles and their implications for bite force". The Anatomical Record. in press. doi:10.1002/ar.24602. PMID 33586862.
  31. ^ Yun, C.-G. (2021). "A juvenile metatarsal of cf. Daspletosaurus torosus: Implications for ontogeny in tyrannosaurid theropods" (PDF). Acta Palaeontologica Romaniae. 17: 15–22.
  32. ^ Rhodes, M. M.; Henderson, D. M.; Currie, P. J. (2021). "Maniraptoran pelvic musculature highlights evolutionary patterns in theropod locomotion on the line to birds". PeerJ. 9: e10855. doi:10.7717/peerj.10855. PMC 7937347. PMID 33717681.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  33. ^ Smith, D. K. (2021). "Hind limb muscle reconstruction in the incipiently opisthopubic large therizinosaur Nothronychus (Theropoda; Maniraptora)". Journal of Anatomy. in press. doi:10.1111/joa.13382. PMID 33417263.
  34. ^ Smith, D. K. (2021). "Forelimb musculature and function in the therizinosaur Nothronychus (Maniraptora, Theropoda)". Journal of Anatomy. in press. doi:10.1111/joa.13418. PMID 33665832.
  35. ^ Pol, D.; Otero, A.; Apaldetti, C. A.; Martínez, R. J. (2021). "Triassic sauropodomorph dinosaurs from South America: The origin and diversification of dinosaur dominated herbivorous faunas". Journal of South American Earth Sciences. 107: Article 103145. Bibcode:2021JSAES.10703145P. doi:10.1016/j.jsames.2020.103145.
  36. ^ Kent, D. V.; Clemmensen, L. B. (2021). "Northward dispersal of dinosaurs from Gondwana to Greenland at the mid-Norian (215–212 Ma, Late Triassic) dip in atmospheric pCO2". Proceedings of the National Academy of Sciences of the United States of America. 118 (8): e2020778118. doi:10.1073/pnas.2020778118. PMC 7923678. PMID 33593914.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  37. ^ Lallensack, J. N.; Teschner, E. M.; Pabst, B.; Sander, P. M. (2021). "New skulls of the basal sauropodomorph Plateosaurus trossingensis from Frick, Switzerland: Is there more than one species?". Acta Palaeontologica Polonica. 66 (1): 1–28. doi:10.4202/app.00804.2020.
  38. ^ Fabbri, Matteo; Navalón, Guillermo; Mongiardino Koch, Nicolás; Hanson, Michael; Petermann, Holger; Bhullar, Bhart-Anjan. "A shift in ontogenetic timing produced the unique sauropod skull". Evolution. n/a (n/a). doi:10.1111/evo.14190. ISSN 1558-5646. PMID 33578446.
  39. ^ Paulina-Carabajal, A.; Calvo, J. O. (2021). "Re-description of the braincase of the rebbachisaurid sauropod Limaysaurus tessonei and novel endocranial information based on CT scans". Anais da Academia Brasileira de Ciências. 93 (Suppl. 2): e20200762. doi:10.1590/0001-3765202120200762. PMID 33533794.
  40. ^ Poropat, S. F.; Kundrát, M.; Mannion, P. D.; Upchurch, P.; Tischler, T. R.; Elliott, D. A. (2021). "Second specimen of the Late Cretaceous Australian sauropod dinosaur Diamantinasaurus matildae provides new anatomical information on the skull and neck of early titanosaurs". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zlaa173.
  41. ^ Otero, Alejandro; Carballido, José L.; Salgado, Leonardo; Canudo, José Ignacio; Garrido, Alberto C. (12 January 2021). "Report of a giant titanosaur sauropod from the Upper Cretaceous of Neuquén Province, Argentina". Cretaceous Research. 122: 104754. doi:10.1016/j.cretres.2021.104754.
  42. ^ Averianov, A. O.; Sizov, A. V.; Skutschas, P. P. (2021). "Gondwanan affinities of Tengrisaurus, Early Cretaceous titanosaur from Transbaikalia, Russia (Dinosauria, Sauropoda)". Cretaceous Research. 122: Article 104731. doi:10.1016/j.cretres.2020.104731.
  43. ^ Rauhut, O. W. M.; Carballido, J. L.; Pol, D. (2021). "First Osteological Record of a Stegosaur (Dinosauria, Ornithischia) from the Upper Jurassic of South America". Journal of Vertebrate Paleontology. in press: e1862133. doi:10.1080/02724634.2020.1862133.
  44. ^ Skutschas, P. P.; Gvozdkova, V. A.; Averianov, A. O.; Lopatin, A. V.; Martin, T.; Schellhorn, R.; Kolosov, P. N.; Markova, V. D.; Kolchanov, V. V.; Grigoriev, D. V.; Kuzmin, I. T.; Vitenko, D. D. (2021). "Wear patterns and dental functioning in an Early Cretaceous stegosaur from Yakutia, Eastern Russia". PLoS ONE. 16 (3): e0248163. doi:10.1371/journal.pone.0248163. PMID 33730093.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  45. ^ Riguetti, F.; Citton, P.; Apesteguía, S.; Zacarías, G.; Pereda-Suberbiola, X. (2021). "New ankylosaurian trackways (cf. Tetrapodosaurus) from an uppermost Cretaceous level of the El Molino Formation of Bolivia". Cretaceous Research. in press: Article 104810. doi:10.1016/j.cretres.2021.104810.
  46. ^ Ősi, A.; Magyar, J.; Rosta, K.; Vickaryous, M. (2021). "Cranial ornamentation in the Late Cretaceous nodosaurid ankylosaur Hungarosaurus". PeerJ. 9: e11010. doi:10.7717/peerj.11010. PMC 7936564. PMID 33717709.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  47. ^ Kubo, T.; Zheng, W.; Kubo, M. O.; Jin, X. (2021). "Dental microwear of a basal ankylosaurine dinosaur, Jinyunpelta and its implication on evolution of chewing mechanism in ankylosaurs". PLoS ONE. 16 (3): e0247969. doi:10.1371/journal.pone.0247969. PMC 7946176. PMID 33690686.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  48. ^ Park, J.-Y.; Lee, Y.-N.; Currie, P. J.; Ryan, M. J.; Bell, P.; Sissons, R.; Koppelhus, E. B.; Barsbold, R.; Lee, S.; Kim, S.-H. (2021). "A new ankylosaurid skeleton from the Upper Cretaceous Baruungoyot Formation of Mongolia: its implications for ankylosaurid postcranial evolution". Scientific Reports. 11: Article number 4101. doi:10.1038/s41598-021-83568-4. PMC 7973727. PMID 33737515.
  49. ^ Barta, D. E.; Norell, M. A. (2021). "The osteology of Haya griva (Dinosauria: Ornithischia) from the Late Cretaceous of Mongolia". Bulletin of the American Museum of Natural History. 445: 1–112. doi:10.1206/0003-0090.445.1.1. hdl:2246/7253.
  50. ^ Gates, T. A.; Lamb, J. (2021). "Redescription of Lophorhothon atopus (Ornithopoda: Dinosauria) from the Late Cretaceous of Alabama based on new material". Canadian Journal of Earth Sciences. in press. doi:10.1139/cjes-2020-0173.
  51. ^ Gates, T. A.; Evans, D. C.; Sertich, J. J. W. (2021). "Description and rediagnosis of the crested hadrosaurid (Ornithopoda) dinosaur Parasaurolophus cyrtocristatus on the basis of new cranial remains". PeerJ. 9: e10669. doi:10.7717/peerj.10669. PMC 7842145. PMID 33552721.
  52. ^ Cruzado-Caballero, P.; Lecuona, A.; Cerda, I.; Díaz-Martínez, I. (2021). "Osseous paleopathologies of Bonapartesaurus rionegrensis (Ornithopoda, Hadrosauridae) from Allen Formation (Upper Cretaceous) of Patagonia Argentina". Cretaceous Research. in press: Article 104800. doi:10.1016/j.cretres.2021.104800.
  53. ^ Woodruff, D. C.; Goodwin, M. B.; Lyson, T. R.; Evans, D. C. (2021). "Ontogeny and variation of the pachycephalosaurine dinosaur Sphaerotholus buchholtzae, and its systematics within the genus". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlaa179.
  54. ^ Vinther, J.; Nicholls, R.; Kelly, D. A. (2021). "A cloacal opening in a non-avian dinosaur". Current Biology. 31 (4): R182–R183. doi:10.1016/j.cub.2020.12.039. PMID 33472049. S2CID 231644183.
  55. ^ Landi, D.; King, L.; Zhao, Q.; Rayfield, E. J.; Benton, M. J. (2021). "Testing for a dietary shift in the Early Cretaceous ceratopsian dinosaur Psittacosaurus lujiatunensis". Palaeontology. in press. doi:10.1111/pala.12529.
  56. ^ Knapp, A.; Knell, R. J.; Hone, D. W. E. (2021). "Three-dimensional geometric morphometric analysis of the skull of Protoceratops andrewsi supports a socio-sexual signalling role for the ceratopsian frill". Proceedings of the Royal Society B: Biological Sciences. 288 (1944): Article ID 20202938. doi:10.1098/rspb.2020.2938. PMID 33529562.
  57. ^ Rubilar-Rogers, D.; Vargas, A. O.; González Riga, B.; Soto-Acuña, S.; Alarcón-Muñoz, J.; Iriarte-Díaz, J.; Arévalo, C.; Gutstein, C. S. (2021). "Arackar licanantay gen. et sp. nov. a new lithostrotian (Dinosauria, Sauropoda) from the Upper Cretaceous of the Atacama Region, northern Chile". Cretaceous Research. in press: Article 104802. doi:10.1016/j.cretres.2021.104802.
  58. ^ Averianov, A.; Sues, H.-D. (2021). "First rebbachisaurid sauropod dinosaur from Asia". PLoS ONE. 16 (2): e0246620. doi:10.1371/journal.pone.0246620. PMC 7904184. PMID 33626060.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  59. ^ Gallina, Pablo Ariel; Canale, Juan Ignacio; Carballido, José Luis (2021-02-28). "THE EARLIEST KNOWN TITANOSAUR SAUROPOD DINOSAUR". Ameghiniana. 58 (1): 35–51. doi:10.5710/AMGH.20.08.2020.3376. ISSN 1851-8044.
  60. ^ Turner, A. H.; Montanari, S.; Norell, M. A. (2021). "A new dromaeosaurid from the Late Cretaceous Khulsan locality of Mongolia". American Museum Novitates. 2020 (3965): 1–48. doi:10.1206/3965.1. hdl:2246/7251. S2CID 231597229.
  61. ^ Sellés, A. G.; Vila, B.; Brusatte, S. L.; Currie, P. J.; Galobart, À. (2021). "A fast-growing basal troodontid (Dinosauria: Theropoda) from the latest Cretaceous of Europe". Scientific Reports. 11: Article number 4855. doi:10.1038/s41598-021-83745-5. PMC 7921422. PMID 33649418.
  62. ^ Yu, Y.; Zhang, C.; Xu, X. (2021). "Deep time diversity and the early radiations of birds". Proceedings of the National Academy of Sciences of the United States of America. 118 (10): e2019865118. doi:10.1073/pnas.2019865118. PMID 33619176.
  63. ^ Wang, M.; Lloyd, G. T.; Zhang, C.; Zhou, Z. (2021). "The patterns and modes of the evolution of disparity in Mesozoic birds". Proceedings of the Royal Society B: Biological Sciences. 288 (1944): Article ID 20203105. doi:10.1098/rspb.2020.3105. PMID 33529566.
  64. ^ Zhou, Y.; Sullivan, C.; Zhou, Z.; Zhang, F. (2021). "Evolution of tooth crown shape in Mesozoic birds, and its adaptive significance with respect to diet". Palaeoworld. in press. doi:10.1016/j.palwor.2020.12.008.
  65. ^ Brocklehurst, N.; Field, D. J. (2021). "Macroevolutionary dynamics of dentition in Mesozoic birds reveal no long-term selection towards tooth loss". iScience. 24 (3): Article 102243. doi:10.1016/j.isci.2021.102243.
  66. ^ Liu, S.; Li, Z.; Bailleul, A. M.; Wang, M.; O’Connor, J. (2021). "Investigating Possible Gastroliths in a Referred Specimen of Bohaiornis guoi (Aves: Enantiornithes)". Frontiers in Earth Science. 9: Article 635727. doi:10.3389/feart.2021.635727.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  67. ^ Atterholt, J.; Poust, A. W.; Erickson, G. M.; O’Connor, J. K. (2021). "Intraskeletal Osteohistovariability Reveals Complex Growth Strategies in a Late Cretaceous Enantiornithine". Frontiers in Earth Science. 9: Article 640220. doi:10.3389/feart.2021.640220.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  68. ^ Li, Z.-H.; Bailleul, A. M.; Stidham, T. A.; Wang, M.; Deng, T. (2021). "Exceptional preservation of an extinct ostrich from the Late Miocene Linxia Basin of China". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.210309.
  69. ^ Buffetaut, E.; Angst, D. (2021). "A giant ostrich from the Lower Pleistocene Nihewan Formation of North China, with a review of the fossil ostriches of China". Diversity. 13 (2): Article 47. doi:10.3390/d13020047.
  70. ^ Agnolin, F. L. (2021). "Reappraisal on the Phylogenetic Relationships of the Enigmatic Flightless Bird (Brontornis burmeisteri) Moreno and Mercerat, 1891". Diversity. 13 (2): Article 90. doi:10.3390/d13020090.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  71. ^ Handley, W. D.; Worthy, T. H. (2021). "Endocranial Anatomy of the Giant Extinct Australian Mihirung Birds (Aves, Dromornithidae)". Diversity. 13 (3): Article 124. doi:10.3390/d13030124.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  72. ^ Shen, W.; Stidham, T. A.; Li, Z.-H. (2021). "Reexamination of the oldest pigeon (Aves: Columbidae) from Asia: Columba congi from the Early Pleistocene of Zhoukoudian, Beijing, China". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.210304.
  73. ^ Oswald, J. A.; Terrill, R. S.; Stucky, B. J.; LeFebvre, M. J.; Steadman, D. W.; Guralnick, R. P.; Allen, J. M. (2021). "Ancient DNA from the extinct Haitian cave-rail (Nesotrochis steganinos) suggests a biogeographic connection between the Caribbean and Old World". Biology Letters. 17 (3): Article ID 20200760. doi:10.1098/rsbl.2020.0760. PMID 33726563.
  74. ^ Acosta Hospitaleche, C.; Paulina‐Carabajal, A.; Yury‐Yáñez, R. (2021). "The skull of the Miocene Spheniscus urbinai (Aves, Sphenisciformes): osteology, brain morphology, and the cranial pneumatic systems". Journal of Anatomy. in press. doi:10.1111/joa.13403. PMID 33576081.
  75. ^ Buffetaut, E.; Angst, D. (2021). "Macrornis tanaupus Seeley, 1866: an enigmatic giant bird from the upper Eocene of England". Geological Magazine. in press. doi:10.1017/S0016756820001466.
  76. ^ Degrange, F. J. (2021). "A Revision of Skull Morphology In Phorusrhacidae (Aves, Cariamiformes)". Journal of Vertebrate Paleontology. in press: e1848855. doi:10.1080/02724634.2020.1848855.
  77. ^ a b c Campbell, K. E.; Bocheński, Z. M. (2021). "A review of the woodpeckers (Aves: Piciformes) from the asphalt deposits of Rancho La Brea, California, with the description of three new species". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-020-00444-1. S2CID 231716382.
  78. ^ Bocheński, Z. M.; Tomek, T.; Bujoczek, M.; Salwa, G. (2021). "A new passeriform (Aves: Passeriformes) from the early Oligocene of Poland sheds light on the beginnings of Suboscines". Journal of Ornithology. in press. doi:10.1007/s10336-021-01858-0.
  79. ^ Mayr, G. (2021). "A remarkably complete skeleton from the London Clay provides insights into the morphology and diversity of early Eocene zygodactyl near-passerine birds". Journal of Systematic Palaeontology. 18 (22): 1891–1906. doi:10.1080/14772019.2020.1862930. S2CID 231636890.
  80. ^ Tennyson, A. J. D.; Tomotani, B. M. (2021). "A new fossil species of Procellaria (Aves: Procellariiformes) from the Pliocene of New Zealand". Papéis Avulsos de Zoologia. 61: e20216116. doi:10.11606/1807-0205/2021.61.16.
  81. ^ Degrange, F. J.; Pol, D.; Puerta, P.; Wilf, P. (2021). "Unexpected larger distribution of Paleogene stem-rollers (Aves, Coracii): new evidence from the Eocene of Patagonia, Argentina". Scientific Reports. 11 (1): Article number 1363. doi:10.1038/s41598-020-80479-8. PMC 7809110. PMID 33446824.
  82. ^ Mayr, M. (2021). "A partial skeleton of a new species of Tynskya Mayr, 2000 (Aves, Messelasturidae) from the London Clay highlights the osteological distinctness of a poorly known early Eocene "owl/parrot mosaic"". PalZ. In press. doi:10.1007/s12542-020-00541-8.
  83. ^ Pêgas, R. V.; Costa, F. R.; Kellner, A. W. A. (2021). "Reconstruction of the adductor chamber and predicted bite force in pterodactyloids (Pterosauria)". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zlaa163.
  84. ^ Averianov, A. O.; Yarkov, A. A. (2021). "The first record of a pteranodontid (Pterosauria, Pteranodontidae) from the Late Cretaceous of the Lower Volga Region". Paleontological Journal. 55 (1): 101–104. doi:10.1134/S0031030121010032.
  85. ^ Yun, C.-G. (2021). "Boreopterid pterosaur fossils from South Korea reconsidered". New Mexico Museum of Natural History and Science Bulletin. 82: 567–568.
  86. ^ Bantim, R. A. M.; Pedroso de Andrade, R. C. L.; Ferreira, J. S.; Saraiva, A. A. F.; Kellner, A. W. A.; Sayão, J. M. (2021). "Osteohistology and growth pattern of a large pterosaur from the Lower Cretaceous Romualdo Formation of the Araripe Basin, Northeastern Brazil". Cretaceous Research. 118: Article 104667. doi:10.1016/j.cretres.2020.104667.
  87. ^ Augustin, F. J.; Matzke, A. T.; Maisch, M. W.; Pfretzschner, H.-U. (2021). "New information on Lonchognathosaurus (Pterosauria: Dsungaripteridae) from the Lower Cretaceous of the southern Junggar Basin (NW China)". Cretaceous Research. in press: Article 104808. doi:10.1016/j.cretres.2021.104808.
  88. ^ Farke, A. A. (2021). "A large pterosaur limb bone from the Kaiparowits Formation (late Campanian) of Grand Staircase-Escalante National Monument, Utah, USA". PeerJ. 9: e10766. doi:10.7717/peerj.10766. PMC 7825364. PMID 33552741.
  89. ^ Marchetti, L.; Collareta, A.; Belvedere, M.; Leonardi, G. (2021). "Ichnotaxonomy, biostratigraphy and palaeoecology of the Monti Pisani tetrapod ichnoassociation (Tuscany, Italy) and new insights on Middle Triassic Dinosauromorpha". Palaeogeography, Palaeoclimatology, Palaeoecology. 567: Article 110235. doi:10.1016/j.palaeo.2021.110235.
  90. ^ McCabe, M. B.; Nesbitt, S. J. (2021). "The first pectoral and forelimb material assigned to the lagerpetid Lagerpeton chanarensis (Archosauria: Dinosauromorpha) from the upper portion of the Chañares Formation, Late Triassic". Palaeodiversity. 14 (1): 121–131. doi:10.18476/pale.v14.a5.