2023 in paleontology: Difference between revisions
→Other new animal taxa: Added new taxon Tags: Mobile edit Mobile web edit |
Macrochelys (talk | contribs) |
||
Line 1,191: | Line 1,191: | ||
| |
| |
||
A [[palaeoscolecid]]. The type species is ''F. egiinensis''. |
A [[palaeoscolecid]]. The type species is ''F. egiinensis''. |
||
| |
|||
|- |
|||
| |
|||
''[[Gaoloufangchaeta]]''<ref>{{cite journal |last1=Zhao |first1=J. |last2=Li |first2=Y. |last3=Selden |first3=P. A. |year=2023 |title=A new primitive polychaete with eyes from the lower Cambrian Guanshan biota of Yunnan Province, China |journal=Frontiers in Ecology and Evolution |volume=11 |at=1128070 |doi=10.3389/fevo.2023.1128070 |doi-access=free }}</ref> |
|||
| |
|||
Gen. et sp. nov |
|||
| |
|||
Valid |
|||
| |
|||
Zhao, Li & Selden |
|||
| |
|||
[[Cambrian Stage 4]] |
|||
| |
|||
Wulongqing Formation |
|||
| |
|||
{{Flag|China}} |
|||
| |
|||
A polychaete. The type species is ''G. bifurcus''. |
|||
| |
| |
||
|- |
|- |
Revision as of 15:30, 26 April 2023
| |||
---|---|---|---|
Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2023.
2023 in science |
---|
Fields |
Technology |
Social sciences |
Paleontology |
Extraterrestrial environment |
Terrestrial environment |
Other/related |
Flora
"Algae"
Plants
Fungi
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
A lichen-like thalli. |
|||||||
Gen. et sp. nov |
Krings & Harper |
Devonian |
A fungal mycelium of uncertain affinities. Genus includes new species R. endoconidiarum. |
Mycological research
General floral research
Cnidarians
New cnidarian taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Song et al. |
Cambrian (Fortunian) |
Kuanchuanpu Formation |
A medusozoan, possibly a member of Conulata. |
||||
Gen. et comb. nov |
Qu, Li & Ou |
Cambrian |
A stem-medusozoan; a new genus for "Burithes" yunnanensis Hou et al. (1999). |
|||||
Sp. nov |
Hachour et al. |
Neoproterozoic |
Cheikhia-Bir Amrane Group |
A scyphozoan of uncertain affinities. |
Cnidarian research
- Conulariid specimens preserved with muscle bundles and a possible gastric cavity are described from the Carboniferous Wewoka and Graham formations (Oklahoma and Texas, United States) by Sendino et al. (2023).[7]
- Redescription of Conicula striata is published by Zhao et al. (2023), who report that C. striata had features of both anthozoans and medusozoan polyps, and recover it as a stem-medusozoan, potentially indicating that medusozoans had an anemone-like ancestor.[8]
- Zhang et al. (2023) describe new fossil material of Qinscyphus necopinus from the Cambrian (Fortunian) Kuanchuanpu Formation (China), including the whole apical part and providing complete information on the morphology of Qinscyphus.[9]
- Plotnick, Young & Hagadorn (2023) classify Essexella asherae as a sea anemone, and reinterpret Reticulomedusa greenei as the pedal or oral disc of E. asherae.[10]
Arthropods
Bryozoans
New bryozoan taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Arakawa |
Miocene (Langhian) |
A member of the family Phidoloporidae. Published online in 2022, but the issue date is listed as January 2023.[11] |
||||
Sp. nov |
Valid |
López-Gappa & Pérez |
Miocene |
Monte León Formation |
A member of the family Cellariidae. |
|||
Sp. nov |
In press |
Arakawa |
Pleistocene |
A species of Microporina. |
||||
Sp. nov |
In press |
Arakawa |
Pleistocene |
Setana Formation |
A species of Microporina. |
|||
Sp. nov |
In press |
Arakawa |
Pleistocene |
Setana Formation |
A species of Microporina. |
|||
Sp. nov |
In press |
Arakawa |
Pleistocene |
Setana Formation |
A species of Microporina. |
|||
Gen. et sp. nov |
Valid |
Ernst |
Ordovician (Sandbian) |
Viivikonna Formation |
A trepostome bryozoan belonging to the family Monticuliporidae. The type species is T. kohtlaensis. |
Bryozoan research
- Yang et al. (2023) reinterpret putative Cambrian bryozoan Protomelission as an early dasycladalean green alga, and conclude that there are no unequivocal bryozoans of Cambrian age.[15]
Brachiopods
New brachiopod taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
In press |
Wang et al. |
Ordovician |
Huadan Formation |
||||
Sp. nov |
Valid |
Lavié & Benedetto |
Ordovician (Tremadocian) |
Pupusa Formation |
A member of Siphonotretida belonging to the family Siphonotretidae. |
|||
Sp. nov |
In press |
Berrocal-Casero, Baeza-Carratalá & García Joral |
Cretaceous (Albian–Cenomanian) |
Represa Formation |
||||
Sp. nov |
Wu et al. |
Early Triassic (Olenekian) |
Nanpanjiang Basin |
A member of Spiriferinida belonging to the family Bittnerulidae. |
||||
Gen. et 2 sp. nov |
Valid |
Oh et al. |
Ordovician (Darriwilian) |
Jigunsan Formation |
A member of Strophomenoidea belonging to the family Rafinesquinidae. The type species is J. guraeriensis; genus also includes J. hambaeksanensis. |
|||
Sp. nov |
In press |
Wang et al. |
Ordovician |
Huadan Formation |
||||
Gen. et sp. nov |
In press |
Wang et al. |
Ordovician |
Huadan Formation |
Genus includes new species N. longisepta. |
|||
Sp. nov |
Wu et al. |
Early Triassic (Olenekian) |
Nanpanjiang Basin |
A member of Terebratulida belonging to the family Angustothyrididae. |
||||
Sp. nov |
Wu et al. |
Early Triassic (Olenekian) |
Nanpanjiang Basin |
A member of Terebratulida belonging to the family Dielasmatidae. |
||||
Sp. nov |
Waterhouse & Lee in Lee et al. |
Permian (Kungurian) |
Snapper Point Formation |
Brachiopod research
Molluscs
Echinoderms
New echinoderm taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et comb. nov |
Valid |
Zamora, Wright & Nohejlová |
Cambrian (Wuliuan) |
A member of the group Cincta belonging to the family Sucocystidae. The type species is "Asturicystis" havliceki Fatka & Kordule (2001). |
||||
Sp. nov |
Schlüter et al. |
Late Cretaceous (Santonian) |
A sea urchin belonging to the family Phymosomatidae. |
|||||
Sp. nov |
Valid |
Saucède et al. |
Early Triassic (Olenekian) |
A crinoid belonging to the group Articulata and the family Dadocrinidae. |
||||
Sp. nov |
In press |
Gale |
Late Cretaceous (Cenomanian) |
Chalk Group |
A crinoid belonging to the family Roveacrinidae. |
|||
Gen. et sp. nov |
In press |
Gale |
Late Cretaceous (Cenomanian) |
Chalk Group |
A crinoid belonging to the family Roveacrinidae. The type species is D. minutus. |
|||
Nom. nov |
Ceccolini & Cianferoni |
Ordovician |
A replacement name for Blastocystis Jaekel (1918). Sałamatin & Kaczmarek (2022) coined a replacement name Astroblastocystis for the same genus.[27] |
|||||
Nom. nov |
In press |
Ceccolini & Cianferoni |
Devonian |
A replacement name for Hymenosoma Lehmann (1957). |
||||
Gen. et sp. nov |
Valid |
Park & Lee |
Ordovician (Darriwilian) |
Jigunsan Formation |
A camerate crinoid belonging to the group Diplobathrida and the family Rhodocrinitidae. Genus includes new species G. pentagrammos. |
|||
Sp. nov |
Schlüter et al. |
Late Cretaceous (Santonian) |
A sea urchin belonging to the family Micrasteridae. |
|||||
Nom. nov |
In press |
Ceccolini & Cianferoni |
Carboniferous |
A replacement name for Cycloscapus Moore & Jeffords (1968). |
||||
Sp. nov |
In press |
Gale |
Late Cretaceous (Cenomanian) |
Aït Lamine Formation |
A crinoid belonging to the family Roveacrinidae. |
|||
Roveacrinus precarinatus[25] |
Sp. nov |
In press |
Gale |
Late Cretaceous (Cenomanian) |
Chalk Group |
A crinoid belonging to the family Roveacrinidae. |
||
Gen. et sp. nov |
Poatskievick Pierezan, Gale & Fauth |
Early Cretaceous (Aptian–Albian) |
Sergipe-Alagoas Basin |
A crinoid belonging to the family Roveacrinidae. Genus includes new species S. reticulatus. |
||||
Sp. nov |
In press |
Ishida et al. |
Pliocene |
Hatsuzaki Formation |
A brittle star. |
|||
Sp. nov |
In press |
Gale |
Late Cretaceous (Cenomanian) |
Chalk Group |
A crinoid belonging to the family Roveacrinidae. |
|||
Gen. et sp. nov |
Ishida et al. |
Late Triassic (Carnian) |
A brittle star belonging to the group Ophioleucida. Genus includes new species T. meensis. Published online in 2022, but the issue date is listed as April 2023.[31] |
Echinoderm research
- Thuy et al. (2023) report the discovery of an assemblage of brittle star microfossils from Carboniferous deep-water sediments of Oklahoma (United States), including fossils of basal representatives of Amphilepidida and Ophioscolecida, and interpret this finding as indicating that a significant part of the early diversification of the brittle star crown group might have taken place in deep-water settings.[32]
Hemichordates
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
In press |
Maletz |
Silurian |
A graptolite belonging to the family Retiolitidae. |
||||
Gothograptus osgaleae[33] |
Sp. nov |
In press |
Maletz |
Silurian |
A graptolite belonging to the family Retiolitidae. |
|||
Sp. nov |
In press |
Maletz |
Silurian |
A graptolite belonging to the family Retiolitidae. |
Hemichordate research
- Lopez et al. (2023) describe graptolite fossil material from the Silurian Rinconada Formation (Argentina), representing the first Pridolian graptolite assemblage from South America reported to date, and possibly providing evidence of faunal recovery interval after the Kozlowskii-Lau Event.[34]
Conodonts
New conodont taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Albanesi et al. |
Ordovician (Darriwilian) |
Santa Gertrudis Formation |
|||||
Sp. nov |
Albanesi et al. |
Ordovician (Darriwilian) |
Santa Gertrudis Formation |
|||||
Gen. et sp. nov |
Albanesi et al. |
Ordovician (Darriwilian) |
Santa Gertrudis Formation |
Genus includes new species G. elegantissimus. |
||||
Sp. nov |
Chen et al. |
|||||||
Ssp. nov |
Valid |
Lu in Lu et al. |
Devonian (Lochkovian) |
Nahkaoling Formation |
||||
Gen. et comb. nov |
Zhen |
Ordovician |
Genus erected to substitute Texania Pohler (1994), which is a junior homonym of Texania Casey (1909). Includes species previously assigned to the genus Texania, as well as species previously assigned to the genus Fahraeusodus other than F. adentatus. |
|||||
Gen. et 2 sp. nov |
Albanesi et al. |
Ordovician (Darriwilian) |
Santa Gertrudis Formation |
Genus includes new species P. cactus and P. spinatus. |
||||
Sp. nov |
Albanesi et al. |
Ordovician (Darriwilian) |
Santa Gertrudis Formation |
|||||
Sp. nov |
Valid |
Lu in Lu et al. |
Devonian (Lochkovian) |
Nahkaoling Formation |
Conodont research
- Evidence indicating that co-occurring Late Triassic conodonts Metapolygnathus communisti and Epigondolella rigoi differed in their diets is presented by Kelz et al. (2023).[39]
- A study on the diversity and biostratigraphy of late Norian conodont faunas from the Dashuitang and Nanshuba formations in the Baoshan area (Yunnan, China) is published by Zeng et al. (2023), who report evidence of a decline of conodont diversity during the late Norian, interpreted by the authors as the first crisis of the protracted suite of end-Triassic conodont extinctions.[40]
Fish
Amphibians
New amphibian taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Compsocerops tikiensis[41] | Sp. nov. | Chakravorti & Sengupta | Late Triassic | Tiki Formation | India | A member of Chigutisauridae. | ||
Funcusvermis[42] | Gen. et sp. nov. | Valid | Kligman et al. | Late Triassic (Norian) | Chinle Formation | United States ( Arizona) | A stem-caecilian. The type species is F. gilmorei. | |
Gen. et sp. nov |
Valid |
Zhang et al. |
Early Cretaceous |
A frog, possibly a basal member of Lalagobatrachia. The type species is G. qilianensis. |
Amphibian research
- Groenewald et al. (2023) describe body impressions and associated swim trails of rhinesuchid temnospondyls from the Permian Karoo Basin (South Africa), providing evidence that rhinesuchids used their tails for propulsion and held their legs tucked in next to the body while swimming.[44]
- A study comparing the probable maximum sizes that could be reached by specimens belonging to the Early Triassic temnospondyl taxa from Eastern Europe is published by Morkovin (2023), who reports the discovery of an unusually large lower jaw of Vladlenosaurus alexeyevi from the Skoba locality (Komi Republic, Russia), and argues that the size differences characteristic of the standard adult states of the studied temnospondyl taxa were likely reduced in individuals belonging to very late age categories.[45]
- A study on the histology of large temnospondyl humeri from the Late Triassic Krasiejów site (Poland) is published by Teschner et al. (2023), who report that the humeri of Cyclotosaurus intermedius and Metoposaurus krasiejowensis might show only minor differences in morphology, making histology a valuable tool for taxonomic assignment.[46]
- Review of the fossil record of the genus Mioproteus in Southeastern Europe is published by Syromyatnikova (2023).[47]
- Lemierre et al. (2023) describe a skeleton of a member of the genus Pelophylax from the lowest Oligocene of Chartres-de-Bretagne (western France), representing one of the oldest occurrences of the genus reported to date.[48]
- Bazzana-Adams et al. (2023) reconstruct the first virtual cranial endocast of Seymouria.[49]
- Bulanov (2023) reinterprets putative bolosaurid "Bolosaurus" traati as a diadectomorph, transfers it to the genus Stephanospondylus, and considers Ambedus to be a non-diadectomorph tetrapod of uncertain affinities.[50]
Reptiles
Synapsids
Non-mammalian synapsids
New synapsid taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Suchkova, Golubev & Shumov |
Permian |
A therocephalian. The type species is K. grechovi. Published online in 2023, but the issue date is listed as December 2022.[51] |
||||
Gen. et sp. nov |
Valid |
Mann et al. |
Carboniferous (Moscovian) |
Allegheny Group |
A member of the family Edaphosauridae. The type species is M. hovaneci. |
Synapsid research
- Calábková et al. (2023) describe tracks assignable to the ichnogenus Dimetropus and produced by "pelycosaur"-grade synapsids from the Permian (Asselian) Padochov and Letovice formations (Boskovice Basin, Czech Republic), including a specimen with preserved skin impressions, and providing new information on the diversity of the earliest Permian equatorial tetrapod faunas.[53]
- Maho, Bevitt & Reisz (2023) describe fossil material of Varanops brevirostris from the Dolese Brother Limestone Quarry (Oklahoma, United States), confirming the presence of this taxon at Richards Spur, and interpret this finding as indicating that, although less abundant than Cacops and Acheloma, V. brevirostris was not as rare taxon as previously thought.[54]
- Gônet et al. (2023) present a model which can be used to determine posture from humeral parameters in extant mammals, and use it to infer a sprawling posture for Dimetrodon natalis.[55]
- Bazzana-Adams, Evans & Reisz (2023) describe the brain and inner ear of Dimetrodon loomisi, and interpret their findings as indicating that Dimetrodon was sensitive to a greater range of frequencies beyond the ultra-low-frequency ground-borne sounds anticipated in previous estimates.[56]
- Partial humerus of a synapsid of uncertain affinities, with anatomical traits blurring the distinction between the "pelycosaur"-grade synapsids and therapsids, is described from the Permian (Capitanian) Main Karoo Basin (South Africa) by Bishop et al. (2023).[57]
- Redescription of the holotype of Nythosaurus larvatus is published by Pusch et al. (2023), who interpret N. larvatus as a taxon distinct from Thrinaxodon liorhinus.[58]
- Stefanello et al. (2023) describe a new, complete and exceptionally well-preserved skull of Prozostrodon brasiliensis from the Upper Triassic strata in Brazil, a name a new endemic clade of South American cynodonts – Prozostrodontidae, including Prozostrodon and Pseudotherium.[59]
- A study on the endocranial anatomy of Prozostrodon brasiliensis and Therioherpeton cargnini is published by Kerber et al. (2023).[60]
- A study on the evolution of cynodont skulls is published by Lautenschlager et al. (2023), who find no evindence for an increase in cranial strength and biomechanical performance during the cynodont–mammalian transition.[61]
Mammals
Other animals
Other new animal taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Sánchez-Beristain, Rodrigo & Schlagintweit |
Early Cretaceous (Aptian-Albian) |
Tuburan Limestone |
A chaetetid demosponge. |
|||
Gen. et sp. nov |
Valid |
Goñi et al. |
Erkhelnuur Formation |
A palaeoscolecid. The type species is F. egiinensis. |
||||
Gen. et sp. nov |
Valid |
Zhao, Li & Selden |
Wulongqing Formation |
A polychaete. The type species is G. bifurcus. |
||||
Gen. et sp. nov |
Zhang & Smith in Zhang, Smith & Ren |
Cambrian Stage 3 |
Yu'anshan Formation |
Probably an annelid belonging to the group Sedentaria, related to the families Flabelligeridae and Acrocirridae. The type species is I. chengjiangensis. The name was used in earlier publications, but the taxon wasn't formally described before 2023.[65] |
||||
Sp. nov |
In press |
Świerczewska-Gładysz & Jurkowska |
Late Cretaceous (Campanian) |
A demosponge belonging to the family Phymatellidae. |
||||
Gen. et sp. nov |
Valid |
Pronzato & Manconi in Samant et al. |
Late Cretaceous–Paleocene |
Naskal intertrappean beds |
A demosponge belonging to the family Palaeospongillidae. The type species is L. antiqua Manconi & Samant. |
|||
Gen. et sp. nov |
Valid |
Wierzbowski & Błażejowski |
Devionian (Famennian) |
A member of Chaetognatha of uncertain affinities. The type species is P. polonicus. |
||||
Gen. et sp. nov |
In press |
Skompski et al. |
Silurian |
A graptolite-like form of uncertain affinities. The type species is P. algaeoides. |
||||
Gen. et sp. nov |
Kimmig et al. |
Cambrian (Wuliuan) |
A polychaete. The type species is S. shurikeni. |
|||||
Gen. et sp. nov |
Valid |
Cambrian (Wuliuan) |
Burgess Shale |
A polychaete. The type species is U. comosa. |
Other animal research
- A study aiming to test the hypothesized feeding modes of Pectinifrons abyssalis is published by Darroch et al. (2023), who interpret their findings as supporting neither a suspension feeding or osmotrophic feeding habit, and indicating that rangeomorph fronds were organs adapted for oxygen uptake and gas exchange, rather than feeding.[72]
- Purported fossil material of Dickinsonia reported from the Bhimbetka rock shelters in rocks of the Maihar Sandstone (India)[73] is reinterpreted as an impression resulting from decay of a modern beehive by Meert et al. (2023).[74]
- A study aiming to assess the validity of species distinctions in the genus Dickinsonia is published by Evans et al. (2023), who interpret their findings as indicative of the presence of two distinct species from South Australia, D. costata and D. tenuis.[75]
- New information on the body plan of Dickinsonia, based on data from the fossil material from the southeastern White Sea area (Russia), is presented by Ivantsov & Zakrevskaya (2023), who interpret the anatomy of Dickinsonia as indicative of its affinity to the urbilaterian.[76]
- Wu, Pisani & Donoghue (2023) study the interrelationship between main groups of Panarthropoda, attempting to determine whether morphological datasets from the studies of extant and fossil panarthropod relationships published by Legg, Sutton & Edgecombe (2013),[77] Yang et al. (2016)[78] and Aria, Zhao & Zhu (2021)[79] can discriminate statistically between competing Tactopoda, Lobopodia and Protarthopoda hypotheses, and question the accuracy of morphology-based phylogenies of Panarthropoda that include fossil species.[80]
- Redescription of the holotype of Chamasaurus dolichognathus is published by Jenkins, Meyer & Bhullar (2023).[81]
- A study on the anatomy and affinities of Tullimonstrum gregarium is published by Mikami et al. (2023), who interpret T. gregarium as more likely to be a non-vertebrate chordate or a protostome than a vertebrate.[82]
Other organisms
Other new organisms
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Wang et al. |
Devonian (?Pragian-Emsian) |
Cangwu Formation |
A member of Arcellinida of uncertain affinities. The type species is C. ampulliformis. |
||||
Gen. et sp. nov |
In press |
Tang et al. |
Xiamaling Formation |
An organism with similarities to cyanobacteria. The type species is X. sideria. |
Other organism research
- Li et al. (2023) describe new fossil material of Horodyskia from the Tonian Shiwangzhuang and Jiuliqiao formations (China), and reconstruct Horodyskia as a colonial organism composed of a chain of organic-walled vesicles that likely represent multinucleated cells of early eukaryotes.[85]
- A study on the Cretaceous benthic foraminiferal assemblages from the Western Interior Seaway is published by Bryant, Meehan & Belanger (2023), who find no genera, guilds or morphotypes unique to cold seeps, and find assemblages from cold seeps to be overall more similar to offshore assemblages than nearshore ones, but also report that the composition of the studied assemblages did reflect the environmental differences present at seeps.[86]
- A study on the fossil record of the planktonic foraminifera, interpreted as indicating that a modern-style latitudinal diversity gradient for these foraminifera arose only 15 million years ago, is published by Fenton et al. (2023).[87]
- A study on the geographical distribution of the ecological and morphological groups of fossil planktonic foraminifera, interpreted as indicative of a global shift towards the Equator over the past 8 million years in response to the late Cenozoic temperature changes related to the polar ice sheet formation, is published by Woodhouse et al. (2023).[88]
- Fonseca et al. (2023) describe possible fossil material of choanoflagellates from the Upper Cretaceous (Cenomanian–Turonian) Capas Blancas Formation (Spain), representing the first putative occurrence of choanoflagellates in the fossil record reported to date.[89]
History of life in general
- Li et al. (2023) compare the lamello-fibrillar nacre and similar fibrous microstructures in Early Cambrian molluscs and hyoliths from the Zavkhan Basin (Mongolia) and in extant coleoid cuttlebones and serpulid tubes, report differences in shell microstructures of the studied lophotrochozoan groups, and interpret their findings as indicative of prevalence of calcitic shells in the Terreneuvian.[90]
- A study aiming to identify the biases affecting the knowledge of the biodiversity during the Cambrian and Ordovician is published by Du et al. (2023), who interpret the significant decline in known biodiversity during Furongian interval as influenced by temporal, geographic, taxonomic and lithological biases, hindering the understanding of the real biodiversity changes in this interval.[91]
- Francischini et al. (2023) describe straight, curved and quasi-helical burrows from the Permo-Triassic Buena Vista Formation (Brazil), similar to burrows reported from the Karoo Basin of South Africa, and interpret the studied burrows as likely produced by synapsids and/or procolophonians living in a desert environment, representing the oldest unambiguous record of tetrapod dwelling structures in such an environment.[92]
- A study on the impact of the Permian–Triassic extinction event on the marine ecosystems is published by Huang et al. (2023), who find that the first extinction phase resulted in the loss of more than half of taxonomic diversity but only a slight decrease of community stability, which subsequently decreased significantly in the second extinction phase.[93]
- Dai et al. (2023) report the discovery of an exceptionally preserved Early Triassic (approximately 250.8 million years ago) fossil assemblage (the Guiyang biota) from the Daye Formation near Guiyang (China), providing evidence of the existence of a complex marine ecosystem shortly after the Permian–Triassic extinction event.[94]
- A study on the timing of Pleistocene megafaunal extinction in the high plains of Peru is published by Rozas-Davila, Rodbell & Bush (2023), who find that the collapse of megafaunal populations in high grasslands coincided with upticks in fire activity, which were likely associated with human activity.[95]
Other research
- Evidence from the Cryogenian Nantuo Formation (China), interpreted as indicating that habitable open ocean conditions providing refugia for eukaryotic organisms during the Marinoan glaciation extended into mid-latitude coastal oceans, is presented by Song et al. (2023).[96]
- A study on the stratigraphy of the Siberian Platform (Russia), and on its implications for the knowledge of the age of the fossils and timing of first appearances of late Ediacaran and early Cambrian organisms from the Siberian Platform (including anabaritids and cloudinids), is published by Bowyer et al. (2023).[97]
- Nolan et al. (2023) interpret Brooksella alternata as a likely pseudofossil, and the bulk of its characteristics as consistent with concretions.[98]
- A study on the preservation of chemical information in the fossils from the Devonian Rhynie chert (United Kingdom) is published by Loron et al. (2023), who report that differences between prokaryotes and eukaryotes and between eukaryotic tissue types from the Rhynie chert assemblage can be identified based on the fossilization products of lipids, sugar and protein.[99]
- A study on the geochemistry of the Bakken Formation, interpreted as indicative of stepwise transgressions of toxic euxinic waters into the shallow oceans that drove a series of Late Devonian extinction events, is published by Sahoo et al. (2023).[100]
- Evidence from mercury concentrations and isotopes from terrestrial sections from the Sydney Basin (Australia) and Karoo Basin (South Africa), interpreted as indicative of global volcanic effects of the Siberian Traps during the Permian-Triassic transition, is presented by Shen et al. (2023).[101]
- Evidence from concentrations of UV-B–absorbing compounds in the exine of fossil pollen from the Qubu section in southern Tibet (China), interpreted as consistent with increased UV-B radiation during the Permian–Triassic extinction event, is presented by Liu et al. (2023).[102]
- A study on the Cenomanian–Turonian benthic foraminiferal assemblages from the Western Interior Seaway is published by Bryant & Belanger (2023), who report that the interval of increased density and diversity of benthic foraminifera known as the Benthonic Zone is not a reliable biostratigraphic marker for the onset of the Oceanic Anoxic Event 2 in the Western Interior Seaway, and that different samples of the Benthonic Zone don't reflect basin-wide changes in oxygenation.[103]
- Evidence from two sites offshore of southwest Australia, interpreted as indicative of ocean acidification at the onset of Oceanic Anoxic Event 2 which was linked to the onset of volcanic activity, and which persisted for approximately 600,000 years due to biogeochemical feedbacks, is presented by Jones et al. (2023).[104]
- A study on the history of the Eocene waterbody within the Giraffe Pipe crater (Northwest Territories, Canada), inferred from changes in the fossil record of microorganisms, is published by Siver & Lott (2023), who interpret their findings as indicative of the presence of a series of successive shallow environments, each correlated with changes in lakewater chemistry.[105]
Paleoclimate
- Evidence from seawater osmium isotope data from Pacific Ocean sediments, interpreted as indicating that enhanced magmatism could have played a dominant role in causing the Miocene Climatic Optimum, is presented by Goto et al. (2023).[106]
- Wen et al. (2023) present a new land surface temperature record from the Chinese Loess Plateau in East Asia, interpreting it as indicative of late Miocene cooling and aridification that occurred synchronously with ocean cooling, highlighting a global climate forcing mechanism.[107]
References
- ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
- ^ Retallack, G. J. (2023). "Why was there a Neoproterozoic Snowball Earth?". Precambrian Research. 385. 106952. doi:10.1016/j.precamres.2022.106952. S2CID 255647705.
- ^ Krings, M.; Harper, C. J. (2023). "A fungal mycelium containing abundant endoconidia from the Lower Devonian Rhynie cherts of Scotland". Review of Palaeobotany and Palynology. 313. 104891. doi:10.1016/j.revpalbo.2023.104891. S2CID 257907523.
- ^ Song, Z.; Guo, J.; Han, J.; Van Iten, H.; Qiang, Y.; Peng, J.; Sun, J.; Zheng, Y.; Huang, X.; Zhang, Z. (2023). "A new species of Decimoconularia (Cnidaria, Medusozoa) from the Lower Cambrian of South China". Frontiers in Earth Science. 10. 1048800. doi:10.3389/feart.2022.1048800.
- ^ Qu, H.; Li, K.; Ou, Q. (2023). "Thecate stem medusozoans (Cnidaria) from the early Cambrian Chengjiang biota". Palaeontology. 66 (1). e12636. doi:10.1111/pala.12636. S2CID 256562444.
- ^ Hachour, K.; Hamdidouche, R.; Dahoumane, A.; Goucem, A. (2023). "A new triradial species from the Neoproterozoic formations of the Chenachene region, north-east of the Taoudeni basin (south-western Algeria)". Journal of African Earth Sciences. 202. 104934. doi:10.1016/j.jafrearsci.2023.104934. S2CID 258069573.
- ^ Sendino, C.; Clark, B.; Morandini, A. C.; Salge, T.; Lowe, M.; Rushlau, W. (2023). "Internal conulariid structures unveiled using µCT". PalZ. doi:10.1007/s12542-023-00649-7. S2CID 257873488.
- ^ Zhao, Y.; Parry, L. A.; Vinther, J.; Dunn, F. S.; Li, Y.-J.; Wei, F.; Hou, X.-G.; Cong, P.-Y. (2023). "An early Cambrian polyp reveals a potential anemone-like ancestor for medusozoan cnidarians". Palaeontology. 66 (1). e12637. doi:10.1111/pala.12637. S2CID 256752700.
- ^ Zhang, Y.; Liu, Y.; Shao, T.; Qin, J. (2023). "New Qinscyphus material from the Fortunian of South China". Frontiers in Earth Science. 11. 1038686. doi:10.3389/feart.2023.1038686.
- ^ Plotnick, R. E.; Young, G. A.; Hagadorn, J. W. (2023). "An abundant sea anemone from the Carboniferous Mazon Creek Lagerstӓtte, USA". Papers in Palaeontology. 9 (2). e1479. doi:10.1002/spp2.1479. S2CID 257447889.
- ^ a b Arakawa, S. (2022). "Iodictyum akaishiensis sp. nov.: A New Miocene Phidoloporid (Bryozoa, Cheilostomata) from the Moniwa Formation, Sendai, Japan". Paleontological Research. 27 (1): 25–33. doi:10.2517/PR200041. S2CID 252684206.
- ^ López-Gappa, J.; Pérez, L. M. (2023). "Species of the genus Melicerita Milne Edwards (Bryozoa, Cheilostomatida) in the Early Miocene of Patagonia (Argentina)". Publicación Electrónica de la Asociación Paleontológica Argentina. 23 (1): 49–60. doi:10.5710/PEAPA.15.02.2023.448. S2CID 257933615.
- ^ a b c d Arakawa, S. (2023). "Five Species of Microporina (Bryozoa, Cheilostomata) from the Pleistocene Setana Formation at Kuromatsunai, Hokkaido, Japan". Paleontological Research. 27 (3): 245–260. doi:10.2517/PR210017. S2CID 255441175.
- ^ Ernst, A. (2023). "New trepostome bryozoan genus from the Estonian Kukersite". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 307 (3): 249–259. doi:10.1127/njgpa/2023/1124.
- ^ Yang, J.; Lan, T.; Zhang, X.; Smith, M. R. (2023). "Protomelission is an early dasyclad alga and not a Cambrian bryozoan". Nature. 615 (7952): 468–471. doi:10.1038/s41586-023-05775-5. PMID 36890226. S2CID 257425218.
- ^ a b c Wang, Y.; Zhan, R.-B.; Luan, X.-C.; Zhang, Y.-C.; Wei, X. (2023). "Middle–Late Ordovician brachiopods from Ningnan, southern Sichuan Province, Southwest China: Implications for macroevolution and palaeogeography". Palaeoworld. doi:10.1016/j.palwor.2023.02.007. S2CID 257372057.
- ^ Lavié, F. J.; Benedetto, J. L. (2023). "Lower Tremadocian (Ordovician) lingulate brachiopods from the Central Andean Basin (NW Argentina) and their biogeographical links". Bulletin of Geosciences. 98 (1): 79–93. doi:10.3140/bull.geosci.1866.
- ^ Berrocal-Casero, M.; Baeza-Carratalá, J. F.; García Joral, F. (2023). "A new asymmetric rhynchonellide from the Cretaceous of the Eastern Prebetic (Southeastern Spain)". Spanish Journal of Palaeontology. 38 (1). doi:10.7203/sjp.26294. S2CID 257830348.
- ^ a b c Wu, H.; Zhang, Y.; Chen, A.; Stubbs, T. L. (2023). "A Highly Diverse Olenekian Brachiopod Fauna from the Nanpanjiang Basin, South China, and Its Implications for the Early Triassic Biotic Recovery". Biology. 12 (4). 622. doi:10.3390/biology12040622.
- ^ Oh, Y.; Lee, S.; Park, T.-Y. S.; Lee, D.-C. (2023). "Middle Ordovician (middle Darriwilian) Dirafinesquina and Jigunsania gen. nov. (Rafinesquinidae; Strophomenoidea; Brachiopoda) from South Korea, with discussion of rafinesquinid evolution". Geosciences Journal. doi:10.1007/s12303-022-0034-x. S2CID 257047216.
- ^ Lee, S.; Shi, G. R.; Runnegar, B.; Waterhouse, J. B. (2023). "Kungurian (Cisuralian/Early Permian) brachiopods from the Snapper Point Formation, southern Sydney Basin, southeastern Australia". Alcheringa: An Australasian Journal of Palaeontology: 1–42. doi:10.1080/03115518.2022.2151045. S2CID 256076332.
- ^ Zamora, S.; Wright, D. F.; Nohejlová, M. (2023). "Phylogenetic position of Bohemiacinctus gen. nov. (Echinodermata, Cincta) from the Cambrian of Bohemia: implications for macroevolution and the role of taxon sampling in palaeobiological systematics". Papers in Palaeontology. 9 (1). e1482. doi:10.1002/spp2.1482. S2CID 257103950.
- ^ a b Schlüter, N.; Wiese, F.; Díaz-Isa, M.; Püttmann, T.; Walaszczyk, I. (2023). "Santonian (Late Cretaceous) echinoids from the Santander area (northern Cantabria, Spain)". Cretaceous Research. 147. 105477. doi:10.1016/j.cretres.2023.105477. S2CID 256266646.
- ^ Saucède, T.; Smith, C.; Olivier, N.; Durlet, C.; Gueriau, P.; Thoury, M.; Fara, E.; Escarguel, G.; Brayard, A. (2023). "A new Early Triassic crinoid from Nevada questions the origin and palaeobiogeographical history of dadocrinids". Acta Palaeontologica Polonica. 68 (1): 155–166. doi:10.4202/app.01042.2022. S2CID 257122690.
- ^ a b c d e Gale, A. S. (2023). "Microcrinoids (Roveacrinidae) from the middle–upper Cenomanian Grey Chalk Subgroup, Dover (Kent, United Kingdom): biostratigraphy and re-evaluation of cup structure in roveacrinids". Acta Geologica Polonica. doi:10.24425/agp.2022.143598.
- ^ a b c Ceccolini, F.; Cianferoni, F. (2023). "New Replacement Names in Fossil Echinoderms (Echinodermata)". Paleontological Research. 27 (4): 379–382. doi:10.2517/PR210029. S2CID 257430558.
- ^ Sałamatin, R.; Kaczmarek, A. (2022). "Astroblastocystis nom. nov. – a new replacement name for Blastocystis Jaekel, 1918 (Echinodermata, Parablastoidea)". Annals of Parasitology. 68 (1): 195–196. doi:10.17420/ap6801.425. PMID 35503892.
- ^ Park, H.; Lee, D.-C. (2023). "Goryeocrinus pentagrammos n. gen. n. sp. (Rhodocrinitidae; Diplobathrida), the first record of camerate crinoid from the Middle Ordovician (Darriwilian) of South Korea (East Gondwana)". Journal of Paleontology. 97 (2): 386–394. doi:10.1017/jpa.2022.100. S2CID 256144911.
- ^ Poatskievick Pierezan, B.; Gale, A. S.; Fauth, G. (2023). "A new microcrinoid (Roveacrinidae) from the Aptian–Albian of the Sergipe-Alagoas Basin, northeastern Brazil". Cretaceous Research. 145. 105482. doi:10.1016/j.cretres.2023.105482. S2CID 256442721.
- ^ Ishida, Y.; Tagiri, M.; Kato, T.; Tsunoda, S.; Nakajima, Y.; Thuy, B.; Numberger-Thuy, L. D.; Fujita, T. (2023). "The New Brittle-Star Species Stegophiura takaisoensis (Echinodermata, Ophiuroidea) from the Pliocene of Ibaraki Prefecture, Central Japan". Paleontological Research. 28 (1): 82–96. doi:10.2517/PR220028.
- ^ a b Ishida, Y.; Trinh, H. T.; Thuy, B.; Numberger-Thuy, L. D.; Komatsu, T.; Doan, H. D.; Nguyen, M. T.; Shigeta, Y.; Fujita, T. (2022). "A New Genus and Species of Brittle Star (Ophiuroidea: Ophioleucida) from the Upper Triassic (Carnian) of Northern Vietnam". Paleontological Research. 27 (2): 147–159. doi:10.2517/PR210014. S2CID 253354589.
- ^ Thuy, B.; Knox, L.; Numberger-Thuy, L. D.; Smith, N. S.; Sumrall, C. D. (2023). "Ancient deep ocean as a harbor of biotic innovation revealed by Carboniferous ophiuroid microfossils". Geology. doi:10.1130/G50596.1.
- ^ a b c Maletz, J. (2023). "Retiolitid graptolites from the collection of Hermann Jaeger III. Paraplectograptus, Gothograptus and their relatives". PalZ. doi:10.1007/s12542-022-00646-2. S2CID 256880454.
- ^ Lopez, F. E.; Kaufmann, C.; Drovandi, J. M.; Conde, O. A.; Braeckman, A. R.; Arnol, J. A.; Estrada, L.; Pedernera, F.; Abarca, U. (2023). "First record of Pridolian graptolites from South America: biostratigraphic and paleogeographic remarks". Gondwana Research. 119: 246–261. doi:10.1016/j.gr.2023.03.026. S2CID 258046676.
- ^ a b c d e Albanesi, G. L.; Rubén Monaldi, C.; Barnes, C. R.; Zeballo, F. J.; Ortega, G. (2023). "An endemic conodont fauna of Darriwilian (Middle Ordovician) age from the Santa Gertrudis Formation, southwestern Gondwanan margin and its paleobiogeographic relationships". Marine Micropaleontology. 102241. doi:10.1016/j.marmicro.2023.102241. S2CID 257863952.
- ^ Chen, A.; Zhang, Y.; Golding, M. L.; Wu, H.; Liu, J. (2023). "Upper Changhsingian to lower Anisian conodont biostratigraphy of the Datuguan section, Nanpanjiang Basin, South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 616. 111470. doi:10.1016/j.palaeo.2023.111470.
- ^ a b Lu, J.-F.; Guo, W.; Wang, Y.; Xu, H.-H. (2023). "The first discovery of Lochkovian (Lower Devonian) conodonts in central Guangxi, South China and its geological implications". Journal of Paleontology. 97 (2): 421–433. doi:10.1017/jpa.2023.2. S2CID 256928406.
- ^ Zhen, Y. Y. (2023). "Revision of the Ordovician conodont species Fahraeusodus adentatus and the new genus Pohlerodus". Alcheringa: An Australasian Journal of Palaeontology: 1–13. doi:10.1080/03115518.2023.2172210. S2CID 257189945.
- ^ Kelz, V.; Guenser, P.; Rigo, M.; Jarochowska, E. (2023). "Growth allometry and dental topography in Upper Triassic conodonts support trophic differentiation and molar-like element function". Paleobiology: 1–19. doi:10.1017/pab.2023.8.
- ^ Zeng, W.; Jiang, H.; Chen, Y.; Ogg, J.; Zhang, M.; Dong, H. (2023). "Upper Norian conodonts from the Baoshan block, western Yunnan, southwestern China, and implications for conodont turnover". PeerJ. 11. e14517. doi:10.7717/peerj.14517. PMC 9854380. PMID 36684668.
- ^ Chakravorti, Sanjukta; Sengupta, Dhurjati Prasad (2023-03-06). "The first record of chigutisaurid amphibian from the Late Triassic Tiki Formation and the probable Carnian pluvial episode in central India". PeerJ. 11: e14865. doi:10.7717/peerj.14865. ISSN 2167-8359. PMC 9997194. PMID 36908823.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Kligman, Ben T.; Gee, Bryan M.; Marsh, Adam D.; Nesbitt, Sterling J.; Smith, Matthew E.; Parker, William G.; Stocker, Michelle R. (2023-01-25). "Triassic stem caecilian supports dissorophoid origin of living amphibians". Nature. 614 (7946): 102–107. doi:10.1038/s41586-022-05646-5. ISSN 1476-4687. PMC 9892002. PMID 36697827.
- ^ Zhang, J.; Dong, L.; Du, B.; Li, A.; Lei, X.; Zhang, M.; Wang, S.; Ma, G.; Hui, J. (2023). "First fossil evidence for a new frog from the Early Cretaceous of the Jiuquan Basin, Gansu Province, north-western China". Journal of Systematic Palaeontology. 21 (1). 2183146. doi:10.1080/14772019.2023.2183146. S2CID 257647888.
- ^ Groenewald, D. P.; Krüger, A.; Day, M. O.; Penn-Clarke, C. R.; Hancox, P. J.; Rubidge, B. S. (2023). "Unique trackway on Permian Karoo shoreline provides evidence of temnospondyl locomotory behaviour". PLOS ONE. 18 (3). e0282354. doi:10.1371/journal.pone.0282354. PMC 10057796. PMID 36989249.
- ^ Morkovin, B. I. (2023). "Incomplete Large Lower Jaw of Vladlenosaurus alexeyevi from the Lower Triassic of the Luza River (Komi Republic, Russia) and Growth Features in Temnospondyl Amphibians". Paleontological Journal. 56 (11): 1482–1490. doi:10.1134/S0031030122110107. S2CID 256618570.
- ^ Teschner, E. M.; Garbay, L.; Janecki, P.; Konietzko-Meier, D. (2023). "Palaeohistology helps reveal taxonomic variability in exceptionally large temnospondyl humeri from the Upper Triassic of Krasiejów, SW Poland". Acta Palaeontologica Polonica. 68 (1): 63–74. doi:10.4202/app.01027.2022. S2CID 256865819.
- ^ Syromyatnikova, E. V. (2023). "Review of Records of Mioproteus (Caudata: Proteidae) from Southeastern Europe". Paleontological Journal. 56 (11): 1428–1436. doi:10.1134/S0031030122110193. S2CID 256618577.
- ^ Lemierre, A.; Gendry, D.; Poirier, M.-M.; Gillet, V.; Vullo, R. (2023). "The oldest articulated ranid from Europe: a Pelophylax specimen from the lowest Oligocene of Chartres-de-Bretagne (N.W. France)". Journal of Vertebrate Paleontology. e2191663. doi:10.1080/02724634.2023.2191663.
- ^ Bazzana-Adams, K. D.; Evans, D. C.; Bevitt, J. J.; Reisz, R. R. (2023). "Neurosensory anatomy and function in Seymouria". Journal of Morphology. 284 (5). e21577. doi:10.1002/jmor.21577. PMID 36921082. S2CID 257564333.
- ^ Bulanov, V. V. (2023). "The discovery of diadectomorph tetrapods in the Lower Permian of Eastern Europe". Paleontological Journal. 57 (2): 88–99.
- ^ a b Suchkova, Yu. A.; Golubev, V. K.; Shumov, I. S. (2022). "New Primitive Therocephalians from the Permian of Eastern Europe". Paleontological Journal. 56 (11): 1419–1427. doi:10.1134/S0031030122110181. S2CID 256618344.
- ^ Mann, A.; Henrici, A. C.; Sues, H.-D.; Pierce, S. E. (2023). "A new Carboniferous edaphosaurid and the origin of herbivory in mammal forerunners". Scientific Reports. 13 (1). 4459. doi:10.1038/s41598-023-30626-8. PMC 10076360. PMID 37019927.
- ^ Calábková, G.; Březina, J.; Nosek, V.; Madzia, D. (2023). "Synapsid tracks with skin impressions illuminate the terrestrial tetrapod diversity in the earliest Permian of equatorial Pangea". Scientific Reports. 13 (1). 1130. doi:10.1038/s41598-023-27939-z. PMC 9860047. PMID 36670191.
- ^ Maho, T.; Bevitt, J. J.; Reisz, R. R. (2023). "New specimens of the early Permian apex predator Varanops brevirostris at Richards Spur, Oklahoma, with histological information about its growth pattern". PeerJ. 11. e14898. doi:10.7717/peerj.14898. PMC 9938655. PMID 36819993.
- ^ Gônet, J.; Bardin, J.; Girondot, M.; Hutchinson, J. R.; Laurin, M. (2023). "Unravelling the postural diversity of mammals: Contribution of humeral cross-sections to palaeobiological inferences". Journal of Mammalian Evolution. doi:10.1007/s10914-023-09652-w. S2CID 256788973.
- ^ Bazzana-Adams, K. D.; Evans, D. C.; Reisz, R. R. (2023). "Neurosensory anatomy and function in Dimetrodon, the first terrestrial apex predator". iScience. 26 (4): 106473. doi:10.1016/j.isci.2023.106473. PMC 10122045. S2CID 257678720.
- ^ Bishop, P. J.; Norton, L. A.; Jirah, S.; Day, M. O.; Rubidge, B. S.; Pierce, S. E. (2023). "Enigmatic humerus from the mid-Permian of South Africa bridges the anatomical gap between "pelycosaurs" and therapsids". Journal of Vertebrate Paleontology. e2170805. doi:10.1080/02724634.2023.2170805. S2CID 257338054.
- ^ Pusch, L. C.; Kammerer, C. F.; Fernandez, V.; Fröbisch, J. (2023). "Cranial anatomy of Nythosaurus larvatus Owen, 1876, an Early Triassic cynodont preserving a natural endocast". Journal of Vertebrate Paleontology. e2174441. doi:10.1080/02724634.2023.2174441. S2CID 257419409.
- ^ Stefanello, M.; Martinelli, A. G.; Müller, R. T.; Dias-da-Silva, S.; Kerber, L. (2023). "A complete skull of a stem mammal from the Late Triassic of Brazil illuminates the early evolution of prozostrodontian cynodonts". Journal of Mammalian Evolution. doi:10.1007/s10914-022-09648-y. S2CID 256452176.
- ^ Kerber, L.; Roese-Miron, L.; Bubadué, J. M.; Martinelli, A. G. (2023). "Endocranial anatomy of the early prozostrodonts (Eucynodontia: Probainognathia) and the neurosensory evolution of the mammalian forerunners". The Anatomical Record. doi:10.1002/ar.25215. PMID 37017195. S2CID 257954339.
- ^ Lautenschlager, S.; Fagan, M. J.; Luo, Z.-X.; Bird, C. M.; Gill, P.; Rayfield, E. J. (2023). "Functional reorganisation of the cranial skeleton during the cynodont–mammaliaform transition". Communications Biology. 6 (1). 367. doi:10.1038/s42003-023-04742-0. PMC 10097706. PMID 37046052.
- ^ Sánchez-Beristain, F.; Rodrigo, J.; Schlagintweit, F. (2023). "Acanthochaetetes reitneri nov. sp. (Porifera: Demospongiae) from the Lower Cretaceous (upper Aptian–lower Albian) Tuburan Limestone of Cebu Island (Philippines) and its stratigraphic and palaeobiogeographic implications". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 307 (1): 17–28. doi:10.1127/njgpa/2023/1109. S2CID 256750180.
- ^ Goñi, I.; Skovsted, C. B.; Li, L.; Li, G.; Betts, M. J.; Dorjnamjaa, D.; Altanshagai, G.; Enkhbaatar, B.; Topper, T. P. (2023). "New palaeoscolecid plates from the Cambrian Stage 3 of northern Mongolia". Acta Palaeontologica Polonica. 68 (1): 117–125. doi:10.4202/app.01030.2022. S2CID 256711586.
- ^ Zhao, J.; Li, Y.; Selden, P. A. (2023). "A new primitive polychaete with eyes from the lower Cambrian Guanshan biota of Yunnan Province, China". Frontiers in Ecology and Evolution. 11. 1128070. doi:10.3389/fevo.2023.1128070.
- ^ a b Zhang, Z.F.; Smith, M. R.; Ren, X.Y. (2023). "The Cambrian cirratuliform Iotuba denotes an early annelid radiation". Proceedings of the Royal Society B: Biological Sciences. 290 (1992). 20222014. doi:10.1098/rspb.2022.2014. PMC 9890102. PMID 36722078.
- ^ Świerczewska-Gładysz, E.; Jurkowska, A. (2023). "Taxonomy and palaeoecology of the Late Cretaceous (Campanian) Phymatellidae (lithistid demosponges) from the Miechów and Mogilno-Łódź synclinoria (southern and central Poland)". Annales Societatis Geologorum Poloniae. 93. doi:10.14241/asgp.2023.03. S2CID 257661001.
- ^ Samant, B.; Pronzato, R.; Mohabey, D. M.; Cubeddu, T.; Stocchino, G. A.; Jangale, K.; Thalal, P.; Dhobale, A.; Manconi, R. (2023). "The oldest birotule-bearing freshwater sponges from the Upper Cretaceous–lower Paleocene Deccan volcanic-associated sediments of India". Acta Palaeontologica Polonica. 68 (1): 167–174. doi:10.4202/app.01040.2022. S2CID 257481832.
- ^ Wierzbowski, H.; Błażejowski, B. (2023). "Chaetognath grasping spines from the Devonian of Poland: their structure and geochemistry". Acta Palaeontologica Polonica. 68 (1): 103–116. doi:10.4202/app.01012.2022. S2CID 257420288.
- ^ Skompski, S.; Kozłowska, A.; Kozłowski, W.; Łuczyński, P. (2023). "Coexistence of algae and a graptolite-like problematicum: a case study from the late Silurian of Podolia (Ukraine)". Acta Geologica Polonica. doi:10.24425/agp.2022.143599.
- ^ Kimmig, J.; LaVine, R. J.; Schiffbauer, J. D.; Egenhoff, S. O.; Shelton, K. L.; Leibach, W. W. (2023). "Annelids from the Cambrian (Wuliuan Stage, Miaolingian) Spence Shale Lagerstätte of northern Utah, USA". Historical Biology: An International Journal of Paleobiology: 1–10. doi:10.1080/08912963.2023.2196685. S2CID 258047711.
- ^ Osawa, H.; Caron, J.-B.; Gaines, R. R. (2023). "First record of growth patterns in a Cambrian annelid". Royal Society Open Science. 10 (4). 221400. doi:10.1098/rsos.221400.
- ^ Darroch, S. A. F.; Gutarra, S.; Masaki, H.; Olaru, A.; Gibson, B. M.; Dunn, F. S.; Mitchell, E. G.; Racicot, R. A.; Burzynski, G.; Rahman, I. A. (2023). "The rangeomorph Pectinifrons abyssalis: hydrodynamic function at the dawn of animal life". iScience. 26 (2): 105989. doi:10.1016/j.isci.2023.105989. PMC 9900436. PMID 36756377. S2CID 256179963.
- ^ Retallack, G. J.; Matthews, N. A.; Master, S.; Khangar, R. G.; Khan, M. (2020). "Dickinsonia discovered in India and late Ediacaran biogeography". Gondwana Research. 90: 165–170. doi:10.1016/j.gr.2020.11.008. S2CID 229451488.
- ^ Meert, J. G.; Pandit, M. K.; Kwafo, S.; Singha, A. (2023). "Stinging News: 'Dickinsonia' discovered in the Upper Vindhyan of India Not Worth the Buzz". Gondwana Research. 117: 1–7. Bibcode:2023GondR.117....1M. doi:10.1016/j.gr.2023.01.003. S2CID 255846878.
- ^ Evans, S. D.; Hunt, G.; Gehling, J. G.; Sperling, E. A.; Droser, M. L. (2023). "Species of Dickinsonia Sprigg from the Ediacaran of South Australia". Palaeontology. 66 (1). e12635. doi:10.1111/pala.12635. S2CID 256673621.
- ^ Ivantsov, A. Y.; Zakrevskaya, M. (2023). "Body plan of Dickinsonia, the oldest mobile animals". Earth and Environmental Science Transactions of the Royal Society of Edinburgh: 1–14. doi:10.1017/S175569102300004X. S2CID 257168449.
- ^ Legg, D. A.; Sutton, M. D.; Edgecombe, G. D. (2013). "Arthropod fossil data increase congruence of morphological and molecular phylogenies". Nature Communications. 4. 2485. Bibcode:2013NatCo...4.2485L. doi:10.1038/ncomms3485. PMID 24077329.
- ^ Yang, J.; Ortega-Hernández, J.; Butterfield, N. J.; Liu, Y.; Boyan, G. S.; Hou, J.; Lan, T.; Zhang, X. (2016). "Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda". Proceedings of the National Academy of Sciences of the United States of America. 113 (11): 2988–2993. Bibcode:2016PNAS..113.2988Y. doi:10.1073/pnas.1522434113. PMC 4801254. PMID 26933218.
- ^ Aria, C.; Zhao, F.; Zhu, M. (2021). "Fuxianhuiids are mandibulates and share affinities with total-group Myriapoda". Journal of the Geological Society. 178 (5): jgs2020-246. Bibcode:2021JGSoc.178..246A. doi:10.1144/jgs2020-246. S2CID 233952670.
- ^ Wu, R.; Pisani, D.; Donoghue, I. M. (2023). "The unbearable uncertainty of panarthropod relationships". Biology Letters. 19 (1). 20220497. doi:10.1098/rsbl.2022.0497. PMC 9832341. PMID 36628953.
- ^ Jenkins, K. M.; Meyer, D. L.; Bhullar, B.-A. S. (2023). "Lost and Found: Redescription of Chamasaurus dolichognathus Williston 1915 from the Permo-Carboniferous of New Mexico". Bulletin of the Peabody Museum of Natural History. 64 (1): 3–9. doi:10.3374/014.064.0101. S2CID 257755687.
- ^ Mikami, T.; Ikeda, T.; Muramiya, Y.; Hirasawa, T.; Iwasaki, W. (2023). "Three-dimensional anatomy of the Tully monster casts doubt on its presumed vertebrate affinities". Palaeontology. 66 (2). e12646. doi:10.1111/pala.12646.
- ^ Wang, K.; Xu, H.-H.; Liu, B.-C.; Bai, J.; Wang, Y.; Tang, P.; Lu, J.-F.; Wang, Y. (2023). "Shallow-marine testate amoebae with internal structures from the Lower Devonian of China". iScience: 106678. doi:10.1016/j.isci.2023.106678.
- ^ Tang, D.-J.; Shi, X.-Y.; Zhou, X.-Q.; Riding, R. (2023). "Mesoproterozoic biomineralization: Cyanobacterium-like filamentous siderite sheaths ∼1.4 Ga". Journal of Palaeogeography. doi:10.1016/j.jop.2023.03.006.
- ^ Li, G.; Chen, L.; Pang, K.; Tang, Q.; Wu, C.; Yuan, X.; Zhou, C.; Xiao, S. (2023). "Tonian carbonaceous compressions indicate that Horodyskia is one of the oldest multicellular and coenocytic macro-organisms". Communications Biology. 6 (1). 399. doi:10.1038/s42003-023-04740-2. PMC 10097871. PMID 37046079.
- ^ Bryant, R.; Meehan, K. C.; Belanger, C. L. (2023). "Are ancient seep environments distinguishable by benthic foraminiferal assemblages? A case study of the Cretaceous Western Interior Seaway". Cretaceous Research. 146. 105476. doi:10.1016/j.cretres.2023.105476. S2CID 256173904.
- ^ Fenton, I. S.; Aze, T.; Farnsworth, A.; Valdes, P.; Saupe, E. E. (2023). "Origination of the modern-style diversity gradient 15 million years ago". Nature. 614 (7949): 708–712. doi:10.1038/s41586-023-05712-6. PMID 36792825. S2CID 256899993.
- ^ Woodhouse, A.; Swain, A.; Fagan, W. F.; Fraass, A. J.; Lowery, C. M. (2023). "Late Cenozoic cooling restructured global marine plankton communities". Nature. 614 (7949): 713–718. doi:10.1038/s41586-023-05694-5. PMID 36792824. S2CID 253282752.
- ^ Fonseca, C.; Mendonça Filho, J. G.; Reolid, M.; Duarte, L. V.; Oliveira, A. D.; Souza, J. T.; Lézin, C. (2023). "First putative occurrence in the fossil record of choanoflagellates, the sister group of Metazoa". Scientific Reports. 13 (1). 1242. doi:10.1038/s41598-022-26972-8. PMC 9870899. PMID 36690681.
- ^ Li, L.; Betts, M. J.; Yun, H.; Pan, B.; Topper, T. P.; Li, G.; Zhang, X.; Skovsted, C. B. (2023). "Fibrous or Prismatic? A Comparison of the Lamello-Fibrillar Nacre in Early Cambrian and Modern Lophotrochozoans". Biology. 12 (1). 113. doi:10.3390/biology12010113. PMC 9855346. PMID 36671805.
- ^ Du, M.; Li, H.; Tan, J.; Wang, Z.; Wang, W. (2023). "The bias types and drivers of the Furongian Biodiversity Gap". Palaeogeography, Palaeoclimatology, Palaeoecology. 612. 111394. doi:10.1016/j.palaeo.2023.111394. S2CID 255717556.
- ^ Francischini, H.; Dentzien-Dias, P.; Battista, F.; Sipp, G. S.; Melo, T. P.; Scherer, C. M. S.; Schultz, C. L. (2023). "Burrows provided shelter for tetrapods in a Permo-Triassic desert". Papers in Palaeontology. 9 (2). e1490. doi:10.1002/spp2.1490.
- ^ Huang, Y.; Chen, Z.-Q.; Roopnarine, P. D.; Benton, M. J.; Zhao, L.; Feng, X.; Li, Z. (2023). "The stability and collapse of marine ecosystems during the Permian-Triassic mass extinction". Current Biology. 33 (6): 1059–1070.e4. doi:10.1016/j.cub.2023.02.007. PMID 36841237. S2CID 257186215.
- ^ Dai, X.; Davies, J. H. F. L.; Yuan, Z.; Brayard, A.; Ovtcharova, M.; Xu, G.; Liu, X.; Smith, C. P. A.; Schweitzer, C. E.; Li, M.; Perrot, M. G.; Jiang, S.; Miao, L.; Cao, Y.; Yan, J.; Bai, R.; Wang, F.; Guo, W.; Song, H.; Tian, L.; Dal Corso, J.; Liu, Y.; Chu, D.; Song, H. (2023). "A Mesozoic fossil lagerstätte from 250.8 million years ago shows a modern-type marine ecosystem". Science. 379 (6632): 567–572. doi:10.1126/science.adf1622. PMID 36758082. S2CID 256697946.
- ^ Rozas-Davila, A.; Rodbell, D. T.; Bush, M. B. (2023). "Pleistocene megafaunal extinction in the grasslands of Junín-Peru". Journal of Biogeography. 50 (4): 755–766. doi:10.1111/jbi.14566. S2CID 256255790.
- ^ Song, H.; An, Z.; Ye, Q.; Stüeken, E. E.; Li, J.; Hu, J.; Algeo, T. J.; Tian, L.; Chu, D.; Song, H.; Xiao, S.; Tong, J. (2023). "Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation". Nature Communications. 14 (1). 1564. doi:10.1038/s41467-023-37172-x. PMC 10073137. PMID 37015913.
- ^ Bowyer, F. T.; Zhuravlev, A. Yu; Wood, R.; Zhao, F.; Sukhov, S. S.; Alexander, R. D.; Poulton, S. W.; Zhu, M. (2023). "Implications of an integrated late Ediacaran to early Cambrian stratigraphy of the Siberian Platform, Russia" (PDF). GSA Bulletin. doi:10.1130/B36534.1. S2CID 255892722.
- ^ Nolan, M. R.; Walker, S. E.; Selly, T.; Schiffbauer, J. (2023). "Is the middle Cambrian Brooksella a hexactinellid sponge, trace fossil or pseudofossil?". PeerJ. 11. e14796. doi:10.7717/peerj.14796. PMC 9969855. PMID 36860767.
- ^ Loron, C. C.; Rodriguez Dzul, E.; Orr, P. J.; Gromov, A. V.; Fraser, N. C.; McMahon, S. (2023). "Molecular fingerprints resolve affinities of Rhynie chert organic fossils". Nature Communications. 14 (1). 1387. doi:10.1038/s41467-023-37047-1. PMC 10011563. PMID 36914650.
- ^ Sahoo, S. K.; Gilleaudeau, G. J.; Wilson, K.; Hart, B.; Barnes, B. D.; Faison, T.; Bowman, A. R.; Larsen, T. E.; Kaufman, A. J. (2023). "Basin-scale reconstruction of euxinia and Late Devonian mass extinctions". Nature. 615 (7953): 640–645. doi:10.1038/s41586-023-05716-2. PMID 36890233. S2CID 257426134.
- ^ Shen, J.; Chen, J.; Yu, J.; Algeo, T. J.; Smith, R. M. H.; Botha, J.; Frank, T. D.; Fielding, C. R.; Ward, P. D.; Mather, T. A. (2023). "Mercury evidence from southern Pangea terrestrial sections for end-Permian global volcanic effects". Nature Communications. 14 (1). 6. doi:10.1038/s41467-022-35272-8. PMC 9810726. PMID 36596767.
- ^ Liu, F.; Peng, H.; Marshall, J. E. A.; Lomax, B. H.; Bomfleur, B.; Kent, M. S.; Fraser, W. T.; Jardine, P. E. (2023). "Dying in the Sun: Direct evidence for elevated UV-B radiation at the end-Permian mass extinction". Science Advances. 9 (1): eabo6102. doi:10.1126/sciadv.abo6102. PMC 9821938. PMID 36608140.
- ^ Bryant, R.; Belanger, C. L. (2023). "Spatial heterogeneity in benthic foraminiferal assemblages tracks regional impacts of paleoenvironmental change across Cretaceous OAE2". Paleobiology: 1–23. doi:10.1017/pab.2022.47. S2CID 256132544.
- ^ Jones, M. M.; Sageman, B. B.; Selby, D.; Jacobson, A. D.; Batenburg, S. J.; Riquier, L.; MacLeod, K. G.; Huber, B. T.; Bogus, K. A.; Tejada, M. L. G.; Kuroda, J.; Hobbs, R. W. (2023). "Abrupt episode of mid-Cretaceous ocean acidification triggered by massive volcanism". Nature Geoscience. 16 (2): 169–174. doi:10.1038/s41561-022-01115-w. S2CID 256137367.
- ^ Siver, P. A.; Lott, A. M. (2023). "History of the Giraffe Pipe locality inferred from microfossil remains: a thriving freshwater ecosystem near the Arctic Circle during the warm Eocene". Journal of Paleontology. 97 (2): 271–291. doi:10.1017/jpa.2022.101. S2CID 256435248.
- ^ Goto, K. T.; Tejada, M. L. G.; Tajika, E.; Suzuki, K. (2023). "Enhanced magmatism played a dominant role in triggering the Miocene Climatic Optimum". Communications Earth & Environment. 4. 21. doi:10.1038/s43247-023-00684-x.
- ^ Wen, Y.; Zhang, L.; Holbourn, A. E.; Zhu, C.; Huntington, K. W.; Jin, T.; Li, Y.; Wang, C. (2023). "CO2-forced Late Miocene cooling and ecosystem reorganizations in East Asia". Proceedings of the National Academy of Sciences of the United States of America. 120 (5). e2214655120. doi:10.1073/pnas.2214655120. PMC 9945954. PMID 36689658. S2CID 256193615.
{{cite journal}}
: CS1 maint: PMC embargo expired (link)