2024 in archosaur paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Theropod research: Added new study
Tags: Mobile edit Mobile web edit
Line 121: Line 121:
* A study on the bone histology of ''[[Araripesuchus|Araripesuchus buitreraensis]]'', providing evidence of generally slow, annually interrupted growth rate, is published by Navarro ''et al.'' (2024).<ref>{{Cite journal|last1=Navarro |first1=T. G. |last2=Cerda |first2=I. A. |last3=Fernández Dumont |first3=M. L. |last4=Apesteguía |first4=S. |last5=Pol |first5=D. |year=2024 |title=New data on the bone histology of ''Araripesuchus buitreraensis'' (Crocodylomorpha: Notosuchia) from the Late Cretaceous of Argentinean Patagonia |journal=Historical Biology: An International Journal of Paleobiology |pages=1–11 |doi=10.1080/08912963.2023.2301140 |s2cid=266948988 }}</ref>
* A study on the bone histology of ''[[Araripesuchus|Araripesuchus buitreraensis]]'', providing evidence of generally slow, annually interrupted growth rate, is published by Navarro ''et al.'' (2024).<ref>{{Cite journal|last1=Navarro |first1=T. G. |last2=Cerda |first2=I. A. |last3=Fernández Dumont |first3=M. L. |last4=Apesteguía |first4=S. |last5=Pol |first5=D. |year=2024 |title=New data on the bone histology of ''Araripesuchus buitreraensis'' (Crocodylomorpha: Notosuchia) from the Late Cretaceous of Argentinean Patagonia |journal=Historical Biology: An International Journal of Paleobiology |pages=1–11 |doi=10.1080/08912963.2023.2301140 |s2cid=266948988 }}</ref>
* Evidence of a continuous and coordinated tooth replacement in ''[[Armadillosuchus|Armadillosuchus arrudai]]'', ensuring that the animal would not lose too many teeth simultaneously and that its feeding abilities were not affected by tooth loss, is presented by Borsoni, Carvalho & Marinho (2024).<ref>{{Cite journal|last1=Borsoni |first1=B. T. |last2=Carvalho |first2=I. S. |last3=Marinho |first3=T. S. |title=''Armadillosuchus arrudai'' (Sphagesauridae, Crocodyliformes), Adamantina Formation (Turonian - Santonian), Bauru Basin, southeastern Brazil: Dental development aspects |year=2024 |journal=Cretaceous Research |volume=158 |at=105838 |doi=10.1016/j.cretres.2024.105838 |s2cid=267077357 }}</ref>
* Evidence of a continuous and coordinated tooth replacement in ''[[Armadillosuchus|Armadillosuchus arrudai]]'', ensuring that the animal would not lose too many teeth simultaneously and that its feeding abilities were not affected by tooth loss, is presented by Borsoni, Carvalho & Marinho (2024).<ref>{{Cite journal|last1=Borsoni |first1=B. T. |last2=Carvalho |first2=I. S. |last3=Marinho |first3=T. S. |title=''Armadillosuchus arrudai'' (Sphagesauridae, Crocodyliformes), Adamantina Formation (Turonian - Santonian), Bauru Basin, southeastern Brazil: Dental development aspects |year=2024 |journal=Cretaceous Research |volume=158 |at=105838 |doi=10.1016/j.cretres.2024.105838 |s2cid=267077357 }}</ref>
* Dos Santos ''et al.'' (2024) describe the skeletal anatomy of the most complete juvenile [[Baurusuchidae|baurusuchid]] specimen reported to date, and report evidence of differences in skull ornamentation and muscle development between juvenile and adult baurusuchid specimens which might be indicative of [[Ontogeny|ontogenetic]] [[niche partition]]ing.<ref>{{Cite journal|last1=dos Santos |first1=D. M. |last2=de Carvalho |first2=J. C. |last3=de Oliveira |first3=C. E. M. |last4=de Andrade |first4=M. B. |last5=Santucci |first5=R. M. |title=Cranial and postcranial anatomy of a juvenile baurusuchid (Notosuchia, Crocodylomorpha) and the taxonomical implications of ontogeny |year=2024 |journal=The Anatomical Record |doi=10.1002/ar.25419 }}</ref>
* Fossil material of a [[Goniopholididae|goniopholidid]], interpreted as a [[Basal (phylogenetics)|basal]] form that shared several anatomical traits with derived members of the group, is described from the Lower Cretaceous [[Kitadani Formation]] ([[Japan]]) by Obuse & Shibata (2024).<ref>{{Cite journal|last1=Obuse |first1=S. |last2=Shibata |first2=M. |year=2024 |title=New goniopholidid specimens from the Lower Cretaceous Kitadani Formation, Tetori Group, Japan |journal=Annales de Paléontologie |volume=110 |issue=1 |at=102661 |doi=10.1016/j.annpal.2023.102661 }}</ref>
* Fossil material of a [[Goniopholididae|goniopholidid]], interpreted as a [[Basal (phylogenetics)|basal]] form that shared several anatomical traits with derived members of the group, is described from the Lower Cretaceous [[Kitadani Formation]] ([[Japan]]) by Obuse & Shibata (2024).<ref>{{Cite journal|last1=Obuse |first1=S. |last2=Shibata |first2=M. |year=2024 |title=New goniopholidid specimens from the Lower Cretaceous Kitadani Formation, Tetori Group, Japan |journal=Annales de Paléontologie |volume=110 |issue=1 |at=102661 |doi=10.1016/j.annpal.2023.102661 }}</ref>



Revision as of 07:26, 2 March 2024

List of years in archosaur paleontology
In reptile paleontology
2021
2022
2023
2024
2025
2026
2027
In paleontology
2021
2022
2023
2024
2025
2026
2027
In science
2021
2022
2023
2024
2025
2026
2027
+...

This article records new taxa of every kind of fossil archosaur that are scheduled to be described during 2024, as well as other significant discoveries and events related to the paleontology of archosaurs that will be published in 2024.

Pseudosuchians

New pseudosuchian taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Aphaurosuchus kaiju[1]

Sp. nov

In press

Martins et al.

Late Cretaceous

Adamantina Formation

 Brazil

A baurusuchid. Announced in 2023; the final article version was published in 2024.

Garzapelta[2]

Gen. et sp. nov

Reyes, Martz & Small

Late Triassic (Norian)

Cooper Canyon Formation

 United States
( Texas)

An aetosaur. The type species is G. muelleri.

Ophiussasuchus[3]

Gen. et sp. nov

Valid

López-Rojas et al.

Late Jurassic (Kimmeridgian-Tithonian)

Lourinhã Formation

 Portugal

A goniopholidid crocodylomorph. The type species is O. paimogonectes.

Schultzsuchus[4]

Gen. et comb. nov

Desojo & Rauhut

Triassic (Ladinian-Carnian)

Pinheiros-Chiniquá Sequence of the Santa Maria Supersequence

 Brazil

A member of Paracrocodylomorpha, probably belonging to the group Poposauroidea. The type species is "Prestosuchus" loricatus von Huene (1938).

Varanosuchus[5]

Gen et sp. nov

In press

Pochat-Cottilloux et al.

Early Cretaceous

Sao Khua Formation

 Thailand

An atoposaurid. The type species is V. sakonnakhonensis.

General pseudosuchian research

Aetosaur research

Crocodylomorph research

  • Young et al. (2024) provide higher level systematization for Thalattosuchia under both the PhyloCode and the International Code of Zoological Nomenclature, naming new taxa Neothalattosuchia, Euthalattosuchia and Dakosaurina.[9]
  • A study on the morphology of osteoderms of Indosinosuchus and an unnamed member of Mesoeucrocodylia from the Late Jurassic Phu Noi excavation site (Thailand) is published by Bhuttarach et al. (2024).[10]
  • Hua, Liston & Tabouelle (2024) describe a specimen of Metriorhynchus cf. superciliosus from the Callovian strata from the "Vaches Noires" cliffs of Villers-sur-Mer (France), preserved with gastric contents that include remains of the gill apparatus of Leedsichthys, and interpret the studied specimen as providing evidence of Metriorhynchus scavenging on the remains of Leedsichthys.[11]
  • A study on the bone histology of Araripesuchus buitreraensis, providing evidence of generally slow, annually interrupted growth rate, is published by Navarro et al. (2024).[12]
  • Evidence of a continuous and coordinated tooth replacement in Armadillosuchus arrudai, ensuring that the animal would not lose too many teeth simultaneously and that its feeding abilities were not affected by tooth loss, is presented by Borsoni, Carvalho & Marinho (2024).[13]
  • Dos Santos et al. (2024) describe the skeletal anatomy of the most complete juvenile baurusuchid specimen reported to date, and report evidence of differences in skull ornamentation and muscle development between juvenile and adult baurusuchid specimens which might be indicative of ontogenetic niche partitioning.[14]
  • Fossil material of a goniopholidid, interpreted as a basal form that shared several anatomical traits with derived members of the group, is described from the Lower Cretaceous Kitadani Formation (Japan) by Obuse & Shibata (2024).[15]

Non-avian dinosaurs

New dinosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Datai[16]

Gen. et sp. nov

Valid

Xing et al.

Late Cretaceous (Turonian-Early Coniacian)

Zhoutian Formation

 China

An ankylosaurid. The type species is D. yingliangis.

Eoneophron[17]

Gen. et sp. nov

Atkins-Weltman et al.

Late Cretaceous (Maastrichtian)

Hell Creek Formation

 United States
( South Dakota)

A caenagnathid theropod. The type species is E. infernalis.

Gandititan[18]

Gen. et sp. nov

Valid

Han et al.

Late Cretaceous (Cenomanian-Turonian)

Zhoutian Formation

 China

A titanosaur sauropod. The type species is G. cavocaudatus.

Inawentu[19]

Gen. et sp. nov

Valid

Filippi et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A titanosaur sauropod. The type species is I. oslatus. Announced in 2023; the final article version was published in 2024.

Jingia[20]

Gen. et sp. nov

Ren et al.

Late Jurassic

Dongxing Formation

 China

A mamenchisaurid sauropod. The type species is J. dongxingensis. The name is preoccupied by Jingia Chen, 1983.[21]

Minqaria[22]

Gen. et sp. nov

Longrich et al.

Late Cretaceous (Maastrichtian)

Ouled Abdoun Basin

 Morocco

A lambeosaurine hadrosaurid belonging to the tribe Arenysaurini. The type species is M. bata.

Riojavenatrix[23]

Gen. et sp. nov

Isasmendi et al.

Early Cretaceous (Barremian-Aptian)

Enciso Group

 Spain

A spinosaurid theropod. The type species is R. lacustris.

Sidersaura[24] Gen. et sp. nov Valid Lerzo et al. Late Cretaceous (Cenomanian-Turonian) Huincul Formation  Argentina A rebbachisaurid sauropod. The type species is S. marae.

Tyrannosaurus mcraeensis[25]

Sp. nov

In press

Dalman et al.

Late Cretaceous (Campanian-Maastrichtian)

Hall Lake Formation

 United States
( New Mexico)

A tyrannosaurine; a species of Tyrannosaurus.

Vectidromeus[26]

Gen. et sp. nov

Valid

Longrich et al.

Early Cretaceous (Barremian)

Wessex Formation

 United Kingdom

A hypsilophodontid. The type species is V. insularis. Announced in 2023; the final article version was published in 2024.

Yanbeilong[27]

Gen. et sp. nov

Valid

Jia et al.

Early Cretaceous (Albian)

Zuoyun Formation

 China

A stegosaurian. The type species is Y. ultimus.

General non-avian dinosaur research

  • Evidence indicating that the evolution of rostral keratin cover was associated with partial tooth reduction throughout the evolutionary history of dinosaurs, but does not explain the complete loss of teeth in dinosaur lineages, is presented by Aguilar-Pedrayes, Gardner & Organ (2024).[28]
  • A study on the evolutionary rates of biting mechanics in herbivorous dinosaurs is published by Kunz and Sakamoto (2024), who interpret their findings as indicating that biomechanic evolution rates can reveal ecological signatures in different lineages and ontogenetic stages.[29]
  • Romilio et al. (2024) describe dinosaur tracks from the Early Jurassic (Sinemurian) Razorback Beds (Australia), representing the oldest dinosaur tracks from the country to date.[30]

Saurischian research

Theropod research

  • Mohabey et al. (2024) review and redescribe Laevisuchus indicus, Jubbulpuria tenuis and Compsosuchus solus, and describe a new noasaurid dentary from central India with procumbent dentition similar to the one present in Masiakasaurus.[31]
  • A study on the affinities of isolated theropod teeth from the Bauru Basin (Brazil) is published by Delcourt et al. (2024), who argue that the geographical distribution of abelisaurids in South America was influenced by climatic conditions.[32]
  • A study in the bone histology of a mid-sized abelisaurid from the Upper Cretaceous Serra da Galga Formation (Brazil) is published by Aureliano et al. (2024), who report that, despite living in a semiarid tropical environment, the studied specimen had a growth rate similar to those of the Patagonian abelisaurids.[33]
  • A study on the skeletal pathologies affecting known specimens of brachyrostran abelisaurids is published by Baiano et al. (2024), who diagnose the fusion of two caudal vertebrae of the holotype specimen of Aucasaurus garridoi as congenital malformation and diagnose partial fusion of five caudal vertebrae of the holotype of Elemgasem nubilus as spondyloraptropathy, in both cases representing the first occurrences of the diagnosed pathologies among non-tetanuran theropods.[34]
  • Montealegre, Castillo-Visa & Sellés (2024) describe previously unpublished fossil material of theropods (cf. Protathlitis and a carcharodontosaurid which might be distinct from Concavenator) from the Barremian Arcillas de Morella Formation (Spain).[35]
  • Yun (2024) identifies convergent similarities in craniodental anatomy between spinosaurs and phytosaurs.[36]
  • Słowiak, Brusatte & Szczygielski (2024) reevaluate the fossil material attributed to Bagaraatan ostromi, interpreting the holotype as an indeterminate juvenile tyrannosaurid, and reporting that some of the fossils originally attributed to B. ostromi are actually caenagnathid bones.[37]
  • Longrich & Saitta (2024) review the taxonomic status of Nanotyrannus and argue that multiple lines of evidence support it as a distinct, small-bodied, possibly non-tyrannosaurid taxon, rather than an immature form of Tyrannosaurus.[38]
  • Park et al. (2024) propose that early pennaraptorans might have used their pennaceous feathers to flush hiding insects and to generate lift or drag during the pursuit of the flushed insects, and propose that such use of the pennaceous feathers might have contributed to the evolution of larger and stiffer feathers.[39]
  • A characterization of how number and shape of flight feathers correlate with locomotory style in extant birds is published by Kiat & O'Connor (2024). Extrapolating these patterns to Mesozoic pennaraptorans, the authors suggest that Caudipteryx and anchiornithines may have been secondarily flightless.[40]
  • A study on the evolution of the pectoral girdle of pennaraptorans is published by Wu et al. (2024), who report evidence of modifications changing the range of motion of the forelimb that preceded the origin of flight in paravians, as well as evidence of subsequent flight adaptive modifications in avialans.[41]
  • The first caenagnathid fossil material from the upper Campanian De-na-zin Member of the Kirtland Formation (New Mexico, United States) is described by Funston, Williamson & Brusatte (2024).[42]
  • Description of the skeletal anatomy of Oksoko avarsan is published by Funston (2024).[43]
  • Gianechini, Colli & Makovicky (2024) present a reconstruction of the pelvic and hindlimb musculature of Buitreraptor gonzalezorum.[44]
  • Based on comparisons to extant birds, joint poses in the foot of Deinonychus during its walk cycle are reconstructed by Manafzadeh, Gatesy & Bhullar (2024).[45]
  • Description of the braincase and cranial endocast of Sinovenator changii, interpreted as morphologically intermediate between basal theropods and extant birds, is published by Yu et al. (2024).[46]

Sauropodomorph research

  • Agustí, Alcalá & Santos-Cubedo (2024) propose that sauropod gigantism was an adaptation that increased the ability of sauropods to travel great distances, necessitated by pronounced seasonal changes.[47]
  • Windholz et al. (2024) describe a new rebbachisaurid caudal vertebra from the Cenomanian Candeleros Formation (Argentina), providing new information on the caudal anatomy and pneumaticity in rebbachisaurids.[48]
  • An overview of the largest known sauropods from Argentina is published by Calvo (2024).[49]

Ornithischian research

Thyreophoran research

Cerapod research

  • Nikolov, Dochev, & Brusatte (2024) test the ontogenetic age of small hadrosauroid bones from the Late Cretaceous (Maastrichtian) Kaylaka Formation (Bulgaria), and determine that the specimen likely belonged to a late juvenile or young subadult, rather than a dwarved adult, and suggest that large terrestrial animals were able to populate some European islands via a cyclically appearing or short-lived dispersal route.[52]
  • The first described hadrosaurid footprints from the Horseshoe Canyon Formation are described by Powers et al. (2024), who assign them to the ichnospecies Hadrosauropodus langstoni. [53]
  • Description of the morphology of the skull and endocranium of Psittacosaurus sibiricus, based on the study of both juvenile and adult specimens, is published by Podlesnov et al. (2024).[54]

Birds

New bird taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Imparavis[55]

Gen. et sp. nov

In press

Wang et al.

Early Cretaceous

Jiufotang Formation

 China

An enantiornithine. The type species is I. attenboroughi.

Wunketru[56]

Gen. et comb. nov

In press

De Mendoza, Degrange & Tambussi

Eocene

Las Flores Formation

 Argentina

A member of Anseriformes of uncertain affinites; a new genus for "Telmabates" howardae.

Avian research

  • A study performing quantitative functional imaging of the brain during rest and flight in rock doves with implications for the evolution of avian flight is published by Balanoff et al. (2024). They found increased neural activity in the cerebellum during flight, and through comparisons with cranial endocasts of extinct theropods, suggest that cerebellar expansion underlying such activity occurred at the base of Maniraptora, prior to the origin of avian flight.[57]
  • The Cretaceous fossil record of avialans from China is reviewed by Zhou & Wang (2024).[58]
  • A morphometric study of a large sample of specimens of Confuciusornis sanctus is published by Zhou et al. (2024), who interpret their findings as indicative of the presence of sexual dimorphism in this species.[59]
  • A study on the limb bone histology and growth dynamics of Musivavis amabilis is published by Kundrát et al. (2024).[60]
  • A study on the antiquity of the crown group of birds is published by Brocklehurst & Field (2024), who argue that the crown group originated between 110.5 and 90.3 million years ago, and that the majority of higher-order diversification within the crown group either spanned or postdated the Cretaceous-Paleogene transition.[61]
  • Schroeter (2024) presents a characterization of diagenetiforms in a moa proteome.[62]
  • Fossil material of a possible member of Galloanserae is described from the Upper Cretaceous (Maastrichtian) Lance Formation (Wyoming, United States) by Brownstein (2024), who interprets this finding as supporting a cosmopolitan distribution of early crown birds.[63]
  • A study on the evolutionary history of neoavians, as indicated by genomic data, is published by Wu et al. (2024), who argue that the initial diversification of the crown group of birds was correlated with the rise of flowering plants in the Cretaceous, that modern birds survived the Cretaceous–Paleogene extinction event relatively well, and that the Paleocene–Eocene Thermal Maximum had a significant impact on the diversification of the seabirds.[64]
  • Zelenkov (2024) describes a fragmentary humerus of a buttonquail from the Lower Pleistocene strata from the Taurida Cave (Crimea), representing the first record of a member of the family Turnicidae from Eurasia from the Pliocene to Middle Pleistocene interval.[65]
  • Leoni et al. (2024) describe the first fossil material of a turkey vulture from cave deposits in northeastern Brazil, which preserves trace marks likely produced by a felid and indicating that the vulture died in the cave it was discovered in.[66]
  • Acosta Hospitaleche & Jones (2024) describe fossil material of a large-bodied (with an estimated body mass of around 100 kg) phorusrhacid or phorusrhacid-like bird from the Eocene La Meseta Formation (Seymour Island, Antarctica), interpreted by the authors as likely apex predator of Antarctica during the Eocene.[67]
  • Acosta Hospitaleche & Jones (2024) describe partial tibiotarsus of a psilopterine phorusrhacid from the Eocene (Lutetian) Sarmiento Formation (Argentina), interpreted as belonging to a bird with an estimated body mass of approximately 5 kg.[68]

Pterosaurs

New pterosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Ceoptera[69] Gen. et sp. nov Martin-Silverstone et al. Middle Jurassic Kilmaluag Formation  United Kingdom A darwinopteran. The type species is C. evansae.

Pterosaur research

  • A study on the cervical osteology of Anhanguera piscator, Azhdarcho lancicollis and Rhamphorhynchus muensteri, aiming to reconstruct the cervical arthrology of pterosaurs and the position of the pterosaur neck at rest, is published by Buchmann & Rodrigues (2024).[70]
  • Yun (2024) uses geometric morphometric analyses to investigate the relationships of pterosaur specimens from the Early Cretaceous Jinju and Hasandong formations (South Korea), and suggests that the material likely cannot be assigned to the Boreopteridae, as had previously been assumed.[71]

Other archosaurs

Other archosaur research

  • Agnolín et al. (2024) revise the anatomy of the pelvic girdle of Lagerpeton chanarensis, reinterpreting it as likely to have a sprawling gait.[72]

General research

  • A study on the evolution of locomotion in archosauromorph reptiles is published by Shipley et al. (2024), who interpret their findings as indicative of greater range in limb form and locomotor modes of dinosaurs compared to other archosauromorph groups, and argue that the ability to adopt a wider variety of limb forms and modes might have given dinosaurs a competitive advantage over pseudosuchians.[73]

References

  1. ^ Martins, K. C.; Queiroz, M. V.; Ruiz, J. V.; Langer, M. C.; Montefeltro, F. C. (2024). "A new Baurusuchidae (Notosuchia, Crocodyliformes) from the Adamantina Formation (Bauru Group, Upper Cretaceous), with a revised phylogenetic analysis of Baurusuchia". Cretaceous Research. 153. 105680. Bibcode:2024CrRes.15305680M. doi:10.1016/j.cretres.2023.105680. S2CID 261182849.
  2. ^ Reyes, W. A.; Martz, J. W.; Small, B. J. (2024). "Garzapelta muelleri gen. et sp. nov., a new aetosaur (Archosauria: Pseudosuchia) from the Late Triassic (middle Norian) middle Cooper Canyon Formation, Dockum Group, Texas, USA, and its implications on our understanding of the morphological disparity of the aetosaurian dorsal carapace". The Anatomical Record: e25379. doi:10.1002/ar.25379. PMID 38206046. S2CID 266931123.
  3. ^ López-Rojas, V.; Mateus, S.; Marinheiro, J.; Mateus, O.; Puértolas-Pascual, E. (2024). "A new goniopholidid crocodylomorph from the Late Jurassic of Portugal". Palaeontologia Electronica. 27 (1). 27.1.5a. doi:10.26879/1316.
  4. ^ Desojo, J. B.; Rauhut, O. W. M. (2024). "Reassessment of the enigmatic "Prestosuchus" loricatus (Archosauria: Pseudosuchia) from the Middle-Late Triassic of southern Brazil". The Anatomical Record. doi:10.1002/ar.25401. PMID 38344898.
  5. ^ Pochat-Cottilloux, Yohan; Lauprasert, Komsorn; Chanthasit, Phornphen; Manitkoon, Sita; Adrien, Jérôme; Lachambre, Joël; Amiot, Romain; Martin, Jeremy E. (2024-01-09). "New Cretaceous neosuchians (Crocodylomorpha) from Thailand bridge the evolutionary history of atoposaurids and paralligatorids". Zoological Journal of the Linnean Society. In press: 1–27. doi:10.1093/zoolinnean/zlad195.
  6. ^ Desojo, J. B.; von Baczko, M. B.; Ezcurra, M. D.; Fiorelli, L. E.; Martinelli, A. G.; Bona, P.; Trotteyn, M. J.; Lacerda, M. (2024). "Cranial osteology and paleoneurology of Tarjadia ruthae: An erpetosuchid pseudosuchian from the Triassic Chañares Formation (late Ladinian-?early Carnian) of Argentina". The Anatomical Record. doi:10.1002/ar.25382. PMID 38263705. S2CID 267198765.
  7. ^ Nesbitt, S. J.; Chatterjee, S. (2024). "The osteology of Shuvosaurus inexpectatus, a shuvosaurid pseudosuchian from the Upper Triassic Post Quarry, Dockum Group of Texas, USA". The Anatomical Record. doi:10.1002/ar.25376. PMID 38258540.
  8. ^ Mastrantonio, B. M.; Lacerda, M. B.; de Farias, B. D. M.; Pretto, F. A.; Rezende, L. O.; Desojo, J. B.; Schultz, C. L. (2024). "Postcranial anatomy of Prestosuchus chiniquensis (Archosauria: Loricata) from the Triassic of Brazil". The Anatomical Record. doi:10.1002/ar.25383. PMID 38299218. S2CID 267362910.
  9. ^ Young, M. T.; Wilberg, E. W.; Johnson, M. M.; Herrera, Y.; Brandalise de Andrade, M.; Brignon, A.; Sachs, S.; Abel, P.; Foffa, D.; Fernández, M. S.; Vignaud, P.; Cowgill, T.; Brusatte, S. L. (2024). "The history, systematics, and nomenclature of Thalattosuchia (Archosauria: Crocodylomorpha)". Zoological Journal of the Linnean Society. 200 (2): 547–617. doi:10.1093/zoolinnean/zlad165.
  10. ^ Bhuttarach, S.; Deesri, U.; Warapeang, P.; Taesuk, N.; Lauprasert, K. (2024). "Morphology of teleosaurid osteoderms from the Phu Kradung Formation of Thailand". Annales de Paléontologie. 109 (4). 102653. doi:10.1016/j.annpal.2023.102653. S2CID 267691380.
  11. ^ Hua, S.; Liston, J.; Tabouelle, J. (2024). "The Diet of Metriorhynchus (Thalattosuchia, Metriorhynchidae): Additional Discoveries and Paleoecological Implications". Fossil Studies. 2 (1): 66–76. doi:10.3390/fossils2010002.
  12. ^ Navarro, T. G.; Cerda, I. A.; Fernández Dumont, M. L.; Apesteguía, S.; Pol, D. (2024). "New data on the bone histology of Araripesuchus buitreraensis (Crocodylomorpha: Notosuchia) from the Late Cretaceous of Argentinean Patagonia". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2023.2301140. S2CID 266948988.
  13. ^ Borsoni, B. T.; Carvalho, I. S.; Marinho, T. S. (2024). "Armadillosuchus arrudai (Sphagesauridae, Crocodyliformes), Adamantina Formation (Turonian - Santonian), Bauru Basin, southeastern Brazil: Dental development aspects". Cretaceous Research. 158. 105838. doi:10.1016/j.cretres.2024.105838. S2CID 267077357.
  14. ^ dos Santos, D. M.; de Carvalho, J. C.; de Oliveira, C. E. M.; de Andrade, M. B.; Santucci, R. M. (2024). "Cranial and postcranial anatomy of a juvenile baurusuchid (Notosuchia, Crocodylomorpha) and the taxonomical implications of ontogeny". The Anatomical Record. doi:10.1002/ar.25419.
  15. ^ Obuse, S.; Shibata, M. (2024). "New goniopholidid specimens from the Lower Cretaceous Kitadani Formation, Tetori Group, Japan". Annales de Paléontologie. 110 (1). 102661. doi:10.1016/j.annpal.2023.102661.
  16. ^ Xing, L.; Niu, K.; Mallon, J.; Miyashita, T. (2024). "A new armored dinosaur with double cheek horns from the early Late Cretaceous of southeastern China". Vertebrate Anatomy Morphology Paleontology. 11: 113–132. doi:10.18435/vamp29396.
  17. ^ Atkins-Weltman, K. L.; Simon, D. J.; Woodward, H. N.; Funston, G. F.; Snively, E. (2024). "A new oviraptorosaur (Dinosauria: Theropoda) from the end-Maastrichtian Hell Creek Formation of North America". PLOS ONE. 19 (1). e0294901. doi:10.1371/journal.pone.0294901. PMC 10807829. PMID 38266012.
  18. ^ Han, F.; Yang, L.; Lou, F.; Sullivan, C.; Xu, X.; Qiu, W.; Liu, H.; Yu, J.; Wu, R.; Ke, Y.; Xu, M.; Hu, J.; Lu, P. (2024). "A new titanosaurian sauropod, Gandititan cavocaudatus gen. et sp. nov., from the Late Cretaceous of southern China". Journal of Systematic Palaeontology. 22 (1). 2293038. Bibcode:2024JSPal..2293038H. doi:10.1080/14772019.2023.2293038. S2CID 267107071.
  19. ^ Filippi, Leonardo S.; Juárez Valieri, Rubén D.; Gallina, Pablo A.; Méndez, Ariel H.; Gianechini, Federico A.; Garrido, Alberto C. (2024). "A rebbachisaurid-mimicking titanosaur and evidence of a Late Cretaceous faunal disturbance event in South-West Gondwana". Cretaceous Research. 154. Bibcode:2024CrRes.15405754F. doi:10.1016/j.cretres.2023.105754. ISSN 0195-6671. S2CID 264792693.
  20. ^ Ren, X.-X.; Wang, X.-R.; Ji, Y.-N.; Guo, Z.; Ji, Q. (2024). "The first mamenchisaurid from the Upper Jurassic Dongxing Formation of Guangxi, southernmost China". Historical Biology: An International Journal of Paleobiology: 1–14. doi:10.1080/08912963.2024.2309287.
  21. ^ "Jingia".
  22. ^ Longrich, N. R.; Pereda-Suberbiola, X.; Bardet, N.; Jalil, N.-E. (2024). "A new small duckbilled dinosaur (Hadrosauridae: Lambeosaurinae) from Morocco and dinosaur diversity in the late Maastrichtian of North Africa". Scientific Reports. 14 (1). 3665. doi:10.1038/s41598-024-53447-9. PMC 10864364. PMID 38351204.
  23. ^ Isasmendi, E.; Cuesta, E.; Díaz-Martínez, I.; Company, J.; Sáez-Benito, P.; Viera, L. I.; Torices, A.; Pereda-Suberbiola, P. (2024). "Increasing the theropod record of Europe: a new basal spinosaurid from the Enciso Group of the Cameros Basin (La Rioja, Spain). Evolutionary implications and palaeobiodiversity". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad193.
  24. ^ Lerzo, Lucas Nicolás; Gallina, Pablo Ariel; Canale, Juan Ignacio; Otero, Alejandro; Carballido, José Luis; Apesteguía, Sebastián; Makovicky, Peter Juraj (2024-01-03). "The last of the oldies: a basal rebbachisaurid (Sauropoda, Diplodocoidea) from the early Late Cretaceous (Cenomanian–Turonian) of Patagonia, Argentina". Historical Biology: 1–26. doi:10.1080/08912963.2023.2297914. ISSN 0891-2963. S2CID 266865502.
  25. ^ Dalman, S. G; Loewen, M. A.; Pyron, R. A.; Jasinski, S. E.; Malinzak, D. E.; Lucas, S. G.; Fiorillo, A. R.; Currie, P. J.; Longrich, N. R. (2024). "A giant tyrannosaur from the Campanian–Maastrichtian of southern North America and the evolution of tyrannosaurid gigantism". Scientific Reports. 13 (1). Article number 22124. doi:10.1038/s41598-023-47011-0. PMC 10784284. PMID 38212342.
  26. ^ Longrich, Nicholas R.; Martill, David M.; Munt, Martin; Green, Mick; Penn, Mark; Smith, Shaun (2024). "Vectidromeus insularis, a new hypsilophodontid dinosaur from the Lower Cretaceous Wessex Formation of the Isle of Wight, England". Cretaceous Research. 154: 105707. Bibcode:2024CrRes.15405707L. doi:10.1016/j.cretres.2023.105707. ISSN 0195-6671. S2CID 261933503.
  27. ^ Jia, Lei; Li, Ning; Dong, Liyang; Shi, Jianru; Kang, Zhishuai; Wang, Suozhu; Xu, Shichao; You, Hailu (2024-01-31). "A new stegosaur from the late Early Cretaceous of Zuoyun, Shanxi Province, China". Historical Biology: 1–10. doi:10.1080/08912963.2024.2308214. ISSN 0891-2963. S2CID 267465456.
  28. ^ Aguilar-Pedrayes, I.; Gardner, J. D.; Organ, C. L. (2024). "The coevolution of rostral keratin and tooth distribution in dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 291 (2015). 20231713. doi:10.1098/rspb.2023.1713. PMC 10792295. PMID 38229513.
  29. ^ Kunz, C; Sakamoto, M (2024). "Elevated evolutionary rates of biting biomechanics reveal patterns of extraordinary craniodental adaptations in some herbivorous dinosaurs". Paleontology. 67. doi:10.1111/pala.12689.
  30. ^ Romilio, A.; Dick, R.; Skinner, H.; Millar, J. (2024). "Uncovering hidden footprints: revision of the Lower Jurassic (Sinemurian) Razorback Beds – home to Australia's earliest reported dinosaur trackway". Historical Biology: 1–8. doi:10.1080/08912963.2024.2320184.
  31. ^ Mohabey, D. M.; Samant, B.; Vélez-Rosado, K. I.; Wilson Mantilla, J. A. (2024). "A review of small-bodied theropod dinosaurs from the Upper Cretaceous of India, with description of new cranial remains of a noasaurid (Theropoda: Abelisauria)". Journal of Vertebrate Paleontology. e2288088. doi:10.1080/02724634.2023.2288088.
  32. ^ Delcourt, R.; Brilhante, N. S.; Pires-Domingues, R. A.; Hendrickx, C.; Grillo, O. N.; Augusta, B. G.; Maciel, B. S.; Ghilardi, A. M.; Ricardi-Branco, F. (2024). "Biogeography of theropod dinosaurs during the Late Cretaceous: evidence from central South America". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad184.
  33. ^ Aureliano, T.; Ghilardi, A. M.; Fonseca, P. H. M.; Martinelli, A. G.; Marinho, T. S. (2024). "The evolution and diversification of growth strategies in abelisauroid theropods". Journal of Vertebrate Paleontology. e2298395. doi:10.1080/02724634.2023.2298395.
  34. ^ Baiano, M. A.; Cerda, I. A.; Bertozzo, F.; Pol, D. (2024). "New information on paleopathologies in non-avian theropod dinosaurs: a case study on South American abelisaurids". BMC Ecology and Evolution. 24 (1). 6. doi:10.1186/s12862-023-02187-x. PMC 10829224. PMID 38291378.
  35. ^ Montealegre, A.; Castillo-Visa, O.; Sellés, A. (2024). "New theropod remains from the late Barremian (Early Cretaceous) of Eastern Iberian Peninsula". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2024.2308220. S2CID 267374161.
  36. ^ Yun, Chan-gyu (2024). "Spinosaurs as phytosaur mimics: a case of convergent evolution between two extinct archosauriform clades". Acta Palaeontologica Romaniae. 20 (1): 17–29. doi:10.35463/j.apr.2024.01.02.
  37. ^ Słowiak, J.; Brusatte, S. L.; Szczygielski, T. (2024). "Reassessment of the enigmatic Late Cretaceous theropod dinosaur, Bagaraatan ostromi". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad169.
  38. ^ Longrich, Nicholas R.; Saitta, Evan T. (2024-03-01). "Taxonomic Status of Nanotyrannus lancensis (Dinosauria: Tyrannosauroidea)—A Distinct Taxon of Small-Bodied Tyrannosaur". Fossil Studies. 2 (1): 1–65. doi:10.3390/fossils2010001. eISSN 2813-6284.
  39. ^ Park, J.; Son, M.; Park, J.; Bang, S. Y.; Ha, J.; Moon, H.; Lee, Y.-N.; Lee, S.; Jablonski, P. G. (2024). "Escape behaviors in prey and the evolution of pennaceous plumage in dinosaurs". Scientific Reports. 14 (1). 549. doi:10.1038/s41598-023-50225-x. PMC 10811223. PMID 38272887.
  40. ^ Kiat, Yosef; O’Connor, Jingmai K. (2024). "Functional constraints on the number and shape of flight feathers". Proceedings of the National Academy of Sciences. 121 (8): e2306639121. doi:10.1073/pnas.2306639121. PMC 10895369. PMID 38346196. S2CID 267634048.
  41. ^ Wu, Q.; O'Connor, J. K.; Wang, S.; Zhou, Z. (2024). "Transformation of the pectoral girdle in pennaraptorans: critical steps in the formation of the modern avian shoulder joint". PeerJ. 12. e16960. doi:10.7717/peerj.16960.
  42. ^ Funston, G. F.; Williamson, T. E.; Brusatte, S. L. (2024). "A caenagnathid tibia (Theropoda: Oviraptorosauria) from the upper Campanian Kirtland Formation of New Mexico". Cretaceous Research. 158. 105856. doi:10.1016/j.cretres.2024.105856. S2CID 267601272.
  43. ^ Funston, G. F. (2024). "Osteology of the two-fingered oviraptorid Oksoko avarsan (Theropoda: Oviraptorosauria)". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae011.
  44. ^ Gianechini, F. A.; Colli, L.; Makovicky, P. J. (2024). "Pelvic and hindlimb muscular reconstruction of the paravian theropod Buitreraptor gonzalezorum and its palaeobiological implications". Historical Biology: An International Journal of Paleobiology: 1–27. doi:10.1080/08912963.2023.2301674. S2CID 266994137.
  45. ^ Manafzadeh, Armita R.; Gatesy, Stephen M.; Bhullar, Bhart-Anjan S. (2024). "Articular surface interactions distinguish dinosaurian locomotor joint poses". Nature Communications. 15 (1). 854. doi:10.1038/s41467-024-44832-z. PMC 10873393. PMID 38365765.
  46. ^ Yu, C.; Watanabe, A.; Qin, Z.; King, J. L.; Witmer, L. M.; Ma, Q.; Xu, X. (2024). "Avialan-like brain morphology in Sinovenator (Troodontidae, Theropoda)". Communications Biology. 7 (1). 168. doi:10.1038/s42003-024-05832-3. PMC 10858883. PMID 38341492.
  47. ^ Agustí, J.; Alcalá, L.; Santos-Cubedo, A. (2024). "Did large foraging migrations favor the enormous body size of giant sauropods? The case of Turiasaurus". Spanish Journal of Palaeontology. doi:10.7203/sjp.28176.
  48. ^ Windholz, G. J.; Porfiri, J. D.; Dos Santos, D.; Bellardini, F.; Wedel, M. J. (2024). "A well-preserved vertebra provides new insights into rebbachisaurid sauropod caudal anatomical and pneumatic features". Acta Palaeontologica Polonica. 69 (1): 39–47. doi:10.4202/app.01104.2023.
  49. ^ Calvo, J.O (2024). "What is the most giant sauropod from Argentina? Diversity of large titanosaurs from Patagonia". Metode Science Studies Journal. 14 (14): 65–75. doi:10.7203/metode.14.24556.
  50. ^ Li, N.; Li, D.; Peng, G.; You, H. (2024). "The first stegosaurian dinosaur from Gansu Province, China". Cretaceous Research. 158. 105852. doi:10.1016/j.cretres.2024.105852. S2CID 267286799.
  51. ^ Cross, E.C; Arbour, V.M (2024). "An ankylosaur femur from the mid-Cretaceous of the Peace Region of northeastern British Columbia". Canadian Journal of Earth Sciences. doi:10.1139/cjes-2023-0118.
  52. ^ Nikolov, Vladimir; Dochev, Docho; Brusatte, Stephen L. (2024-01-01). "The ontogenetic status of a small hadrosauroid dinosaur from the uppermost Cretaceous of Bulgaria, and implications for the paleobiogeography and assembly of European island faunas". Cretaceous Research. 157 (In press). 105819. Bibcode:2024CrRes.15705819N. doi:10.1016/j.cretres.2023.105819. S2CID 266738171.
  53. ^ Mark J. Powers; Matthew M. Rhodes; Aaron D. Dyer; Steven E. Mendonca; Ryan Wilkinson; Michael Naylor Hudgins; Matthew J. Pruden; Philip J. Currie; Gregory F. Funston (2024). "The first hadrosaurid trackway from the Horseshoe Canyon Formation (Campanian/Maastrichtian) of Alberta, Canada". Ichnos: 1–28. doi:10.1080/10420940.2024.2307069. S2CID 267489605.
  54. ^ Podlesnov, A. V.; Averianov, A. O.; Burukhin, A. A.; Feofanova, O. A.; Vladimirova, O. N. (2024). "New Data on Skull Morphology of Psittacosaurus sibiricus (Dinosauria: Ceratopsia) Using Micro-Computed Tomography". Paleontological Journal. 57 (10): 1128–1187. doi:10.1134/S0031030123100040. S2CID 267537898.
  55. ^ Wang, Xiaoli; Clark, Alexander D.; O'Connor, Jingmai K.; Zhang, Xiangyu; Wang, Xing; Zheng, Xiaoting; Zhou, Zhonghe (2024-02-27). "First Edentulous Enantiornithine (Aves: Ornithothoraces) from the Lower Cretaceous Jehol Avifauna". Cretaceous Research (in press): 105867. doi:10.1016/j.cretres.2024.105867. ISSN 0195-6671.
  56. ^ De Mendoza, Ricardo Santiago; Degrange, Federico Javier; Tambussi, Claudia Patricia (2024). "An assessment of the anseriform affinities of "Telmabates" howardae". Journal of South American Earth Sciences. 135. 104786. doi:10.1016/j.jsames.2024.104786. S2CID 267159455.
  57. ^ Balanoff, Amy; Ferrer, Elizabeth; Saleh, Lemise; Gignac, Paul M.; Gold, M. Eugenia L.; Marugán-Lobón, Jesús; Norell, Mark; Ouellette, David; Salerno, Michael; Watanabe, Akinobu; Wei, Shouyi; Bever, Gabriel; Vaska, Paul (2024). "Quantitative functional imaging of the pigeon brain: implications for the evolution of avian powered flight". Proceedings of the Royal Society B: Biological Sciences. 291 (2015). doi:10.1098/rspb.2023.2172. PMC 10827418. PMID 38290541.
  58. ^ Zhou, Zhonghe; Wang, Min (2024). "Cretaceous fossil birds from China". Geological Society, London, Special Publications. 544 (1). doi:10.1144/SP544-2023-129. S2CID 267184802.
  59. ^ Zhou, Y.; Pan, Y.; Wang, M.; Wang, X.; Zheng, X.; Zhou, Z. (2024). "Fossil evidence sheds light on sexual selection during the early evolution of birds". Proceedings of the National Academy of Sciences of the United States of America. 121 (3). e2309825120. doi:10.1073/pnas.2309825120. PMC 10801838. PMID 38190528. S2CID 266871669.
  60. ^ Kundrát, M.; Horváth, D.; Wang, Z.; Wang, X. (2024). "Developmental distribution of osteocyte lacunae in the limb bone cortex of Musivavis amabilis with a review of bone microstructure adaptations in Enantiornithes". Cretaceous Research. 158. 105839. doi:10.1016/j.cretres.2024.105839. S2CID 267250890.
  61. ^ Brocklehurst, N.; Field, D. J. (2024). "Tip dating and Bayes factors provide insight into the divergences of crown bird clades across the end-Cretaceous mass extinction". Proceedings of the Royal Society B: Biological Sciences. 291 (2016). 20232618. doi:10.1098/rspb.2023.2618. PMC 10865003. PMID 38351798.
  62. ^ Schroeter, E (2024). "Characterization of Diagenetiforms in an Expanded Proteome of the Extinct Moa (Dinornithidae): Identifying Biological, Diagenetic, Experimental Artifact, and Mislabeled Modifications in Degraded Tissues". Minerals. 14 (2): 137. doi:10.3390/min14020137.
  63. ^ Brownstein, C. D. (2024). "A juvenile bird with possible crown-group affinities from a dinosaur-rich Cretaceous ecosystem in North America". BMC Ecology and Evolution. 24 (1). 20. doi:10.1186/s12862-024-02210-9. PMC 10858573. PMID 38336630.
  64. ^ Wu, S.; Rheindt, F. E.; Zhang, J.; Wang, J.; Zhang, L.; Quan, C.; Li, Z.; Wang, M.; Wu, F.; Qu, Y.; Edwards, S. V.; Zhou, Z.; Liu, L. (2024). "Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous". Proceedings of the National Academy of Sciences of the United States of America. 121 (8). e2319696121. doi:10.1073/pnas.2319696121. PMC 10895254. PMID 38346181.
  65. ^ Zelenkov, N. V. (2024). "Unexpected Find of a Buttonquail (Aves: Charadriiformes: Turnicidae) in the Lower Pleistocene of Crimea". Doklady Biological Sciences. doi:10.1134/S0012496623600148. PMID 38190042. S2CID 266843308.
  66. ^ Leoni, R; Alves-Silva, L; da Costa, J; de Araujo-Junior, H; Dantas, M (2024). "First fossil record of a Turkey vulture (Cathartes aura) in northeast of Brazil: Taxonomy, ichnology, and taphonomic history". South American Earth Sciences. 136. doi:10.1016/j.jsames.2024.104831. S2CID 267602385.
  67. ^ Acosta Hospitaleche, C.; Jones, W. (2024). "Were terror birds the apex continental predators of Antarctica? New findings in the early Eocene of Seymour Island". Palaeontologia Electronica. 27 (1). 27.1.a13. doi:10.26879/1340.
  68. ^ Acosta Hospitaleche, C.; Jones, W. (2024). "Insights on the oldest terror bird (Aves, Phorusrhacidae) from the Eocene of Argentina". Historical Biology: An International Journal of Paleobiology: 1–9. doi:10.1080/08912963.2024.2304592. S2CID 267475903.
  69. ^ Martin-Silverstone, Elizabeth; Unwin, David M.; Cuff, Andrew R.; Brown, Emily E.; Allington-Jones, Lu; Barrett, Paul M. (2024-02-05). "A new pterosaur from the Middle Jurassic of Skye, Scotland and the early diversification of flying reptiles". Journal of Vertebrate Paleontology. doi:10.1080/02724634.2023.2298741. ISSN 0272-4634.
  70. ^ Buchmann, R.; Rodrigues, T. (2024). "Arthrological reconstructions of the pterosaur neck and their implications for the cervical position at rest". PeerJ. 12. e16884. doi:10.7717/peerj.16884. PMC 10893864.
  71. ^ Yun, Chan-Gyu (2024). "Geometric morphometric approach to establish phylogenetic affinities of enigmatic pterosaur specimens from the Lower Cretaceous of South Korea". Acta Palaeontologica Romaniae. 20 (1): 77–86. doi:10.35463/j.apr.2024.01.06.
  72. ^ Agnolín, F. L.; Novas, F. E.; Ezcurra, M. D.; Miner, S.; Müller, R. T. (2024). "Comments on the pelvic girdle anatomy of Lagerpeton chanarensis Romer, 1971 (Archosauria) and its implications on the posture and gait of early pterosauromorphs". The Anatomical Record. doi:10.1002/ar.25389. PMID 38263641. S2CID 267197820.
  73. ^ Shipley, A. E.; Elsler, A.; Singh, S. A.; Stubbs, T. L.; Benton, M. J. (2024). "Locomotion and the early Mesozoic success of Archosauromorpha". Royal Society Open Science. 11 (2). 231495. doi:10.1098/rsos.231495. PMC 10846959. PMID 38328568.