Colloidal gold: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
consistent citation formatting; added missing PMIDs to cites; removed redundant URLs from citations with DOIs
tweak cites
Line 7: Line 7:
Due to their [[Metallic bond#Optical properties|optical]], electronic, and molecular-recognition properties, gold nanoparticles are the subject of substantial research, with many potential or promised applications in a wide variety of areas, including [[electron microscopy]], [[electronics]], [[nanotechnology]], [[materials science]], and [[biomedicine]].<ref>{{cite journal | vauthors = Yang X, Yang M, Pang B, Vara M, Xia Y | title = Gold Nanomaterials at Work in Biomedicine | journal = Chemical Reviews | volume = 115 | issue = 19 | pages = 10410–88 | date = October 2015 | pmid = 26293344 | doi = 10.1021/acs.chemrev.5b00193 }}</ref><ref name="ref4">Paul Mulvaney, University of Melbourne, ''The beauty and elegance of Nanocrystals'', [http://uninews.unimelb.edu.au/articleid_791.html Use since Roman times] {{webarchive|url=https://web.archive.org/web/20041028230241/http://uninews.unimelb.edu.au/articleid_791.html |date=2004-10-28 }}</ref><ref name="ref5">C. N. Ramachandra Rao, Giridhar U. Kulkarni, P. John Thomasa, Peter P. Edwards, ''Metal nanoparticles and their assemblies'', Chem. Soc. Rev., '''2000''', 29, 27–35. ([http://pubs.rsc.org/ej/CS/2000/a904518j.pdf on-line here; mentions Cassius and Kunchel])</ref><ref>{{cite journal | vauthors = Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA | title = The golden age: gold nanoparticles for biomedicine | journal = Chemical Society Reviews | volume = 41 | issue = 7 | pages = 2740–79 | date = April 2012 | pmid = 22109657 | pmc = 5876014 | doi = 10.1039/c1cs15237h }}</ref>
Due to their [[Metallic bond#Optical properties|optical]], electronic, and molecular-recognition properties, gold nanoparticles are the subject of substantial research, with many potential or promised applications in a wide variety of areas, including [[electron microscopy]], [[electronics]], [[nanotechnology]], [[materials science]], and [[biomedicine]].<ref>{{cite journal | vauthors = Yang X, Yang M, Pang B, Vara M, Xia Y | title = Gold Nanomaterials at Work in Biomedicine | journal = Chemical Reviews | volume = 115 | issue = 19 | pages = 10410–88 | date = October 2015 | pmid = 26293344 | doi = 10.1021/acs.chemrev.5b00193 }}</ref><ref name="ref4">Paul Mulvaney, University of Melbourne, ''The beauty and elegance of Nanocrystals'', [http://uninews.unimelb.edu.au/articleid_791.html Use since Roman times] {{webarchive|url=https://web.archive.org/web/20041028230241/http://uninews.unimelb.edu.au/articleid_791.html |date=2004-10-28 }}</ref><ref name="ref5">C. N. Ramachandra Rao, Giridhar U. Kulkarni, P. John Thomasa, Peter P. Edwards, ''Metal nanoparticles and their assemblies'', Chem. Soc. Rev., '''2000''', 29, 27–35. ([http://pubs.rsc.org/ej/CS/2000/a904518j.pdf on-line here; mentions Cassius and Kunchel])</ref><ref>{{cite journal | vauthors = Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA | title = The golden age: gold nanoparticles for biomedicine | journal = Chemical Society Reviews | volume = 41 | issue = 7 | pages = 2740–79 | date = April 2012 | pmid = 22109657 | pmc = 5876014 | doi = 10.1039/c1cs15237h }}</ref>


The properties of colloidal gold nanoparticles, and thus their applications, depend strongly upon their size and shape.<ref>{{cite journal|author=S.Zeng|title=A review on functionalized gold nanoparticles for biosensing applications |journal=Plasmonics |volume=6|year=2011|pages= 491–506|doi=10.1007/s11468-011-9228-1|issue=3|last2=Yong|first2=Ken-Tye|last3=Roy|first3=Indrajit|last4=Dinh|first4=Xuan-Quyen|last5=Yu|first5=Xia|last6=Luan|first6=Feng|display-authors=etal|url=http://www.ntu.edu.sg/home/swzeng/2011-a%20review%20on%20functionalized%20gold%20nanoparticles%20for%20biosensing%20applications.pdf}}</ref> For example, rodlike particles have both transverse and longitudinal [[Absorption (electromagnetic radiation)|absorption]] peak, and [[anisotropy]] of the shape affects their [[Self-assembly of nanoparticles|self-assembly]].<ref name="ReferenceA">{{cite journal | journal =Material Science and Engineering Reports | year = 2009 | volume = 65 | issue = 1–3 | pages = 1–38 | title = Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly | doi = 10.1016/j.mser.2009.02.002 | last1 =Sharma | first1 =Vivek | last2 =Park | first2 =Kyoungweon | last3 =Srinivasarao | first3 =Mohan }}</ref>
The properties of colloidal gold nanoparticles, and thus their applications, depend strongly upon their size and shape.<ref>{{cite journal|author=S.Zeng|title=A review on functionalized gold nanoparticles for biosensing applications |journal=Plasmonics |volume=6|year=2011|pages= 491–506|doi=10.1007/s11468-011-9228-1|issue=3|last2=Yong|first2=Ken-Tye|last3=Roy|first3=Indrajit|last4=Dinh|first4=Xuan-Quyen|last5=Yu|first5=Xia|last6=Luan|first6=Feng | name-list-format = vanc |display-authors=etal|url=http://www.ntu.edu.sg/home/swzeng/2011-a%20review%20on%20functionalized%20gold%20nanoparticles%20for%20biosensing%20applications.pdf}}</ref> For example, rodlike particles have both transverse and longitudinal [[Absorption (electromagnetic radiation)|absorption]] peak, and [[anisotropy]] of the shape affects their [[Self-assembly of nanoparticles|self-assembly]].<ref name="ReferenceA">{{cite journal | journal =Material Science and Engineering Reports | year = 2009 | volume = 65 | issue = 1–3 | pages = 1–38 | title = Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly | doi = 10.1016/j.mser.2009.02.002 | last1 =Sharma | first1 =Vivek | last2 =Park | first2 =Kyoungweon | last3 =Srinivasarao | first3 =Mohan | name-list-format = vanc }}</ref>


==History==
==History==
[[File:Vintage cranberry glass.jpg|thumb|left|This [[cranberry glass]] bowl was made by adding a gold salt (probably gold chloride) to molten glass.]]
[[File:Vintage cranberry glass.jpg|thumb|left|This [[cranberry glass]] bowl was made by adding a gold salt (probably gold chloride) to molten glass.]]
Used since ancient times as a method of [[Stained glass|staining glass]] colloidal gold was used in the 4th-century [[Lycurgus Cup]], which changes color depending on the location of light source.<ref>{{Cite web|title = The Lycurgus Cup|url = https://www.britishmuseum.org/research/collection_online/collection_object_details.aspx?objectId=61219&partId=1&searchText=Lycurgus%2520Cup|website = British Museum|access-date = 2015-12-04}}</ref><ref>{{Cite journal|last=Freestone|first=Ian|last2=Meeks|first2=Nigel|last3=Sax|first3=Margaret|last4=Higgitt|first4=Catherine|title=The Lycurgus Cup — A Roman nanotechnology |journal=Gold Bulletin|language=en|volume=40|issue=4|pages=270–277|doi=10.1007/BF03215599 |year=2007}}</ref>
Used since ancient times as a method of [[Stained glass|staining glass]] colloidal gold was used in the 4th-century [[Lycurgus Cup]], which changes color depending on the location of light source.<ref>{{Cite web|title = The Lycurgus Cup|url = https://www.britishmuseum.org/research/collection_online/collection_object_details.aspx?objectId=61219&partId=1&searchText=Lycurgus%2520Cup|website = British Museum|access-date = 2015-12-04}}</ref><ref>{{Cite journal|last=Freestone|first=Ian|last2=Meeks|first2=Nigel|last3=Sax|first3=Margaret|last4=Higgitt|first4=Catherine | name-list-format = vanc |title=The Lycurgus Cup — A Roman nanotechnology |journal=Gold Bulletin|language=en|volume=40|issue=4|pages=270–277|doi=10.1007/BF03215599 |year=2007}}</ref>


During the [[Middle Ages]], soluble gold, a solution containing [[Gold salts|gold salt]], had a reputation for its curative property for various diseases. In 1618, [[Francis Anthony]], a philosopher and member of the medical profession, published a book called ''Panacea Aurea, sive tractatus duo de ipsius Auro Potabili''<ref>{{Cite book|title = Panacea aurea sive Tractatus duo de ipsius auro potabili|last = Antonii|first = Francisci|publisher = Ex Bibliopolio Frobeniano|year = 1618|isbn = |location = |pages = }}</ref> (Latin: gold potion, or two treatments of [[Drinking water|potable]] gold). The book introduces information on the formation of colloidal gold and its medical uses. About half a century later, English botanist [[Nicholas Culpeper|Nicholas Culpepper]] published book in 1656, ''Treatise of Aurum Potabile'',<ref>{{Cite book|title = Mr. Culpepper's Treatise of aurum potabile Being a description of the three-fold world, viz. elementary celestial intellectual containing the knowledge necessary to the study of hermetick philosophy. Faithfully written by him in his life-time, and since his death, published by his wife.|last = Culpeper|first = Nicholas|publisher = |year = 1657|isbn = |location = London|pages = }}</ref> solely discussing the medical uses of colloidal gold.
During the [[Middle Ages]], soluble gold, a solution containing [[Gold salts|gold salt]], had a reputation for its curative property for various diseases. In 1618, [[Francis Anthony]], a philosopher and member of the medical profession, published a book called ''Panacea Aurea, sive tractatus duo de ipsius Auro Potabili''<ref>{{Cite book|title = Panacea aurea sive Tractatus duo de ipsius auro potabili|last = Antonii|first = Francisci|publisher = Ex Bibliopolio Frobeniano|year = 1618|isbn = |location = |pages = }}</ref> (Latin: gold potion, or two treatments of [[Drinking water|potable]] gold). The book introduces information on the formation of colloidal gold and its medical uses. About half a century later, English botanist [[Nicholas Culpeper|Nicholas Culpepper]] published book in 1656, ''Treatise of Aurum Potabile'',<ref>{{Cite book|title = Mr. Culpepper's Treatise of aurum potabile Being a description of the three-fold world, viz. elementary celestial intellectual containing the knowledge necessary to the study of hermetick philosophy. Faithfully written by him in his life-time, and since his death, published by his wife.|last = Culpeper|first = Nicholas|publisher = |year = 1657|isbn = |location = London|pages = }}</ref> solely discussing the medical uses of colloidal gold.
Line 19: Line 19:
Modern scientific evaluation of colloidal gold did not begin until [[Michael Faraday|Michael Faraday's]] work in the 1850s.<ref name="ref2">V. R. Reddy, "Gold Nanoparticles: Synthesis and Applications" '''2006''', 1791, and references therein</ref><ref>Michael Faraday, ''Philosophical Transactions of the Royal Society'', London, 1857</ref> In 1856, in a basement laboratory of [[Royal Institution]], Faraday accidentally created a ruby red solution while mounting pieces of gold leaf onto microscope slides.<ref>{{Cite web|title = Michael Faraday's gold colloids {{!}} The Royal Institution: Science Lives Here|url = http://www.rigb.org/our-history/iconic-objects/iconic-objects-list/faraday-gold-colloids|website = www.rigb.org|access-date = 2015-12-04}}</ref> Since he was already interested in the properties of light and matter, Faraday further investigated the optical properties of the colloidal gold. He prepared the first pure sample of colloidal gold, which he called 'activated gold', in 1857. He used [[phosphorus]] to [[Redox|reduce]] a solution of gold chloride. The colloidal gold Faraday made 150 years ago is still optically active. For a long time, the composition of the 'ruby' gold was unclear. Several chemists suspected it to be a gold [[tin]] compound, due to its preparation.<ref>{{cite journal | journal = Annalen der Physik | year = 1832 | volume = 101 | issue = 8 | pages = 629–630 | title = Ueber den Cassius'schen Goldpurpur | last = Gay-Lussac | doi = 10.1002/andp.18321010809 | bibcode = 1832AnP...101..629G }}</ref><ref>{{cite journal | journal = Annalen der Physik | volume = 98 | issue = 6 | pages = 306–308 | title = Ueber den Cassius' schen Goldpurpur | first = J. J. | last = Berzelius | doi = 10.1002/andp.18310980613 | year = 1831 | bibcode = 1831AnP....98..306B }}</ref> Faraday recognized that the color was actually due to the miniature size of the gold particles. He noted the [[light scattering]] properties of suspended gold microparticles, which is now called [[Tyndall effect|Faraday-Tyndall effect]].<ref>{{cite journal | title = Experimental Relations of Gold (and Other Metals) to Light, | first = M. | last =Faraday | journal = Philosophical Transactions of the Royal Society | year = 1857 | volume = 147 | pages = 145 | doi = 10.1098/rstl.1857.0011}}</ref>
Modern scientific evaluation of colloidal gold did not begin until [[Michael Faraday|Michael Faraday's]] work in the 1850s.<ref name="ref2">V. R. Reddy, "Gold Nanoparticles: Synthesis and Applications" '''2006''', 1791, and references therein</ref><ref>Michael Faraday, ''Philosophical Transactions of the Royal Society'', London, 1857</ref> In 1856, in a basement laboratory of [[Royal Institution]], Faraday accidentally created a ruby red solution while mounting pieces of gold leaf onto microscope slides.<ref>{{Cite web|title = Michael Faraday's gold colloids {{!}} The Royal Institution: Science Lives Here|url = http://www.rigb.org/our-history/iconic-objects/iconic-objects-list/faraday-gold-colloids|website = www.rigb.org|access-date = 2015-12-04}}</ref> Since he was already interested in the properties of light and matter, Faraday further investigated the optical properties of the colloidal gold. He prepared the first pure sample of colloidal gold, which he called 'activated gold', in 1857. He used [[phosphorus]] to [[Redox|reduce]] a solution of gold chloride. The colloidal gold Faraday made 150 years ago is still optically active. For a long time, the composition of the 'ruby' gold was unclear. Several chemists suspected it to be a gold [[tin]] compound, due to its preparation.<ref>{{cite journal | journal = Annalen der Physik | year = 1832 | volume = 101 | issue = 8 | pages = 629–630 | title = Ueber den Cassius'schen Goldpurpur | last = Gay-Lussac | doi = 10.1002/andp.18321010809 | bibcode = 1832AnP...101..629G }}</ref><ref>{{cite journal | journal = Annalen der Physik | volume = 98 | issue = 6 | pages = 306–308 | title = Ueber den Cassius' schen Goldpurpur | first = J. J. | last = Berzelius | doi = 10.1002/andp.18310980613 | year = 1831 | bibcode = 1831AnP....98..306B }}</ref> Faraday recognized that the color was actually due to the miniature size of the gold particles. He noted the [[light scattering]] properties of suspended gold microparticles, which is now called [[Tyndall effect|Faraday-Tyndall effect]].<ref>{{cite journal | title = Experimental Relations of Gold (and Other Metals) to Light, | first = M. | last =Faraday | journal = Philosophical Transactions of the Royal Society | year = 1857 | volume = 147 | pages = 145 | doi = 10.1098/rstl.1857.0011}}</ref>


In 1898, [[Richard Adolf Zsigmondy]] prepared the first colloidal gold in diluted solution.<ref>{{cite web | url = http://nobelprize.org/nobel_prizes/chemistry/laureates/1925/zsigmondy-lecture.pdf | first = Richard | last = Zsigmondy| title = Properties of colloids | publisher = Nobel Foundation | date = December 11, 1926 | access-date = 2009-01-23}}</ref> Apart from Zsigmondy, [[Theodor Svedberg]], who invented [[ultracentrifugation]], and [[Gustav Mie]], who provided the [[Mie Scattering|theory for scattering and absorption by spherical particles]], were also interested in the synthesis and properties of colloidal gold.<ref name="ReferenceA" /><ref>{{cite journal|title=Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement |journal=Sensors and Actuators B: Chemical |year=2013|doi=10.1016/j.snb.2012.09.073|volume=176|pages=1128|last1=Zeng|first1=Shuwen|last2=Yu|first2=Xia|last3=Law|first3=Wing-Cheung|last4=Zhang|first4=Yating|last5=Hu|first5=Rui|last6=Dinh|first6=Xuan-Quyen|last7=Ho|first7=Ho-Pui|last8=Yong|first8=Ken-Tye |url=https://www.researchgate.net/publication/268225952_Fig._S1 }}</ref>
In 1898, [[Richard Adolf Zsigmondy]] prepared the first colloidal gold in diluted solution.<ref>{{cite web | url = http://nobelprize.org/nobel_prizes/chemistry/laureates/1925/zsigmondy-lecture.pdf | first = Richard | last = Zsigmondy| title = Properties of colloids | publisher = Nobel Foundation | date = December 11, 1926 | access-date = 2009-01-23}}</ref> Apart from Zsigmondy, [[Theodor Svedberg]], who invented [[ultracentrifugation]], and [[Gustav Mie]], who provided the [[Mie Scattering|theory for scattering and absorption by spherical particles]], were also interested in the synthesis and properties of colloidal gold.<ref name="ReferenceA" /><ref>{{cite journal|title=Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement |journal=Sensors and Actuators B: Chemical |year=2013 |doi=10.1016/j.snb.2012.09.073 |volume=176|pages=1128|last1=Zeng |first1=Shuwen |last2=Yu |first2=Xia |last3=Law |first3=Wing-Cheung |last4=Zhang |first4=Yating |last5=Hu |first5=Rui |last6=Dinh |first6=Xuan-Quyen |last7=H o|first7=Ho-Pui |last8=Yong |first8=Ken-Tye | name-list-format = vanc |url=https://www.researchgate.net/publication/268225952_Fig._S1 }}</ref>


With advances in various analytical technologies in the 20th century, studies on gold nanoparticles has accelerated. Advanced microscopy methods, such as [[atomic force microscopy]] and [[Electron microscope|electron microscopy]], have contributed the most to nanoparticle research. Due to their comparably easy synthesis and high stability, various gold particles have been studied for their practical uses. Different types of gold nanoparticle are already used in many industries, such as medicine and electronics. For example, several [[Food and Drug Administration|FDA]]-approved nanoparticles are currently used in [[drug delivery]].<ref>{{Cite book|title = Nanoparticle Therapeutics: FDA Approval, Clinical Trials, Regulatory Pathways, and Case Study - Springer|url = https://link.springer.com/protocol/10.1007%2F978-1-61779-052-2_21|publisher = Humana Press|date = 2011-01-01|isbn = 978-1-61779-051-5|series = Methods in Molecular Biology|doi = 10.1007/978-1-61779-052-2_21|editor-first = Sarah J.|editor-last = Hurst}}</ref>
With advances in various analytical technologies in the 20th century, studies on gold nanoparticles has accelerated. Advanced microscopy methods, such as [[atomic force microscopy]] and [[Electron microscope|electron microscopy]], have contributed the most to nanoparticle research. Due to their comparably easy synthesis and high stability, various gold particles have been studied for their practical uses. Different types of gold nanoparticle are already used in many industries, such as medicine and electronics. For example, several [[Food and Drug Administration|FDA]]-approved nanoparticles are currently used in [[drug delivery]].<ref>{{Cite book|title = Nanoparticle Therapeutics: FDA Approval, Clinical Trials, Regulatory Pathways, and Case Study - Springer|url = https://link.springer.com/protocol/10.1007%2F978-1-61779-052-2_21|publisher = Humana Press|date = 2011-01-01|isbn = 978-1-61779-051-5|series = Methods in Molecular Biology|doi = 10.1007/978-1-61779-052-2_21|editor-first = Sarah J.|editor-last = Hurst}}</ref>
Line 26: Line 26:


=== Optical ===
=== Optical ===
Colloidal gold has been used by artists for centuries because of the nanoparticle’s interactions with visible light. Gold nanoparticles absorb and scatter light<ref>{{Cite journal|last=Anderson|first=Michele L.|last2=Morris|first2=Catherine A.|last3=Stroud|first3=Rhonda M.|last4=Merzbacher|first4=Celia I.|last5=Rolison|first5=Debra R.|date=1999-02-01|title=Colloidal Gold Aerogels:  Preparation, Properties, and Characterization |journal=Langmuir|volume=15|issue=3|pages=674–681|doi=10.1021/la980784i }}</ref> resulting in colours ranging from vibrant reds to blues to black and finally to clear and colorless, depending on particle size, shape, local refractive index, and aggregation state. These colors occur because of a phenomenon called [[Surface plasmon resonance|Localized Surface Plasmon Resonance (LSPR)]], in which conduction electrons on the surface of the nanoparticle oscillate in resonance with incident light.
Colloidal gold has been used by artists for centuries because of the nanoparticle’s interactions with visible light. Gold nanoparticles absorb and scatter light<ref>{{Cite journal|last=Anderson|first=Michele L.|last2=Morris|first2=Catherine A.|last3=Stroud|first3=Rhonda M.|last4=Merzbacher|first4=Celia I.|last5=Rolison|first5=Debra R. | name-list-format = vanc |date=1999-02-01|title=Colloidal Gold Aerogels:  Preparation, Properties, and Characterization |journal=Langmuir|volume=15|issue=3|pages=674–681|doi=10.1021/la980784i }}</ref> resulting in colours ranging from vibrant reds to blues to black and finally to clear and colorless, depending on particle size, shape, local refractive index, and aggregation state. These colors occur because of a phenomenon called [[Surface plasmon resonance|Localized Surface Plasmon Resonance (LSPR)]], in which conduction electrons on the surface of the nanoparticle oscillate in resonance with incident light.


==== Effect of size ====
==== Effect of size ====
As a general rule, the wavelength of light absorbed increases as a function of increasing nano particle size.<ref name="Link 4212–4217">{{Cite journal|last=Link|first=Stephan|last2=El-Sayed|first2=Mostafa A.|date=1999-05-01|title=Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles |journal=The Journal of Physical Chemistry B|volume=103|issue=21|pages=4212–4217|doi=10.1021/jp984796o }}</ref> For example, pseudo-spherical gold nanoparticles with diameters ~ 30&nbsp;nm have a peak LSPR absorption at ~530&nbsp;nm.<ref name="Link 4212–4217"/>{{clarify|reason=a single absorption peak for a single particle size is not sufficient to illustrate the rule expressed in the previous sentence|date=April 2018}}
As a general rule, the wavelength of light absorbed increases as a function of increasing nano particle size.<ref name="Link 4212–4217">{{Cite journal|last=Link|first=Stephan|last2=El-Sayed|first2=Mostafa A. | name-list-format = vanc |date=1999-05-01|title=Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles |journal=The Journal of Physical Chemistry B|volume=103|issue=21|pages=4212–4217|doi=10.1021/jp984796o }}</ref> For example, pseudo-spherical gold nanoparticles with diameters ~ 30&nbsp;nm have a peak LSPR absorption at ~530&nbsp;nm.<ref name="Link 4212–4217"/>{{clarify|reason=a single absorption peak for a single particle size is not sufficient to illustrate the rule expressed in the previous sentence|date=April 2018}}


==== Effect of local refractive index ====
==== Effect of local refractive index ====
Changes in the apparent color of a gold nanoparticle solution can also be caused by the environment in which the colloidal gold is suspended<ref name="Ghosh 13963–13971">{{Cite journal|last=Ghosh|first=Sujit Kumar|last2=Nath|first2=Sudip|last3=Kundu|first3=Subrata|last4=Esumi|first4=Kunio|last5=Pal|first5=Tarasankar|date=2004-09-01|title=Solvent and Ligand Effects on the Localized Surface Plasmon Resonance (LSPR) of Gold Colloids |journal=The Journal of Physical Chemistry B|volume=108|issue=37|pages=13963–13971|doi=10.1021/jp047021q }}</ref><ref name="Underwood 3427–3430">{{Cite journal|last=Underwood|first=Sylvia|last2=Mulvaney|first2=Paul|date=1994-10-01|title=Effect of the Solution Refractive Index on the Color of Gold Colloids |journal=Langmuir|volume=10|issue=10|pages=3427–3430|doi=10.1021/la00022a011 }}</ref> The optical properties of gold nanoparticles depends on the refractive index near the nanoparticle surface, therefore both the molecules directly attached to the nanoparticle surface (i.e. nanoparticle ligands) and/or the nanoparticle [[solvent]] both may influence observed optical features.<ref name="Ghosh 13963–13971"/> As the refractive index near the gold surface increases, the NP LSPR will shift to longer wavelengths<ref name="Underwood 3427–3430"/> In addition to solvent environment, the [[Complex index of refraction#Complex refractive index|extinction peak]] can be tuned by coating the nanoparticles with non-conducting shells such as silica, bio molecules, or aluminium oxide.<ref>{{Cite journal|last=Xing|first=Shuangxi|last2=Tan|first2=Li Huey|last3=Yang|first3=Miaoxin|last4=Pan|first4=Ming|last5=Lv|first5=Yunbo|last6=Tang|first6=Qinghu|last7=Yang|first7=Yanhui|last8=Chen|first8=Hongyu|date=2009-05-12|title=Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains |journal=Journal of Materials Chemistry|language=en|volume=19|issue=20|doi=10.1039/b900993k |page=3286}}</ref>
Changes in the apparent color of a gold nanoparticle solution can also be caused by the environment in which the colloidal gold is suspended<ref name="Ghosh 13963–13971">{{Cite journal|last=Ghosh|first=Sujit Kumar|last2=Nath|first2=Sudip|last3=Kundu|first3=Subrata|last4=Esumi|first4=Kunio|last5=Pal|first5=Tarasankar | name-list-format = vanc |date=2004-09-01|title=Solvent and Ligand Effects on the Localized Surface Plasmon Resonance (LSPR) of Gold Colloids |journal=The Journal of Physical Chemistry B|volume=108|issue=37|pages=13963–13971|doi=10.1021/jp047021q }}</ref><ref name="Underwood 3427–3430">{{Cite journal|last=Underwood|first=Sylvia|last2=Mulvaney|first2=Paul| name-list-format = vanc |date=1994-10-01|title=Effect of the Solution Refractive Index on the Color of Gold Colloids |journal=Langmuir|volume=10|issue=10|pages=3427–3430|doi=10.1021/la00022a011 }}</ref> The optical properties of gold nanoparticles depends on the refractive index near the nanoparticle surface, therefore both the molecules directly attached to the nanoparticle surface (i.e. nanoparticle ligands) and/or the nanoparticle [[solvent]] both may influence observed optical features.<ref name="Ghosh 13963–13971"/> As the refractive index near the gold surface increases, the NP LSPR will shift to longer wavelengths<ref name="Underwood 3427–3430"/> In addition to solvent environment, the [[Complex index of refraction#Complex refractive index|extinction peak]] can be tuned by coating the nanoparticles with non-conducting shells such as silica, bio molecules, or aluminium oxide.<ref>{{Cite journal |last=Xing |first=Shuangxi |last2=Tan |first2=Li Huey |last3=Yang |first3=Miaoxin |last4=Pan |first4=Ming |last5=Lv |first5=Yunbo |last6=Tang |first6=Qinghu|last7=Yang|first7=Yanhui|last8=Chen|first8=Hongyu | name-list-format = vanc |date=2009-05-12|title=Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains |journal=Journal of Materials Chemistry|language=en|volume=19|issue=20|doi=10.1039/b900993k |page=3286}}</ref>


==== Effect of aggregation ====
==== Effect of aggregation ====
Line 48: Line 48:
===Drug delivery system===
===Drug delivery system===


Gold nanoparticles can be used to optimize the biodistribution of drugs to diseased organs, tissues or cells, in order to improve and target drug delivery.<ref>{{cite journal | vauthors = Han G, Ghosh P, Rotello VM | title = Functionalized gold nanoparticles for drug delivery | journal = Nanomedicine | volume = 2 | issue = 1 | pages = 113–23 | date = February 2007 | pmid = 17716197 | doi = 10.2217/17435889.2.1.113 }}</ref><ref>{{cite journal | last1 = Han | first1 = G | last2 = Ghosh | first2 = P | last3 = Rotello | first3 = VM | year = 2007 | title = Multi-functional gold nanoparticles for drug delivery | journal = Adv Exp Med Biol | volume = 620 | issue = | pages = 48–56 }}</ref>
Gold nanoparticles can be used to optimize the biodistribution of drugs to diseased organs, tissues or cells, in order to improve and target drug delivery.<ref>{{cite journal | vauthors = Han G, Ghosh P, Rotello VM | title = Functionalized gold nanoparticles for drug delivery | journal = Nanomedicine | volume = 2 | issue = 1 | pages = 113–23 | date = February 2007 | pmid = 17716197 | doi = 10.2217/17435889.2.1.113 }}</ref><ref>{{cite journal | vauthors = Han G, Ghosh P, Rotello VM | title = Multi-functional gold nanoparticles for drug delivery | journal = Advances in Experimental Medicine and Biology | volume = 620 | issue = | pages = 48–56 | year = 2007 | pmid = 18217334 }}</ref>
Nanoparticle-mediated drug delivery is feasible only if the drug distribution is otherwise inadequate. These cases include drug targeting of unstable ([[protein]]s, [[Small interfering RNA|siRNA]], [[DNA]]), delivery to the difficult sites (brain, retina, tumors, intracellular organelles) and drugs with serious side effects (e.g. anti-cancer agents). The performance of the nanoparticles depends on the size and surface functionalities in the particles. Also, the drug release and particle disintegration can vary depending on the system (e.g. biodegradable polymers sensitive to pH). An optimal nanodrug delivery system ensures that the active drug is available at the site of action for the correct time and duration, and their concentration should be above the minimal effective concentration (MEC) and below the minimal toxic concentration (MTC).<ref>{{cite journal | last1 = Langer | first1 = R | year = 2000 | title = Biomaterials in drug delivery and tissue engineering: one laboratory's experience | journal = Acc Chem Res | volume = 33 | issue = | pages = 94–101 | doi=10.1021/ar9800993}}</ref>
Nanoparticle-mediated drug delivery is feasible only if the drug distribution is otherwise inadequate. These cases include drug targeting of unstable ([[protein]]s, [[Small interfering RNA|siRNA]], [[DNA]]), delivery to the difficult sites (brain, retina, tumors, intracellular organelles) and drugs with serious side effects (e.g. anti-cancer agents). The performance of the nanoparticles depends on the size and surface functionalities in the particles. Also, the drug release and particle disintegration can vary depending on the system (e.g. biodegradable polymers sensitive to pH). An optimal nanodrug delivery system ensures that the active drug is available at the site of action for the correct time and duration, and their concentration should be above the minimal effective concentration (MEC) and below the minimal toxic concentration (MTC).<ref>{{cite journal | vauthors = Langer R | title = Biomaterials in drug delivery and tissue engineering: one laboratory's experience | journal = Accounts of Chemical Research | volume = 33 | issue = 2 | pages = 94–101 | date = February 2000 | pmid = 10673317 | doi = 10.1021/ar9800993 }}</ref>


Gold nanoparticles are being investigated as carriers for drugs such as [[Paclitaxel]].<ref>{{cite journal | vauthors = Gibson JD, Khanal BP, Zubarev ER | title = Paclitaxel-functionalized gold nanoparticles | journal = Journal of the American Chemical Society | volume = 129 | issue = 37 | pages = 11653–61 | date = September 2007 | pmid = 17718495 | doi = 10.1021/ja075181k }}</ref> The administration of hydrophobic drugs require [[molecular encapsulation]] and it is found that nanosized particles are particularly efficient in evading the [[reticuloendothelial system]].
Gold nanoparticles are being investigated as carriers for drugs such as [[Paclitaxel]].<ref>{{cite journal | vauthors = Gibson JD, Khanal BP, Zubarev ER | title = Paclitaxel-functionalized gold nanoparticles | journal = Journal of the American Chemical Society | volume = 129 | issue = 37 | pages = 11653–61 | date = September 2007 | pmid = 17718495 | doi = 10.1021/ja075181k }}</ref> The administration of hydrophobic drugs require [[molecular encapsulation]] and it is found that nanosized particles are particularly efficient in evading the [[reticuloendothelial system]].
Line 56: Line 56:
In cancer research, colloidal gold can be used to target tumors and provide detection using SERS ([[surface enhanced Raman spectroscopy]]) ''in vivo''. These gold nanoparticles are surrounded with Raman reporters, which provide light emission that is over 200 times brighter than [[quantum dots]]. It was found that the Raman reporters were stabilized when the nanoparticles were encapsulated with a thiol-modified [[polyethylene glycol]] coat. This allows for compatibility and circulation ''in vivo''. To specifically target tumor cells, the [[polyethylene]]gylated gold particles are conjugated with an antibody (or an antibody fragment such as scFv), against, e.g. [[epidermal growth factor receptor]], which is sometimes overexpressed in cells of certain cancer types. Using SERS, these pegylated gold nanoparticles can then detect the location of the tumor.<ref>Qian, Ximei. ''In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags.'' Nature Biotechnology. 2008. Vol 26 No 1.</ref>
In cancer research, colloidal gold can be used to target tumors and provide detection using SERS ([[surface enhanced Raman spectroscopy]]) ''in vivo''. These gold nanoparticles are surrounded with Raman reporters, which provide light emission that is over 200 times brighter than [[quantum dots]]. It was found that the Raman reporters were stabilized when the nanoparticles were encapsulated with a thiol-modified [[polyethylene glycol]] coat. This allows for compatibility and circulation ''in vivo''. To specifically target tumor cells, the [[polyethylene]]gylated gold particles are conjugated with an antibody (or an antibody fragment such as scFv), against, e.g. [[epidermal growth factor receptor]], which is sometimes overexpressed in cells of certain cancer types. Using SERS, these pegylated gold nanoparticles can then detect the location of the tumor.<ref>Qian, Ximei. ''In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags.'' Nature Biotechnology. 2008. Vol 26 No 1.</ref>


Gold nanoparticles accumulate in tumors, due to the leakiness of tumor vasculature, and can be used as contrast agents for enhanced imaging in a time-resolved optical tomography system using short-pulse lasers for skin cancer detection in mouse model. It is found that intravenously administrated spherical gold nanoparticles broadened the temporal profile of reflected optical signals and enhanced the contrast between surrounding normal tissue and tumors.<ref>{{cite journal | last1 = Sajjadi | first1 = AY | last2 = Suratkar | first2 = AA | last3 = Mitra | first3 = KK | last4 = Grace | first4 = MS | year = 2012 | title = Short-Pulse Laser-Based System for Detection of Tumors: Administration of Gold Nanoparticles Enhances Contrast | journal = J. Nanotechnol. Eng. Med. | volume = 3 | issue = 2| page = 021002 | doi = 10.1115/1.4007245 }}</ref>
Gold nanoparticles accumulate in tumors, due to the leakiness of tumor vasculature, and can be used as contrast agents for enhanced imaging in a time-resolved optical tomography system using short-pulse lasers for skin cancer detection in mouse model. It is found that intravenously administrated spherical gold nanoparticles broadened the temporal profile of reflected optical signals and enhanced the contrast between surrounding normal tissue and tumors.<ref>{{cite journal | vauthors = Sajjadi AY, Suratkar AA, Mitra KK, Grace MS | year = 2012 | title = Short-Pulse Laser-Based System for Detection of Tumors: Administration of Gold Nanoparticles Enhances Contrast | journal = J. Nanotechnol. Eng. Med. | volume = 3 | issue = 2| page = 021002 | doi = 10.1115/1.4007245 }}</ref>
[[File:tumor targeting.png|framed|right|Tumor targeting|framed|Tumor targeting via multifunctional nanocarriers. Cancer cells reduce adhesion to neighboring cells and migrate into the vasculature-rich stroma. Once at the vasculature, cells can freely enter the bloodstream. Once the tumor is directly connected to the main blood circulation system, multifunctional nanocarriers can interact directly with cancer cells and effectively target tumors.]]
[[File:tumor targeting.png|framed|right|Tumor targeting|framed|Tumor targeting via multifunctional nanocarriers. Cancer cells reduce adhesion to neighboring cells and migrate into the vasculature-rich stroma. Once at the vasculature, cells can freely enter the bloodstream. Once the tumor is directly connected to the main blood circulation system, multifunctional nanocarriers can interact directly with cancer cells and effectively target tumors.]]


Line 78: Line 78:
===Gold nanoparticle based biosensor===
===Gold nanoparticle based biosensor===


Gold nanoparticles are incorporated into [[biosensor]]s to enhance its stability, sensitivity, and selectivity.<ref name="review">Xu, S. et. al. ''Gold nanoparticle-based biosensors.'' Gold Bulletin. 2010, 43, p 29–41.</ref> Nanoparticle properties such as small size, high surface-to-volume ratio, and high surface energy allow immobilization of large range of biomolecules. Gold nanoparticle, in particular, could also act as "electron wire" to transport electrons and its amplification effect on electromagnetic light allows it to function as signal amplifiers.<ref>{{cite journal | last1 = Wang | first1 = J. | last2 = Polsky | first2 = R. | last3 = Xu | first3 = D. | year = 2001 | title = Silver-Enhanced Colloidal Gold Electrochemical Stripping Detection of DNA Hybridization| journal = Langmuir | volume = 17 | issue = | page = 5739 | doi=10.1021/la011002f}}</ref><ref>{{cite journal | last1 = Wang | first1 = J. | last2 = Xu | first2 = D. | last3 = Polsky | first3 = R. | year = 2002 | title = Magnetically-Induced Solid-State Electrochemical Detection of DNA Hybridization| doi = 10.1021/ja0255709 | journal = J Am Chem Soc | volume = 124 | issue = | page = 4028 }}</ref> Main types of gold nanoparticle based biosensors are optical and electrochemical biosensor.
Gold nanoparticles are incorporated into [[biosensor]]s to enhance its stability, sensitivity, and selectivity.<ref name="review">{{cite journal | vauthors = Xu S | title = Gold nanoparticle-based biosensors | journal = Gold Bulletin | year = 2010 | volume = 43 | pages = 29–41 }}</ref> Nanoparticle properties such as small size, high surface-to-volume ratio, and high surface energy allow immobilization of large range of biomolecules. Gold nanoparticle, in particular, could also act as "electron wire" to transport electrons and its amplification effect on electromagnetic light allows it to function as signal amplifiers.<ref>{{cite journal | vauthors = Wang J, Polsky R, Xu D | year = 2001 | title = Silver-Enhanced Colloidal Gold Electrochemical Stripping Detection of DNA Hybridization| journal = Langmuir | volume = 17 | issue = | page = 5739 | doi=10.1021/la011002f}}</ref><ref>{{cite journal | vauthors = Wang J, Xu D, Polsky R | title = Magnetically-induced solid-state electrochemical detection of DNA hybridization | journal = Journal of the American Chemical Society | volume = 124 | issue = 16 | pages = 4208–9 | date = April 2002 | pmid = 11960439 | doi = 10.1021/ja0255709 }}</ref> Main types of gold nanoparticle based biosensors are optical and electrochemical biosensor.


====Optical biosensor====
====Optical biosensor====
[[File:Gold nanoparticles as indicators.jpg|thumb|441x441px|Gold nanoparticle-based (Au-NP) biosensor for [[Glutathione]] (GSH). The AuNPs are [[Functional group|functionalised]] with a chemical group that binds to GSH and makes the NPs partially collapse, and thus change colour. The exact amount of GSH can be derived via [[Ultraviolet–visible spectroscopy|UV-vis spectroscopy]] through a [[calibration curve]].]]
[[File:Gold nanoparticles as indicators.jpg|thumb|441x441px|Gold nanoparticle-based (Au-NP) biosensor for [[Glutathione]] (GSH). The AuNPs are [[Functional group|functionalised]] with a chemical group that binds to GSH and makes the NPs partially collapse, and thus change colour. The exact amount of GSH can be derived via [[Ultraviolet–visible spectroscopy|UV-vis spectroscopy]] through a [[calibration curve]].]]
Gold nanoparticles improve the sensitivity of optical sensor by response to the change in local refractive index. The angle of the incidence light for surface plasmon resonance, an interaction between light wave and conducting electrons in metal, changes when other substances are bounded to the metal surface.<ref>{{cite journal | vauthors = Daniel MC, Astruc D | title = Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology | journal = Chemical Reviews | volume = 104 | issue = 1 | pages = 293–346 | date = January 2004 | pmid = 14719978 | doi = 10.1021/cr030698+ }}</ref><ref>{{cite journal | vauthors = Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia Y | title = Gold nanostructures: engineering their plasmonic properties for biomedical applications | journal = Chemical Society Reviews | volume = 35 | issue = 11 | pages = 1084–94 | date = November 2006 | pmid = 17057837 | doi = 10.1039/b517615h }}</ref> Because gold is very sensitive to its surroundings' dielectric constant,<ref>{{cite journal | last1 = Link | first1 = S. | last2 = El-Sayed | first2 = M.A. | year = 1996 | title = Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods| doi = 10.1021/jp9917648 | journal = J. Phys. Chem. B | volume = 103 | issue = | page = 8410 }}</ref><ref>{{cite journal | last1 = Mulvaney | first1 = P. | year = 1996 | title = Surface Plasmon Spectroscopy of Nanosized Metal Particles| journal = Langmuir | volume = 12 | issue = | page = 788 | doi=10.1021/la9502711}}</ref> binding of an analyte would significantly shift gold nanoparticle's SPR and therefore allow more sensitive detection. Gold nanoparticle could also amplify the SPR signal.<ref>{{cite journal | vauthors = Lin HY, Chen CT, Chen YC | title = Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized on glass substrates | journal = Analytical Chemistry | volume = 78 | issue = 19 | pages = 6873–8 | date = October 2006 | pmid = 17007509 | doi = 10.1021/ac060833t }}</ref> When the plasmon wave pass through the gold nanoparticle, the charge density in the wave and the electron I the gold interacted and resulted in higher energy response, so called electron coupling.<ref name="review" /> Since the analyte and bio-receptor now bind to the gold, it increases the apparent mass of the analyte and therefore amplified the signal.<ref name="review" />
Gold nanoparticles improve the sensitivity of optical sensor by response to the change in local refractive index. The angle of the incidence light for surface plasmon resonance, an interaction between light wave and conducting electrons in metal, changes when other substances are bounded to the metal surface.<ref>{{cite journal | vauthors = Daniel MC, Astruc D | title = Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology | journal = Chemical Reviews | volume = 104 | issue = 1 | pages = 293–346 | date = January 2004 | pmid = 14719978 | doi = 10.1021/cr030698+ }}</ref><ref>{{cite journal | vauthors = Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia Y | title = Gold nanostructures: engineering their plasmonic properties for biomedical applications | journal = Chemical Society Reviews | volume = 35 | issue = 11 | pages = 1084–94 | date = November 2006 | pmid = 17057837 | doi = 10.1039/b517615h }}</ref> Because gold is very sensitive to its surroundings' dielectric constant,<ref>{{cite journal | vauthors = Link S, El-Sayed MA | year = 1996 | title = Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods| doi = 10.1021/jp9917648 | journal = J. Phys. Chem. B | volume = 103 | issue = | page = 8410 }}</ref><ref>{{cite journal | last1 = Mulvaney | first1 = P. | year = 1996 | title = Surface Plasmon Spectroscopy of Nanosized Metal Particles| journal = Langmuir | volume = 12 | issue = | page = 788 | doi=10.1021/la9502711}}</ref> binding of an analyte would significantly shift gold nanoparticle's SPR and therefore allow more sensitive detection. Gold nanoparticle could also amplify the SPR signal.<ref>{{cite journal | vauthors = Lin HY, Chen CT, Chen YC | title = Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized on glass substrates | journal = Analytical Chemistry | volume = 78 | issue = 19 | pages = 6873–8 | date = October 2006 | pmid = 17007509 | doi = 10.1021/ac060833t }}</ref> When the plasmon wave pass through the gold nanoparticle, the charge density in the wave and the electron I the gold interacted and resulted in higher energy response, so called electron coupling.<ref name="review" /> Since the analyte and bio-receptor now bind to the gold, it increases the apparent mass of the analyte and therefore amplified the signal.<ref name="review" />
These properties had been used to build DNA sensor with 1000-fold sensitive than without the Au NP.<ref>{{cite journal | last1 = He | first1 = L. | last2 = Musick | first2 = M.D. | last3 = Nicewarner | first3 = S. R. | last4 = Salinas | first4 = F.G. | year = 2000 | title = Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization| doi = 10.1021/ja001215b | journal = Journal of the American Chemical Society | volume = 122 | issue = | page = 9071 }}</ref> Humidity senor was also built by altering the atom interspacing between molecules with humidity change, the interspacing change would also result in a change of the Au NP's LSPR.<ref>{{cite journal | year = 2000 | title = Local plasmon sensor with gold colloid monolayers deposited upon glass substrates| doi = 10.1364/OL.25.000372 | journal = Opt Lett | volume = 25 | issue = | page = 372 | last1 = Okamoto | first1 = Takayuki | last2 = Yamaguchi | first2 = Ichirou | last3 = Kobayashi | first3 = Tetsushi| bibcode = 2000OptL...25..372O}}</ref>
These properties had been used to build DNA sensor with 1000-fold sensitive than without the Au NP.<ref>{{cite journal | vauthors = He L, Musick MD, Nicewarner SR, Salinas FG | year = 2000 | title = Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization| doi = 10.1021/ja001215b | journal = Journal of the American Chemical Society | volume = 122 | issue = | page = 9071 }}</ref> Humidity senor was also built by altering the atom interspacing between molecules with humidity change, the interspacing change would also result in a change of the Au NP's LSPR.<ref>{{cite journal | year = 2000 | title = Local plasmon sensor with gold colloid monolayers deposited upon glass substrates| doi = 10.1364/OL.25.000372 | journal = Opt Lett | volume = 25 | issue = | page = 372 | last1 = Okamoto | first1 = Takayuki | last2 = Yamaguchi | first2 = Ichirou | last3 = Kobayashi | first3 = Tetsushi | name-list-format = vanc | bibcode = 2000OptL...25..372O}}</ref>


====Electrochemical biosensor====
====Electrochemical biosensor====
Electrochemical sensor convert biological information into electrical signals that could be detected. The conductivity and biocompatibility of Au NP allow it to act as "electron wire".<ref name="review" /> It transfers electron between the electrode and the active site of the enzyme.<ref>{{cite journal | last1 = Brown | first1 = K.R. | last2 = Fox | first2 = P | last3 = Natan | first3 = M.J. | year = 1996 | title = Morphology-Dependent Electrochemistry of Cytochromecat Au Colloid-Modified SnO2Electrodes| journal = Journal of the American Chemical Society | volume = 118 | issue = | page = 1154 | doi=10.1021/ja952951w}}</ref> It could be accomplished in two ways: attach the Au NP to either the enzyme or the electrode. GNP-glucose oxidase monolayer electrode was constructed use these two methods.<ref>{{cite journal | vauthors = Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I | title = "Plugging into Enzymes": nanowiring of redox enzymes by a gold nanoparticle | journal = Science | volume = 299 | issue = 5614 | pages = 1877–81 | date = March 2003 | pmid = 12649477 | doi = 10.1126/science.1080664 | bibcode = 2003Sci...299.1877X }}</ref> The Au NP allowed more freedom in the enzyme's orientation and therefore more sensitive and stable detection. Au NP also acts as immobilization platform for the enzyme. Most biomolecules denatures or lose its activity when interacted with the electrode.<ref name="review" /> The biocompatibility and high surface energy of Au allow it to bind to a large amount of protein without altering its activity and results in a more sensitive sensor.<ref>{{cite journal | last1 = Gole | first1 = A. | display-authors = 1 | last2 = et al | year = 2001 | title = Pepsin−Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity| journal = Langmuir | volume = 17 | issue = | page = 1674 | doi=10.1021/la001164w}}</ref><ref>{{cite journal | last1 = Gole | first1 = A. | display-authors = 1 | last2 = et al | year = 2002 | title = Studies on the formation of bioconjugates of Endoglucanase with colloidal gold| journal = Colloids and Surfaces B: Biointerfaces | volume = 25 | issue = | page = 129 | doi=10.1016/s0927-7765(01)00301-0}}</ref> Moreover, Au NP also catalyzes biological reactions.<ref>{{cite journal | last1 = Valden | first1 = M. | last2 = Lai | first2 = X. | last3 = Goodman | first3 = D.W. | year = 1998 | title = Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties| journal = Science | volume = 281 | issue = | page = 1647 | doi=10.1126/science.281.5383.1647| bibcode = 1998Sci...281.1647V}}</ref><ref>{{cite journal | last1 = Lou | first1 = Y. | last2 = Maye | first2 = M.M. | last3 = Han | first3 = L. | last4 = Zhong | first4 = C. -J. | year = 2001| title = Gold–platinum alloy nanoparticle assembly as catalyst for methanol electrooxidation| doi = 10.1039/b008669j | journal = Chemical Communications | volume = 2001 | issue = | page = 473 }}</ref> Gold nanoparticle under 2&nbsp;nm has shown [[Heterogeneous gold catalysis|catalytic activity]] to the oxidation of styrene.<ref>{{cite journal | vauthors = Turner M, Golovko VB, Vaughan OP, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BF, Lambert RM | title = Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters | journal = Nature | volume = 454 | issue = 7207 | pages = 981–3 | date = August 2008 | pmid = 18719586 | doi = 10.1038/nature07194 | bibcode = 2008Natur.454..981T }}</ref>
Electrochemical sensor convert biological information into electrical signals that could be detected. The conductivity and biocompatibility of Au NP allow it to act as "electron wire".<ref name="review" /> It transfers electron between the electrode and the active site of the enzyme.<ref>{{cite journal | vauthors = Brown KR, Fox P, Natan MJ | year = 1996 | title = Morphology-Dependent Electrochemistry of Cytochromecat Au Colloid-Modified SnO2Electrodes| journal = Journal of the American Chemical Society | volume = 118 | issue = | page = 1154 | doi=10.1021/ja952951w}}</ref> It could be accomplished in two ways: attach the Au NP to either the enzyme or the electrode. GNP-glucose oxidase monolayer electrode was constructed use these two methods.<ref>{{cite journal | vauthors = Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I | title = "Plugging into Enzymes": nanowiring of redox enzymes by a gold nanoparticle | journal = Science | volume = 299 | issue = 5614 | pages = 1877–81 | date = March 2003 | pmid = 12649477 | doi = 10.1126/science.1080664 | bibcode = 2003Sci...299.1877X }}</ref> The Au NP allowed more freedom in the enzyme's orientation and therefore more sensitive and stable detection. Au NP also acts as immobilization platform for the enzyme. Most biomolecules denatures or lose its activity when interacted with the electrode.<ref name="review" /> The biocompatibility and high surface energy of Au allow it to bind to a large amount of protein without altering its activity and results in a more sensitive sensor.<ref>{{cite journal | last1 = Gole | first1 = A. | display-authors = 1 | last2 = et al | year = 2001 | title = Pepsin−Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity| journal = Langmuir | volume = 17 | issue = | page = 1674 | doi=10.1021/la001164w}}</ref><ref>{{cite journal | last1 = Gole | first1 = A. | display-authors = 1 | last2 = et al | year = 2002 | title = Studies on the formation of bioconjugates of Endoglucanase with colloidal gold| journal = Colloids and Surfaces B: Biointerfaces | volume = 25 | issue = | page = 129 | doi=10.1016/s0927-7765(01)00301-0}}</ref> Moreover, Au NP also catalyzes biological reactions.<ref>{{cite journal | vauthors = Valden M, Lai X, Goodman DW | title = Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties | journal = Science | volume = 281 | issue = 5383 | pages = 1647–50 | date = September 1998 | pmid = 9733505 | doi = 10.1126/science.281.5383.1647 | bibcode = 1998Sci...281.1647V }}</ref><ref>{{cite journal | vauthors = Lou Y, Maye MM, Han L, Zhong CJ | year = 2001| title = Gold–platinum alloy nanoparticle assembly as catalyst for methanol electrooxidation| doi = 10.1039/b008669j | journal = Chemical Communications | volume = 2001 | issue = | page = 473 }}</ref> Gold nanoparticle under 2&nbsp;nm has shown [[Heterogeneous gold catalysis|catalytic activity]] to the oxidation of styrene.<ref>{{cite journal | vauthors = Turner M, Golovko VB, Vaughan OP, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BF, Lambert RM | title = Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters | journal = Nature | volume = 454 | issue = 7207 | pages = 981–3 | date = August 2008 | pmid = 18719586 | doi = 10.1038/nature07194 | bibcode = 2008Natur.454..981T }}</ref>


=== Thin films ===
=== Thin films ===
Line 100: Line 100:


=== Ligand removal ===
=== Ligand removal ===
In many cases, as in various high-temperature catalytic applications of Au, the removal of the capping ligands produces more desirable physicochemical properties.<ref>{{cite journal | vauthors = Tyo EC, Vajda S | title = Catalysis by clusters with precise numbers of atoms | journal = Nature Nanotechnology | volume = 10 | issue = 7 | pages = 577–88 | date = July 2015 | pmid = 26139144 | doi = 10.1038/nnano.2015.140 | bibcode = 2015NatNa..10..577T }}</ref> The removal of ligands from colloidal gold while maintaining a relatively constant number of Au atoms per Au NP can be difficult due to the tendency for these bare clusters to aggregate. The removal of ligands is partially achievable by simply washing away all excess capping ligands, though this method is ineffective in removing all capping ligand. More often ligand removal achieved under high temperature or light [[ablation]] followed by washing. Alternatively, the ligands can be [[Electroetching|electrochemically etched]] off.<ref>{{Cite journal|last=Niu|first=Zhiqiang|last2=Li|first2=Yadong|date=2014-01-14|title=Removal and Utilization of Capping Agents in Nanocatalysis |journal=Chemistry of Materials|volume=26|issue=1|pages=72–83|doi=10.1021/cm4022479 }}</ref>
In many cases, as in various high-temperature catalytic applications of Au, the removal of the capping ligands produces more desirable physicochemical properties.<ref>{{cite journal | vauthors = Tyo EC, Vajda S | title = Catalysis by clusters with precise numbers of atoms | journal = Nature Nanotechnology | volume = 10 | issue = 7 | pages = 577–88 | date = July 2015 | pmid = 26139144 | doi = 10.1038/nnano.2015.140 | bibcode = 2015NatNa..10..577T }}</ref> The removal of ligands from colloidal gold while maintaining a relatively constant number of Au atoms per Au NP can be difficult due to the tendency for these bare clusters to aggregate. The removal of ligands is partially achievable by simply washing away all excess capping ligands, though this method is ineffective in removing all capping ligand. More often ligand removal achieved under high temperature or light [[ablation]] followed by washing. Alternatively, the ligands can be [[Electroetching|electrochemically etched]] off.<ref>{{Cite journal|last=Niu|first=Zhiqiang|last2=Li|first2=Yadong | name-list-format = vanc |date=2014-01-14|title=Removal and Utilization of Capping Agents in Nanocatalysis |journal=Chemistry of Materials|volume=26|issue=1|pages=72–83|doi=10.1021/cm4022479 }}</ref>


=== Surface structure and chemical environment ===
=== Surface structure and chemical environment ===
Line 115: Line 115:
===Toxicity due to capping ligands===
===Toxicity due to capping ligands===
Some of the capping ligands associated with AuNPs can be toxic while others are nontoxic. In gold nanorods (AuNRs), it has been shown that a strong cytotoxicity was associated with [[Cetyl trimethylammonium bromide|CTAB]]-stabilized AuNRs at low concentration, but it is thought that free CTAB was the culprit in toxicity .<ref name="Cellular uptake">{{cite journal | vauthors = Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD | title = Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects | journal = Small | volume = 5 | issue = 6 | pages = 701–8 | date = March 2009 | pmid = 19226599 | doi = 10.1002/smll.200801546 }}</ref><ref>{{cite journal | vauthors = Takahashi H, Niidome Y, Niidome T, Kaneko K, Kawasaki H, Yamada S | title = Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity | journal = Langmuir | volume = 22 | issue = 1 | pages = 2–5 | date = January 2006 | pmid = 16378388 | doi = 10.1021/la0520029 }}</ref> Modifications that overcoat these AuNRs reduces this toxicity in human colon cancer cells (HT-29) by preventing CTAB molecules from desorbing from the AuNRs back into the solution.<ref name="Cellular uptake" />
Some of the capping ligands associated with AuNPs can be toxic while others are nontoxic. In gold nanorods (AuNRs), it has been shown that a strong cytotoxicity was associated with [[Cetyl trimethylammonium bromide|CTAB]]-stabilized AuNRs at low concentration, but it is thought that free CTAB was the culprit in toxicity .<ref name="Cellular uptake">{{cite journal | vauthors = Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD | title = Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects | journal = Small | volume = 5 | issue = 6 | pages = 701–8 | date = March 2009 | pmid = 19226599 | doi = 10.1002/smll.200801546 }}</ref><ref>{{cite journal | vauthors = Takahashi H, Niidome Y, Niidome T, Kaneko K, Kawasaki H, Yamada S | title = Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity | journal = Langmuir | volume = 22 | issue = 1 | pages = 2–5 | date = January 2006 | pmid = 16378388 | doi = 10.1021/la0520029 }}</ref> Modifications that overcoat these AuNRs reduces this toxicity in human colon cancer cells (HT-29) by preventing CTAB molecules from desorbing from the AuNRs back into the solution.<ref name="Cellular uptake" />
Ligand toxicity can also be seen in AuNPs. Compared to the 90% toxicity of HAuCl4 at the same concentration, AuNPs with carboxylate termini were shown to be non-toxic.<ref name="Rotello Toxicity">{{cite journal |last=Rotello |first=V.M. |last2=et. |first2=al. |date=June 2004 |title=Toxicity of Gold Nanoparticles Functionalized with Cationic and Anionic Side Chains. |journal=Bioconjugate Chemistry |volume=15 |issue=4 |pages=897–900 |doi=10.1021/bo049951i}}</ref> Large AuNPs conjugated with biotin, cysteine, citrate, and glucose were not toxic in human leukemia cells ([[K562]]) for concentrations up to 0.25 M.<ref name="Murphy Jan 2005">{{cite journal |last=Murphy |first=C.J. |last2=et. |first2=al. |date=January 2005 |title=Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity. |journal=Small |volume=1 |issue=3 |pages=325–327 |doi=10.1002/smll.2004000093}}</ref> Also, citrate-capped gold nanospheres (AuNSs) have been proven to be compatible with human blood and did not cause platelet aggregation or an immune response.<ref>{{cite journal | vauthors = Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE | title = Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles | journal = Nanomedicine | volume = 5 | issue = 2 | pages = 106–17 | date = June 2009 | pmid = 19071065 | pmc = 3683956 | doi = 10.1016/j.nano.2008.08.001 }}</ref> However, citrate-capped gold nanoparticles sizes 8-37&nbsp;nm were found to be lethally toxic for mice, causing shorter lifespans, severe sickness, loss of appetite and weight, hair discoloration, and damage to the liver, spleen, and lungs; gold nanoparticles accumulated in the spleen and liver after traveling a section of the immune system.<ref>{{cite journal | vauthors = Chen YS, Hung YC, Liau I, Huang GS | title = Assessment of the In Vivo Toxicity of Gold Nanoparticles | journal = Nanoscale Research Letters | volume = 4 | issue = 8 | pages = 858–864 | date = May 2009 | pmid = 20596373 | doi = 10.1007/s11671-009-9334-6 | bibcode = 2009NRL.....4..858C }}</ref>
Ligand toxicity can also be seen in AuNPs. Compared to the 90% toxicity of HAuCl4 at the same concentration, AuNPs with carboxylate termini were shown to be non-toxic.<ref name="Rotello Toxicity">{{cite journal | vauthors = Goodman CM, McCusker CD, Yilmaz T, Rotello VM | title = Toxicity of gold nanoparticles functionalized with cationic and anionic side chains | journal = Bioconjugate Chemistry | volume = 15 | issue = 4 | pages = 897–900 | date = June 2004 | pmid = 15264879 | doi = 10.1021/bo049951i }}</ref> Large AuNPs conjugated with biotin, cysteine, citrate, and glucose were not toxic in human leukemia cells ([[K562]]) for concentrations up to 0.25 M.<ref name="Murphy Jan 2005">{{cite journal | vauthors = Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD | title = Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity | journal = Small | volume = 1 | issue = 3 | pages = 325–7 | date = March 2005 | pmid = 17193451 | doi = 10.1002/smll.2004000093 }}</ref> Also, citrate-capped gold nanospheres (AuNSs) have been proven to be compatible with human blood and did not cause platelet aggregation or an immune response.<ref>{{cite journal | vauthors = Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE | title = Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles | journal = Nanomedicine | volume = 5 | issue = 2 | pages = 106–17 | date = June 2009 | pmid = 19071065 | pmc = 3683956 | doi = 10.1016/j.nano.2008.08.001 }}</ref> However, citrate-capped gold nanoparticles sizes 8-37&nbsp;nm were found to be lethally toxic for mice, causing shorter lifespans, severe sickness, loss of appetite and weight, hair discoloration, and damage to the liver, spleen, and lungs; gold nanoparticles accumulated in the spleen and liver after traveling a section of the immune system.<ref>{{cite journal | vauthors = Chen YS, Hung YC, Liau I, Huang GS | title = Assessment of the In Vivo Toxicity of Gold Nanoparticles | journal = Nanoscale Research Letters | volume = 4 | issue = 8 | pages = 858–864 | date = May 2009 | pmid = 20596373 | doi = 10.1007/s11671-009-9334-6 | bibcode = 2009NRL.....4..858C }}</ref>
There are mixed-views for [[polyethylene glycol]] (PEG)-modified AuNPs. These AuNPs were found to be toxic in mouse liver by injection, causing cell death and minor inflammation.<ref>{{cite journal | vauthors = Cho WS, Cho M, Jeong J, Choi M, Cho HY, Han BS, Kim SH, Kim HO, Lim YT, Chung BH, Jeong J | title = Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles | journal = Toxicology and Applied Pharmacology | volume = 236 | issue = 1 | pages = 16–24 | date = April 2009 | pmid = 19162059 | doi = 10.1016/j.taap.2008.12.023 }}</ref> However, AuNPs conjugated with PEG copolymers showed negligible toxicity towards human colon cells ([[Caco-2]]).<ref>{{cite journal |last=Gref |first=R. |last2=et. |first2=al. |date= November 2003 |title=Surface-engineered nanoparticles for multiple ligand coupling |journal=Biomaterials |volume=24 |issue=24 |pages=4529–4537 |doi=10.1016/s0142-9612(03)00348-x}}</ref>
There are mixed-views for [[polyethylene glycol]] (PEG)-modified AuNPs. These AuNPs were found to be toxic in mouse liver by injection, causing cell death and minor inflammation.<ref>{{cite journal | vauthors = Cho WS, Cho M, Jeong J, Choi M, Cho HY, Han BS, Kim SH, Kim HO, Lim YT, Chung BH, Jeong J | title = Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles | journal = Toxicology and Applied Pharmacology | volume = 236 | issue = 1 | pages = 16–24 | date = April 2009 | pmid = 19162059 | doi = 10.1016/j.taap.2008.12.023 }}</ref> However, AuNPs conjugated with PEG copolymers showed negligible toxicity towards human colon cells ([[Caco-2]]).<ref>{{cite journal | vauthors = Gref R, Couvreur P, Barratt G, Mysiakine E | title = Surface-engineered nanoparticles for multiple ligand coupling | journal = Biomaterials | volume = 24 | issue = 24 | pages = 4529–37 | date = November 2003 | pmid = 12922162 | doi = 10.1016/s0142-9612(03)00348-x }}</ref>
AuNP toxicity also depends on the overall charge of the ligands. In certain doses, AuNSs that have positively-charged ligands are toxic in monkey kidney cells (Cos-1), human red blood cells, and E. coli because of the AuNSs interaction with the negatively-charged cell membrane; AuNSs with negatively-charged ligands have been found to be nontoxic in these species.<ref name="Rotello Toxicity" />
AuNP toxicity also depends on the overall charge of the ligands. In certain doses, AuNSs that have positively-charged ligands are toxic in monkey kidney cells (Cos-1), human red blood cells, and E. coli because of the AuNSs interaction with the negatively-charged cell membrane; AuNSs with negatively-charged ligands have been found to be nontoxic in these species.<ref name="Rotello Toxicity" />
In addition to the previously mentioned ''in vivo'' and ''in vitro'' experiments, other similar experiments have been performed. Alkylthiolate-AuNPs with trimethlyammonium ligand termini mediate the [[Chromosomal translocation|translocation]] of DNA across mammalian cell membranes ''in vitro'' at a high level, which is detrimental to these cells.<ref>{{cite journal | vauthors = Boisselier E, Astruc D | title = Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity | journal = Chemical Society Reviews | volume = 38 | issue = 6 | pages = 1759–82 | date = June 2009 | pmid = 19587967 | doi = 10.1039/b806051g }}</ref> Corneal haze in rabbits have been healed ''in vivo'' by using polyethylemnimine-capped gold nanoparticles that were transfected with a gene that promotes wound healing and inhibits corneal [[fibrosis]].<ref>{{cite journal | vauthors = Tandon A, Sharma A, Rodier JT, Klibanov AM, Rieger FG, Mohan RR | title = BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo | journal = PloS One | volume = 8 | issue = 6 | pages = e66434 | date = June 2013 | pmid = 23799103 | doi = 10.1371/journal.pone.0066434 | bibcode = 2013PLoSO...866434T }}</ref>
In addition to the previously mentioned ''in vivo'' and ''in vitro'' experiments, other similar experiments have been performed. Alkylthiolate-AuNPs with trimethlyammonium ligand termini mediate the [[Chromosomal translocation|translocation]] of DNA across mammalian cell membranes ''in vitro'' at a high level, which is detrimental to these cells.<ref>{{cite journal | vauthors = Boisselier E, Astruc D | title = Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity | journal = Chemical Society Reviews | volume = 38 | issue = 6 | pages = 1759–82 | date = June 2009 | pmid = 19587967 | doi = 10.1039/b806051g }}</ref> Corneal haze in rabbits have been healed ''in vivo'' by using polyethylemnimine-capped gold nanoparticles that were transfected with a gene that promotes wound healing and inhibits corneal [[fibrosis]].<ref>{{cite journal | vauthors = Tandon A, Sharma A, Rodier JT, Klibanov AM, Rieger FG, Mohan RR | title = BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo | journal = PloS One | volume = 8 | issue = 6 | pages = e66434 | date = June 2013 | pmid = 23799103 | doi = 10.1371/journal.pone.0066434 | bibcode = 2013PLoSO...866434T }}</ref>
Line 130: Line 130:


=== Turkevich method ===
=== Turkevich method ===
The method pioneered by J. Turkevich et al. in 1951<ref>{{cite journal | last1 = Turkevich | first1 = J. | last2 = Stevenson | first2 = P. C. | last3 = Hillier | first3 = J. | year = 1951 | title = A study of the nucleation and growth processes in the synthesis of colloidal gold | journal = Discuss. Faraday. Soc. | volume = 11 | issue = | pages = 55–75 | doi=10.1039/df9511100055}}</ref><ref>{{cite journal | vauthors = Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A | title = Turkevich method for gold nanoparticle synthesis revisited | journal = The Journal of Physical Chemistry. B | volume = 110 | issue = 32 | pages = 15700–7 | date = August 2006 | pmid = 16898714 | doi = 10.1021/jp061667w }}</ref> and refined by G. Frens in the 1970s,<ref name="G. Frens 1972">{{cite journal | last1 = Frens | first1 = G. | year = 1972 | title = Particle size and sol stability in metal colloids | journal = Colloid & Polymer Science | volume = 250 | issue = | pages = 736–741 | doi=10.1007/bf01498565}}</ref><ref name="G. Frens 1973">{{cite journal | last1 = Frens | first1 = G. | year = 1973 | title = Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions | journal = Nature | volume = 241 | issue = | pages = 20–22 | doi=10.1038/physci241020a0| bibcode = 1973NPhS..241...20F}}</ref> is the simplest one available. In general, it is used to produce modestly [[monodisperse]] spherical gold nanoparticles suspended in water of around 10–20&nbsp;nm in diameter. Larger particles can be produced, but this comes at the cost of monodispersity and shape. It involves the reaction of small amounts of hot [[chloroauric acid]] with small amounts of [[sodium citrate]] solution. The colloidal gold will form because the citrate ions act as both a reducing agent and a capping agent. A capping agent is used in nanoparticle synthesis to stop particle growth and aggregation. A good capping agent has a high affinity for the new nuclei so it will bind to surface atoms which stabilizes the surface energy of the new nuclei and makes so that they cannot bind to other nuclei.<ref>{{cite journal|doi=10.1021/cm4022479 | volume=26 | title=Removal and Utilization of Capping Agents in Nanocatalysis | year=2014 | journal=Chemistry of Materials | pages=72–83 | last1 = Niu | first1 = Zhiqiang | last2 = Li | first2 = Yadong}}</ref>
The method pioneered by J. Turkevich et al. in 1951<ref>{{cite journal | vauthors = Turkevich J, Stevenson PC, Hillier J | year = 1951 | title = A study of the nucleation and growth processes in the synthesis of colloidal gold | journal = Discuss. Faraday. Soc. | volume = 11 | issue = | pages = 55–75 | doi=10.1039/df9511100055}}</ref><ref>{{cite journal | vauthors = Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A | title = Turkevich method for gold nanoparticle synthesis revisited | journal = The Journal of Physical Chemistry. B | volume = 110 | issue = 32 | pages = 15700–7 | date = August 2006 | pmid = 16898714 | doi = 10.1021/jp061667w }}</ref> and refined by G. Frens in the 1970s,<ref name="G. Frens 1972">{{cite journal | last1 = Frens | first1 = G. | year = 1972 | title = Particle size and sol stability in metal colloids | journal = Colloid & Polymer Science | volume = 250 | issue = | pages = 736–741 | doi=10.1007/bf01498565}}</ref><ref name="G. Frens 1973">{{cite journal | last1 = Frens | first1 = G. | year = 1973 | title = Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions | journal = Nature | volume = 241 | issue = | pages = 20–22 | doi=10.1038/physci241020a0| bibcode = 1973NPhS..241...20F}}</ref> is the simplest one available. In general, it is used to produce modestly [[monodisperse]] spherical gold nanoparticles suspended in water of around 10–20&nbsp;nm in diameter. Larger particles can be produced, but this comes at the cost of monodispersity and shape. It involves the reaction of small amounts of hot [[chloroauric acid]] with small amounts of [[sodium citrate]] solution. The colloidal gold will form because the citrate ions act as both a reducing agent and a capping agent. A capping agent is used in nanoparticle synthesis to stop particle growth and aggregation. A good capping agent has a high affinity for the new nuclei so it will bind to surface atoms which stabilizes the surface energy of the new nuclei and makes so that they cannot bind to other nuclei.<ref>{{cite journal|doi=10.1021/cm4022479 | volume=26 | title=Removal and Utilization of Capping Agents in Nanocatalysis | year=2014 | journal=Chemistry of Materials | pages=72–83 | last1 = Niu | first1 = Zhiqiang | last2 = Li | first2 = Yadong | name-list-format = vanc }}</ref>


Recently, the evolution of the spherical gold nanoparticles in the Turkevich reaction has been elucidated. Extensive networks of gold nanowires are formed as a transient intermediate. These gold nanowires are responsible for the dark appearance of the reaction solution before it turns ruby-red.<ref name = "Pong, BK 2007">{{cite journal | last1 = Pong | first1 = B.-K. | last2 = Elim | first2 = H. I. | last3 = Chong | first3 = J.-X. | last4 = Trout | first4 = B. L. | last5 = Lee | first5 = J.-Y. | year = 2007 | title = New Insights on the Nanoparticle Growth Mechanism in the Citrate Reduction of Gold(III) Salt: Formation of the Au Nanowire Intermediate and Its Nonlinear Optical Properties | journal = J. Phys. Chem. C | volume = 111 | issue = 17| pages = 6281–6287 | doi = 10.1021/jp068666o }}</ref>
Recently, the evolution of the spherical gold nanoparticles in the Turkevich reaction has been elucidated. Extensive networks of gold nanowires are formed as a transient intermediate. These gold nanowires are responsible for the dark appearance of the reaction solution before it turns ruby-red.<ref name = "Pong, BK 2007">{{cite journal | vauthors = Pong BK, Elim HI, Chong JX, Trout BL, Lee JY | year = 2007 | title = New Insights on the Nanoparticle Growth Mechanism in the Citrate Reduction of Gold(III) Salt: Formation of the Au Nanowire Intermediate and Its Nonlinear Optical Properties | journal = J. Phys. Chem. C | volume = 111 | issue = 17| pages = 6281–6287 | doi = 10.1021/jp068666o }}</ref>


To produce larger particles, less sodium citrate should be added (possibly down to 0.05%, after which there simply would not be enough to reduce all the gold). The reduction in the amount of sodium citrate will reduce the amount of the citrate ions available for stabilizing the particles, and this will cause the small particles to aggregate into bigger ones (until the total surface area of all particles becomes small enough to be covered by the existing citrate ions).
To produce larger particles, less sodium citrate should be added (possibly down to 0.05%, after which there simply would not be enough to reduce all the gold). The reduction in the amount of sodium citrate will reduce the amount of the citrate ions available for stabilizing the particles, and this will cause the small particles to aggregate into bigger ones (until the total surface area of all particles becomes small enough to be covered by the existing citrate ions).
Line 157: Line 157:


=== Sonolysis ===
=== Sonolysis ===
Another method for the experimental generation of gold particles is by [[sonolysis]]. The first method of this type was invented by Baigent and Müller.<ref name="baigent">{{cite journal | last1 = Baigent | first1 = CL | last2 = Müller | first2 = G | year = 1980 | title = A colloidal gold prepared using ultrasonics | journal = Experientia | volume = 36 | issue = 4| pages = 472–473 | doi=10.1007/BF01975154}}</ref> This work pioneered the use of ultrasound to provide the energy for the processes involved and allowed the creation of gold particles with a diameter of under 10&nbsp;nm. In another method using ultrasound, the reaction of an aqueous solution of HAuCl<sub>4</sub> with [[glucose]],<ref>{{cite journal|year=2006|title=Sonochemical Formation of Single-Crystalline Gold Nanobelts|journal=Angew. Chem.|volume=118|issue=7|pages=1134–7|doi=10.1002/ange.200503762|author1=Jianling Zhang|author2=Jimin Du|author3=Buxing Han|author4=Zhimin Liu|author5=Tao Jiang|author6=Zhaofu Zhang}}</ref> the [[reducing agent]]s are hydroxyl radicals and sugar [[pyrolysis]] [[radical (chemistry)|radicals]] (forming at the interfacial region between the collapsing cavities and the bulk water) and the morphology obtained is that of nanoribbons with width 30–50&nbsp;nm and length of several micrometers. These ribbons are very flexible and can bend with angles larger than 90°. When glucose is replaced by [[cyclodextrin]] (a glucose oligomer), only spherical gold particles are obtained, suggesting that glucose is essential in directing the morphology toward a ribbon.
Another method for the experimental generation of gold particles is by [[sonolysis]]. The first method of this type was invented by Baigent and Müller.<ref name="baigent">{{cite journal | vauthors = Baigent CL, Müller G | year = 1980 | title = A colloidal gold prepared using ultrasonics | journal = Experientia | volume = 36 | issue = 4| pages = 472–473 | doi=10.1007/BF01975154}}</ref> This work pioneered the use of ultrasound to provide the energy for the processes involved and allowed the creation of gold particles with a diameter of under 10&nbsp;nm. In another method using ultrasound, the reaction of an aqueous solution of HAuCl<sub>4</sub> with [[glucose]],<ref>{{cite journal|year=2006|title=Sonochemical Formation of Single-Crystalline Gold Nanobelts|journal=Angew. Chem.|volume=118|issue=7|pages=1134–7|doi=10.1002/ange.200503762|author1=Jianling Zhang|author2=Jimin Du|author3=Buxing Han|author4=Zhimin Liu|author5=Tao Jiang|author6=Zhaofu Zhang}}</ref> the [[reducing agent]]s are hydroxyl radicals and sugar [[pyrolysis]] [[radical (chemistry)|radicals]] (forming at the interfacial region between the collapsing cavities and the bulk water) and the morphology obtained is that of nanoribbons with width 30–50&nbsp;nm and length of several micrometers. These ribbons are very flexible and can bend with angles larger than 90°. When glucose is replaced by [[cyclodextrin]] (a glucose oligomer), only spherical gold particles are obtained, suggesting that glucose is essential in directing the morphology toward a ribbon.


=== Block copolymer-mediated method ===
=== Block copolymer-mediated method ===

Revision as of 20:37, 26 September 2018

Suspensions of gold nanoparticles of various sizes. The size difference causes the difference in colors.

Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is usually either an intense red colour (for spherical particles less than 100 nm) or blue/purple (for larger spherical particles or nanorods)[1]. Due to their optical, electronic, and molecular-recognition properties, gold nanoparticles are the subject of substantial research, with many potential or promised applications in a wide variety of areas, including electron microscopy, electronics, nanotechnology, materials science, and biomedicine.[2][3][4][5]

The properties of colloidal gold nanoparticles, and thus their applications, depend strongly upon their size and shape.[6] For example, rodlike particles have both transverse and longitudinal absorption peak, and anisotropy of the shape affects their self-assembly.[7]

History

This cranberry glass bowl was made by adding a gold salt (probably gold chloride) to molten glass.

Used since ancient times as a method of staining glass colloidal gold was used in the 4th-century Lycurgus Cup, which changes color depending on the location of light source.[8][9]

During the Middle Ages, soluble gold, a solution containing gold salt, had a reputation for its curative property for various diseases. In 1618, Francis Anthony, a philosopher and member of the medical profession, published a book called Panacea Aurea, sive tractatus duo de ipsius Auro Potabili[10] (Latin: gold potion, or two treatments of potable gold). The book introduces information on the formation of colloidal gold and its medical uses. About half a century later, English botanist Nicholas Culpepper published book in 1656, Treatise of Aurum Potabile,[11] solely discussing the medical uses of colloidal gold.

In 1676, Johann Kunckel, a German chemist, published a book on the manufacture of stained glass. In his book Valuable Observations or Remarks About the Fixed and Volatile Salts-Auro and Argento Potabile, Spiritu Mundi and the Like,[12] Kunckel assumed that the pink color of Aurum Potabile came from small particles of metallic gold, not visible to human eyes. In 1842, John Herschel invented a photographic process called chrysotype (from the Greek χρῡσός meaning "gold") that used colloidal gold to record images on paper.

Modern scientific evaluation of colloidal gold did not begin until Michael Faraday's work in the 1850s.[13][14] In 1856, in a basement laboratory of Royal Institution, Faraday accidentally created a ruby red solution while mounting pieces of gold leaf onto microscope slides.[15] Since he was already interested in the properties of light and matter, Faraday further investigated the optical properties of the colloidal gold. He prepared the first pure sample of colloidal gold, which he called 'activated gold', in 1857. He used phosphorus to reduce a solution of gold chloride. The colloidal gold Faraday made 150 years ago is still optically active. For a long time, the composition of the 'ruby' gold was unclear. Several chemists suspected it to be a gold tin compound, due to its preparation.[16][17] Faraday recognized that the color was actually due to the miniature size of the gold particles. He noted the light scattering properties of suspended gold microparticles, which is now called Faraday-Tyndall effect.[18]

In 1898, Richard Adolf Zsigmondy prepared the first colloidal gold in diluted solution.[19] Apart from Zsigmondy, Theodor Svedberg, who invented ultracentrifugation, and Gustav Mie, who provided the theory for scattering and absorption by spherical particles, were also interested in the synthesis and properties of colloidal gold.[7][20]

With advances in various analytical technologies in the 20th century, studies on gold nanoparticles has accelerated. Advanced microscopy methods, such as atomic force microscopy and electron microscopy, have contributed the most to nanoparticle research. Due to their comparably easy synthesis and high stability, various gold particles have been studied for their practical uses. Different types of gold nanoparticle are already used in many industries, such as medicine and electronics. For example, several FDA-approved nanoparticles are currently used in drug delivery.[21]

Physical properties

Optical

Colloidal gold has been used by artists for centuries because of the nanoparticle’s interactions with visible light. Gold nanoparticles absorb and scatter light[22] resulting in colours ranging from vibrant reds to blues to black and finally to clear and colorless, depending on particle size, shape, local refractive index, and aggregation state. These colors occur because of a phenomenon called Localized Surface Plasmon Resonance (LSPR), in which conduction electrons on the surface of the nanoparticle oscillate in resonance with incident light.

Effect of size

As a general rule, the wavelength of light absorbed increases as a function of increasing nano particle size.[23] For example, pseudo-spherical gold nanoparticles with diameters ~ 30 nm have a peak LSPR absorption at ~530 nm.[23][clarification needed]

Effect of local refractive index

Changes in the apparent color of a gold nanoparticle solution can also be caused by the environment in which the colloidal gold is suspended[24][25] The optical properties of gold nanoparticles depends on the refractive index near the nanoparticle surface, therefore both the molecules directly attached to the nanoparticle surface (i.e. nanoparticle ligands) and/or the nanoparticle solvent both may influence observed optical features.[24] As the refractive index near the gold surface increases, the NP LSPR will shift to longer wavelengths[25] In addition to solvent environment, the extinction peak can be tuned by coating the nanoparticles with non-conducting shells such as silica, bio molecules, or aluminium oxide.[26]

Effect of aggregation

When gold nano particles aggregate, the optical properties of the particle change, because the effective particle size, shape, and dielectric environment all change.[27]

Medical research

Electron microscopy

Colloidal gold and various derivatives have long been among the most widely used labels for antigens in biological electron microscopy.[28][29][30][31][32] Colloidal gold particles can be attached to many traditional biological probes such as antibodies, lectins, superantigens, glycans, nucleic acids,[33] and receptors. Particles of different sizes are easily distinguishable in electron micrographs, allowing simultaneous multiple-labelling experiments.[34]

In addition to biological probes, gold nanoparticles can be transferred to various mineral substrates, such as mica, single crystal silicon, and atomically flat gold(III), to be observed under atomic force microscopy (AFM).[35]

Drug delivery system

Gold nanoparticles can be used to optimize the biodistribution of drugs to diseased organs, tissues or cells, in order to improve and target drug delivery.[36][37] Nanoparticle-mediated drug delivery is feasible only if the drug distribution is otherwise inadequate. These cases include drug targeting of unstable (proteins, siRNA, DNA), delivery to the difficult sites (brain, retina, tumors, intracellular organelles) and drugs with serious side effects (e.g. anti-cancer agents). The performance of the nanoparticles depends on the size and surface functionalities in the particles. Also, the drug release and particle disintegration can vary depending on the system (e.g. biodegradable polymers sensitive to pH). An optimal nanodrug delivery system ensures that the active drug is available at the site of action for the correct time and duration, and their concentration should be above the minimal effective concentration (MEC) and below the minimal toxic concentration (MTC).[38]

Gold nanoparticles are being investigated as carriers for drugs such as Paclitaxel.[39] The administration of hydrophobic drugs require molecular encapsulation and it is found that nanosized particles are particularly efficient in evading the reticuloendothelial system.

Tumor detection

In cancer research, colloidal gold can be used to target tumors and provide detection using SERS (surface enhanced Raman spectroscopy) in vivo. These gold nanoparticles are surrounded with Raman reporters, which provide light emission that is over 200 times brighter than quantum dots. It was found that the Raman reporters were stabilized when the nanoparticles were encapsulated with a thiol-modified polyethylene glycol coat. This allows for compatibility and circulation in vivo. To specifically target tumor cells, the polyethylenegylated gold particles are conjugated with an antibody (or an antibody fragment such as scFv), against, e.g. epidermal growth factor receptor, which is sometimes overexpressed in cells of certain cancer types. Using SERS, these pegylated gold nanoparticles can then detect the location of the tumor.[40]

Gold nanoparticles accumulate in tumors, due to the leakiness of tumor vasculature, and can be used as contrast agents for enhanced imaging in a time-resolved optical tomography system using short-pulse lasers for skin cancer detection in mouse model. It is found that intravenously administrated spherical gold nanoparticles broadened the temporal profile of reflected optical signals and enhanced the contrast between surrounding normal tissue and tumors.[41]

Tumor targeting via multifunctional nanocarriers. Cancer cells reduce adhesion to neighboring cells and migrate into the vasculature-rich stroma. Once at the vasculature, cells can freely enter the bloodstream. Once the tumor is directly connected to the main blood circulation system, multifunctional nanocarriers can interact directly with cancer cells and effectively target tumors.

Gene therapy

Gold nanoparticles have shown potential as intracellular delivery vehicles for siRNA oligonucleotides with maximal therapeutic impact.

Multifunctional siRNA-gold nanoparticles with several biomolecules: PEG, cell penetration and cell adhesion peptides and siRNA. Two different approaches were employed to conjugate the siRNA to the gold nanoparticle: (1) Covalent approach: use of thiolated siRNA for gold-thiol binding to the nanoparticle; (2) Ionic approach: interaction of the negatively charged siRNA to the modified surface of the AuNP through ionic interactions.

Gold nanoparticles show potential as intracellular delivery vehicles for antisense oligonucleotides (ssDNA,dsDNA) by providing protection against intracellular nucleases and ease of functionalization for selective targeting.[42]

Photothermal agents

Gold nanorods are being investigated as photothermal agents for in-vivo applications. Gold nanorods are rod-shaped gold nanoparticles whose aspect ratios tune the surface plasmon resonance (SPR) band from the visible to near-infrared wavelength. The total extinction of light at the SPR is made up of both absorption and scattering. For the smaller axial diameter nanorods (~10 nm), absorption dominates, whereas for the larger axial diameter nanorods (>35 nm) scattering can dominate. As a consequence, for in-vivo applications, small diameter gold nanorods are being used as photothermal converters of near-infrared light due to their high absorption cross-sections.[43] Since near-infrared light transmits readily through human skin and tissue, these nanorods can be used as ablation components for cancer, and other targets. When coated with polymers, gold nanorods have been observed to circulate in-vivo with half-lives longer than 6 hours, bodily residence times around 72 hours, and little to no uptake in any internal organs except the liver.[44] Apart from rod-like gold nanoparticles, also spherical colloidal gold nanoparticles are recently used as markers in combination with photothermal single particle microscopy.

Radiotherapy dose enhancer

Considerable interest has been shown in the use of gold and other heavy-atom-containing nanoparticles to enhance the dose delivered to tumors.[45] Since the gold nanoparticles are taken up by the tumors more than the nearby healthy tissue, the dose is selectively enhanced. The biological effectiveness of this type of therapy seems to be due to the local deposition of the radiation dose near the nanoparticles.[46] This mechanism is the same as occurs in heavy ion therapy.

Detection of toxic gas

Researchers have developed simple inexpensive methods for on-site detection of hydrogen sulfide H
2
S
present in air based on the antiaggregation of gold nanoparticles (AuNPs). Dissolving H
2
S
into a weak alkaline buffer solution leads to the formation of HS-, which can stabilize AuNPs and ensure they maintain their red color allowing for visual detection of toxic levels of H
2
S
.[47]

Gold nanoparticle based biosensor

Gold nanoparticles are incorporated into biosensors to enhance its stability, sensitivity, and selectivity.[48] Nanoparticle properties such as small size, high surface-to-volume ratio, and high surface energy allow immobilization of large range of biomolecules. Gold nanoparticle, in particular, could also act as "electron wire" to transport electrons and its amplification effect on electromagnetic light allows it to function as signal amplifiers.[49][50] Main types of gold nanoparticle based biosensors are optical and electrochemical biosensor.

Optical biosensor

Gold nanoparticle-based (Au-NP) biosensor for Glutathione (GSH). The AuNPs are functionalised with a chemical group that binds to GSH and makes the NPs partially collapse, and thus change colour. The exact amount of GSH can be derived via UV-vis spectroscopy through a calibration curve.

Gold nanoparticles improve the sensitivity of optical sensor by response to the change in local refractive index. The angle of the incidence light for surface plasmon resonance, an interaction between light wave and conducting electrons in metal, changes when other substances are bounded to the metal surface.[51][52] Because gold is very sensitive to its surroundings' dielectric constant,[53][54] binding of an analyte would significantly shift gold nanoparticle's SPR and therefore allow more sensitive detection. Gold nanoparticle could also amplify the SPR signal.[55] When the plasmon wave pass through the gold nanoparticle, the charge density in the wave and the electron I the gold interacted and resulted in higher energy response, so called electron coupling.[48] Since the analyte and bio-receptor now bind to the gold, it increases the apparent mass of the analyte and therefore amplified the signal.[48] These properties had been used to build DNA sensor with 1000-fold sensitive than without the Au NP.[56] Humidity senor was also built by altering the atom interspacing between molecules with humidity change, the interspacing change would also result in a change of the Au NP's LSPR.[57]

Electrochemical biosensor

Electrochemical sensor convert biological information into electrical signals that could be detected. The conductivity and biocompatibility of Au NP allow it to act as "electron wire".[48] It transfers electron between the electrode and the active site of the enzyme.[58] It could be accomplished in two ways: attach the Au NP to either the enzyme or the electrode. GNP-glucose oxidase monolayer electrode was constructed use these two methods.[59] The Au NP allowed more freedom in the enzyme's orientation and therefore more sensitive and stable detection. Au NP also acts as immobilization platform for the enzyme. Most biomolecules denatures or lose its activity when interacted with the electrode.[48] The biocompatibility and high surface energy of Au allow it to bind to a large amount of protein without altering its activity and results in a more sensitive sensor.[60][61] Moreover, Au NP also catalyzes biological reactions.[62][63] Gold nanoparticle under 2 nm has shown catalytic activity to the oxidation of styrene.[64]

Thin films

Gold nanoparticles capped with organic ligands, such as alkanethiol molecules, can self-assemble into large monolayers (>cm). The particles are first prepared in organic solvent, such as chloroform or toluene, and are then spread into monolayers either on a liquid surface or on a solid substrate. Such interfacial thin films of nanoparticles have close relationship with Langmuir-Blodgett monolayers made from surfactants.

The mechanical properties of nanoparticle monolayers have been studied extensively. For 5 nm spheres capped with dodecanethiol, the Young's modulus of the monolayer is on the order of GPa.[65] The mechanics of the membranes are guided by strong interactions between ligand shells on adjacent particles.[66] Upon fracture, the films crack perpendicular to the direction of strain at a fracture stress of 11 2.6 MPa, comparable to that of cross-linked polymer films.[67] Free-standing nanoparticle membranes exhibit bending rigidity on the order of 10 eV, higher than what is predicted in theory for continuum plates of the same thickness, due to nonlocal microstructural constraints such as nonlocal coupling of particle rotational degrees of freedom.[68] On the other hand, resistance to bending is found to be greatly reduced in nanoparticle monolayers that are supported at the air/water interface, possibly due to screening of ligand interactions in a wet environment.[69]

Surface chemistry

In many different types of colloidal gold syntheses, the interface of the nanoparticles can display widely different character – ranging from an interface similar to a self-assembled monolayer to a disordered boundary with no repeating patterns.[70] Beyond the Au-Ligand interface, conjugation of the interfacial ligands with various functional moieties (from small organic molecules to polymers to DNA to RNA) afford colloidal gold much of its vast functionality.

Ligand exchange/functionalization

After initial nanoparticle synthesis, colloidal gold ligands are often exchanged with new ligands designed for specific applications. For example, Au NPs produced via the Turkevich-style (or Citrate Reduction) method are readily reacted via ligand exchange reactions, due to the relatively weak binding between the carboxyl groups and the surfaces of the NPs.[71] This ligand exchange can produce conjugation with a number of biomolecules from DNA to RNA to proteins to polymers (such as PEG) to increase biocompatibility and functionality. For example, ligands have been shown to enhance catalytic activity by mediating interactions between adsorbates and the active gold surfaces for specific oxygenation reactions.[72] Ligand exchange can also be used to promote phase transfer of the colloidal particles.[70] Ligand exchange is also possible with alkane thiol-arrested NPs produced from the Brust-type synthesis method, although higher temperatures are needed to promote the rate of the ligand detachment.[73][74] An alternative method for further functionalization is achieved through the conjugation of the ligands with other molecules, though this method can cause the colloidal stability of the Au NPs to breakdown.[75]

Ligand removal

In many cases, as in various high-temperature catalytic applications of Au, the removal of the capping ligands produces more desirable physicochemical properties.[76] The removal of ligands from colloidal gold while maintaining a relatively constant number of Au atoms per Au NP can be difficult due to the tendency for these bare clusters to aggregate. The removal of ligands is partially achievable by simply washing away all excess capping ligands, though this method is ineffective in removing all capping ligand. More often ligand removal achieved under high temperature or light ablation followed by washing. Alternatively, the ligands can be electrochemically etched off.[77]

Surface structure and chemical environment

The precise structure of the ligands on the surface of colloidal gold NPs impact the properties of the colloidal gold particles. Binding conformations and surface packing of the capping ligands at the surface of the colloidal gold NPs tend to differ greatly from bulk surface model adsorption, largely due to the high curvature observed at the nanoparticle surfaces.[70] Thiolate-gold interfaces at the nanoscale have been well-studied and the thiolate ligands are observed to pull Au atoms off of the surface of the particles to for “staple” motifs that have significant Thiyl-Au(0) character.[78][78][79] The citrate-gold surface, on the other hand, is relatively less-studied due to the vast number of binding conformations of the citrate to the curved gold surfaces. A study performed in 2014 identified that the most-preferred binding of the citrate involves two carboxylic acids and the hydroxyl group of the citrate binds three surface metal atoms.[80]

Health and safety

As gold nanoparticles (AuNPs) are further investigated for targeted drug delivery in humans, their toxicity needs to be considered. For the most part, it is suggested that AuNPs are biocompatible,[citation needed] but the concentrations at which they become toxic needs to be determined, and if those concentrations fall within the range of used concentrations. Toxicity can be tested in vitro and in vivo. In vitro toxicity results can vary depending on the type of the cellular growth media with different protein compositions, the method used to determine cellular toxicity (cell health, cell stress, how many cells are taken into a cell), and the capping ligands in solution.[81] In vivo assessments can determine the general health of an organism (abnormal behavior, weight loss, average life span) as well as tissue specific toxicology (kidney, liver, blood) and inflammation and oxidative responses.[81] In vitro experiments are more popular than in vivo experiments because in vitro experiments are more simplistic to perform than in vivo experiments.[81]

Toxicity and hazards in synthesis

While AuNPs themselves appear to have low or negligible toxicity,[citation needed] and the literature shows that the toxicity has much more to do with the ligands rather than the particles themselves, the synthesis of them involves chemicals that are hazardous. Sodium borohydride, a harsh reagent, is used to reduce the gold ions to gold metal.[82] The gold ions usually come from chloroauric acid, a potent acid.[83] Because of the high toxicity and hazard of reagents used to synthesize AuNPs, the need for more “green” methods of synthesis arose.

Toxicity due to capping ligands

Some of the capping ligands associated with AuNPs can be toxic while others are nontoxic. In gold nanorods (AuNRs), it has been shown that a strong cytotoxicity was associated with CTAB-stabilized AuNRs at low concentration, but it is thought that free CTAB was the culprit in toxicity .[84][85] Modifications that overcoat these AuNRs reduces this toxicity in human colon cancer cells (HT-29) by preventing CTAB molecules from desorbing from the AuNRs back into the solution.[84] Ligand toxicity can also be seen in AuNPs. Compared to the 90% toxicity of HAuCl4 at the same concentration, AuNPs with carboxylate termini were shown to be non-toxic.[86] Large AuNPs conjugated with biotin, cysteine, citrate, and glucose were not toxic in human leukemia cells (K562) for concentrations up to 0.25 M.[87] Also, citrate-capped gold nanospheres (AuNSs) have been proven to be compatible with human blood and did not cause platelet aggregation or an immune response.[88] However, citrate-capped gold nanoparticles sizes 8-37 nm were found to be lethally toxic for mice, causing shorter lifespans, severe sickness, loss of appetite and weight, hair discoloration, and damage to the liver, spleen, and lungs; gold nanoparticles accumulated in the spleen and liver after traveling a section of the immune system.[89] There are mixed-views for polyethylene glycol (PEG)-modified AuNPs. These AuNPs were found to be toxic in mouse liver by injection, causing cell death and minor inflammation.[90] However, AuNPs conjugated with PEG copolymers showed negligible toxicity towards human colon cells (Caco-2).[91] AuNP toxicity also depends on the overall charge of the ligands. In certain doses, AuNSs that have positively-charged ligands are toxic in monkey kidney cells (Cos-1), human red blood cells, and E. coli because of the AuNSs interaction with the negatively-charged cell membrane; AuNSs with negatively-charged ligands have been found to be nontoxic in these species.[86] In addition to the previously mentioned in vivo and in vitro experiments, other similar experiments have been performed. Alkylthiolate-AuNPs with trimethlyammonium ligand termini mediate the translocation of DNA across mammalian cell membranes in vitro at a high level, which is detrimental to these cells.[92] Corneal haze in rabbits have been healed in vivo by using polyethylemnimine-capped gold nanoparticles that were transfected with a gene that promotes wound healing and inhibits corneal fibrosis.[93]

Toxicity due to size of nanoparticles

Toxicity in certain systems can also be dependent on the size of the nanoparticle. AuNSs size 1.4 nm were found to be toxic in human skin cancer cells (SK-Mel-28), human cervical cancer cells (HeLa), mouse fibroblast cells (L929), and mouse macrophages (J774A.1), while 0.8, 1.2, and 1.8 nm sized AuNSs were less toxic by a six-fold amount and 15 nm AuNSs were nontoxic.[94] There is some evidence for AuNP buildup after injection in in vivo studies, but this is very size dependent. 1.8 nm AuNPs were found to be almost totally trapped in the lungs of rats.[95] Different sized AuNPs were found to buildup in the blood,[96][97] brain,[96] stomach,[96] pancreas,[96] kidneys,[96] liver,[96][97] and spleen.[96][97]

Synthesis

Potential difference as a function of distance from particle surface.

Generally, gold nanoparticles are produced in a liquid ("liquid chemical methods") by reduction of chloroauric acid (H[AuCl4]). After dissolving H[AuCl4], the solution is rapidly stirred while a reducing agent is added. This causes Au3+ ions to be reduced to Au+ions. Then a disproportionation reaction occurs whereby 3 Au+ ions give rise to Au3+ and 2 Au0 atoms. The Au0 atoms act as center of nucleation around which further Au+ ions gets reduced. To prevent the particles from aggregating, some sort of stabilizing agent that sticks to the nanoparticle surface is usually added. In the Turkevich method of Au NP synthesis, citrate initially acts as the reducing agent and finally as the capping agent which stabilizes the Au NP through electrostatic interactions between the lone pair of electrons on the oxygen and the metal surface.

They can be functionalized with various organic ligands to create organic-inorganic hybrids with advanced functionality.[13]

Turkevich method

The method pioneered by J. Turkevich et al. in 1951[98][99] and refined by G. Frens in the 1970s,[100][101] is the simplest one available. In general, it is used to produce modestly monodisperse spherical gold nanoparticles suspended in water of around 10–20 nm in diameter. Larger particles can be produced, but this comes at the cost of monodispersity and shape. It involves the reaction of small amounts of hot chloroauric acid with small amounts of sodium citrate solution. The colloidal gold will form because the citrate ions act as both a reducing agent and a capping agent. A capping agent is used in nanoparticle synthesis to stop particle growth and aggregation. A good capping agent has a high affinity for the new nuclei so it will bind to surface atoms which stabilizes the surface energy of the new nuclei and makes so that they cannot bind to other nuclei.[102]

Recently, the evolution of the spherical gold nanoparticles in the Turkevich reaction has been elucidated. Extensive networks of gold nanowires are formed as a transient intermediate. These gold nanowires are responsible for the dark appearance of the reaction solution before it turns ruby-red.[103]

To produce larger particles, less sodium citrate should be added (possibly down to 0.05%, after which there simply would not be enough to reduce all the gold). The reduction in the amount of sodium citrate will reduce the amount of the citrate ions available for stabilizing the particles, and this will cause the small particles to aggregate into bigger ones (until the total surface area of all particles becomes small enough to be covered by the existing citrate ions).

Brust-Schiffrin method

This method was discovered by Brust and Schiffrin in the early 1990s,[104] and can be used to produce gold nanoparticles in organic liquids that are normally not miscible with water (like toluene). It involves the reaction of a chlorauric acid solution with tetraoctylammonium bromide (TOAB) solution in toluene and sodium borohydride as an anti-coagulant and a reducing agent, respectively.

Here, the gold nanoparticles will be around 5–6 nm.[105] NaBH4 is the reducing agent, and TOAB is both the phase transfer catalyst and the stabilizing agent.

TOAB does not bind to the gold nanoparticles particularly strongly, so the solution will aggregate gradually over the course of approximately two weeks. To prevent this, one can add a stronger binding agent, like a thiol (in particular, alkanethiols), which will bind to gold, producing a near-permanent solution.[106][107] Alkanethiol protected gold nanoparticles can be precipitated and then redissolved. Thiols are better binding agents because there is a strong affinity for the gold-sulfur bonds that form when the two substances react with each other.[108] Tetra-dodecanthiol is a commonly used strong binding agent to synthesize smaller particles.[109] Some of the phase transfer agent may remain bound to the purified nanoparticles, this may affect physical properties such as solubility. In order to remove as much of this agent as possible, the nanoparticles must be further purified by soxhlet extraction.

Perrault method

This approach, discovered by Perrault and Chan in 2009,[110] uses hydroquinone to reduce HAuCl4 in an aqueous solution that contains 15 nm gold nanoparticle seeds. This seed-based method of synthesis is similar to that used in photographic film development, in which silver grains within the film grow through addition of reduced silver onto their surface. Likewise, gold nanoparticles can act in conjunction with hydroquinone to catalyze reduction of ionic gold onto their surface. The presence of a stabilizer such as citrate results in controlled deposition of gold atoms onto the particles, and growth. Typically, the nanoparticle seeds are produced using the citrate method. The hydroquinone method complements that of Frens,[100][101] as it extends the range of monodispersed spherical particle sizes that can be produced. Whereas the Frens method is ideal for particles of 12–20 nm, the hydroquinone method can produce particles of at least 30–300 nm.

Martin method

This simple method, discovered by Martin and Eah in 2010,[111] generates nearly monodisperse "naked" gold nanoparticles in water. Precisely controlling the reduction stoichiometry by adjusting the ratio of NaBH4-NaOH ions to HAuCl4-HCl ions within the "sweet zone," along with heating, enables reproducible diameter tuning between 3–6 nm. The aqueous particles are colloidally stable due to their high charge from the excess ions in solution. These particles can be coated with various hydrophilic functionalities, or mixed with hydrophobic molecules for applications in non-polar solvents. In non-polar solvents the nanoparticles remain highly charged, and self-assemble on liquid droplets to form 2D monolayer films of monodisperse nanoparticles.

Nanotech applications

Bacillus licheniformis can be used in synthesis of gold nanocubes with sizes between 10 and 100 nanometres.[112] Gold nanoparticles are usually synthesized at high temperatures in organic solvents or using toxic reagents. The bacteria produce them in much milder conditions.

Navarro et al. method

The precise control of particle size with a low polydispersity of spherical gold nanoparticles remains difficult for particles larger than 30 nm. In order to provide maximum control on the NP structure, Navarro and co-workers used a modified Turkevitch-Frens procedure using sodium acetylacetonate Na(acac) as the reducing agent and sodium citrate as the stabilizer.[113]

Sonolysis

Another method for the experimental generation of gold particles is by sonolysis. The first method of this type was invented by Baigent and Müller.[114] This work pioneered the use of ultrasound to provide the energy for the processes involved and allowed the creation of gold particles with a diameter of under 10 nm. In another method using ultrasound, the reaction of an aqueous solution of HAuCl4 with glucose,[115] the reducing agents are hydroxyl radicals and sugar pyrolysis radicals (forming at the interfacial region between the collapsing cavities and the bulk water) and the morphology obtained is that of nanoribbons with width 30–50 nm and length of several micrometers. These ribbons are very flexible and can bend with angles larger than 90°. When glucose is replaced by cyclodextrin (a glucose oligomer), only spherical gold particles are obtained, suggesting that glucose is essential in directing the morphology toward a ribbon.

Block copolymer-mediated method

An economical, environmentally benign and fast synthesis methodology for gold nanoparticles using block copolymer has been developed by Sakai et al.[116] In this synthesis methodology, block copolymer plays the dual role of a reducing agent as well as a stabilizing agent. The formation of gold nanoparticles comprises three main steps: reduction of gold salt ion by block copolymers in the solution and formation of gold clusters, adsorption of block copolymers on gold clusters and further reduction of gold salt ions on the surfaces of these gold clusters for the growth of gold particles in steps, and finally its stabilization by block copolymers. But this method usually has a limited-yield (nanoparticle concentration), which does not increase with the increase in the gold salt concentration. Recently, Ray et al. demonstrated that the presence of an additional reductant (trisodium citrate) in 1:1 mole ratio with gold salt enhances the yield by manyfold at ambient conditions and room temperature.[117]

See also

References

  1. ^ Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (March 2013). "Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology". Chemical Reviews. 113 (3): 1904–2074. doi:10.1021/cr300143v. PMID 23432378.
  2. ^ Yang X, Yang M, Pang B, Vara M, Xia Y (October 2015). "Gold Nanomaterials at Work in Biomedicine". Chemical Reviews. 115 (19): 10410–88. doi:10.1021/acs.chemrev.5b00193. PMID 26293344.
  3. ^ Paul Mulvaney, University of Melbourne, The beauty and elegance of Nanocrystals, Use since Roman times Archived 2004-10-28 at the Wayback Machine
  4. ^ C. N. Ramachandra Rao, Giridhar U. Kulkarni, P. John Thomasa, Peter P. Edwards, Metal nanoparticles and their assemblies, Chem. Soc. Rev., 2000, 29, 27–35. (on-line here; mentions Cassius and Kunchel)
  5. ^ Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (April 2012). "The golden age: gold nanoparticles for biomedicine". Chemical Society Reviews. 41 (7): 2740–79. doi:10.1039/c1cs15237h. PMC 5876014. PMID 22109657.
  6. ^ S.Zeng; Yong, Ken-Tye; Roy, Indrajit; Dinh, Xuan-Quyen; Yu, Xia; Luan, Feng; et al. (2011). "A review on functionalized gold nanoparticles for biosensing applications" (PDF). Plasmonics. 6 (3): 491–506. doi:10.1007/s11468-011-9228-1. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  7. ^ a b Sharma, Vivek; Park, Kyoungweon; Srinivasarao, Mohan (2009). "Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly". Material Science and Engineering Reports. 65 (1–3): 1–38. doi:10.1016/j.mser.2009.02.002. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  8. ^ "The Lycurgus Cup". British Museum. Retrieved 2015-12-04.
  9. ^ Freestone, Ian; Meeks, Nigel; Sax, Margaret; Higgitt, Catherine (2007). "The Lycurgus Cup — A Roman nanotechnology". Gold Bulletin. 40 (4): 270–277. doi:10.1007/BF03215599. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  10. ^ Antonii, Francisci (1618). Panacea aurea sive Tractatus duo de ipsius auro potabili. Ex Bibliopolio Frobeniano.
  11. ^ Culpeper, Nicholas (1657). Mr. Culpepper's Treatise of aurum potabile Being a description of the three-fold world, viz. elementary celestial intellectual containing the knowledge necessary to the study of hermetick philosophy. Faithfully written by him in his life-time, and since his death, published by his wife. London.
  12. ^ Kunckel von Löwenstern, Johann (1678). Utiles observationes sive animadversiones de salibus fixis et volatilibus, auro et argento potabili (etc.). Austria: Wilson.
  13. ^ a b V. R. Reddy, "Gold Nanoparticles: Synthesis and Applications" 2006, 1791, and references therein
  14. ^ Michael Faraday, Philosophical Transactions of the Royal Society, London, 1857
  15. ^ "Michael Faraday's gold colloids | The Royal Institution: Science Lives Here". www.rigb.org. Retrieved 2015-12-04.
  16. ^ Gay-Lussac (1832). "Ueber den Cassius'schen Goldpurpur". Annalen der Physik. 101 (8): 629–630. Bibcode:1832AnP...101..629G. doi:10.1002/andp.18321010809.
  17. ^ Berzelius, J. J. (1831). "Ueber den Cassius' schen Goldpurpur". Annalen der Physik. 98 (6): 306–308. Bibcode:1831AnP....98..306B. doi:10.1002/andp.18310980613.
  18. ^ Faraday, M. (1857). "Experimental Relations of Gold (and Other Metals) to Light,". Philosophical Transactions of the Royal Society. 147: 145. doi:10.1098/rstl.1857.0011.
  19. ^ Zsigmondy, Richard (December 11, 1926). "Properties of colloids" (PDF). Nobel Foundation. Retrieved 2009-01-23.
  20. ^ Zeng, Shuwen; Yu, Xia; Law, Wing-Cheung; Zhang, Yating; Hu, Rui; Dinh, Xuan-Quyen; H o, Ho-Pui; Yong, Ken-Tye (2013). "Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement". Sensors and Actuators B: Chemical. 176: 1128. doi:10.1016/j.snb.2012.09.073. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  21. ^ Hurst, Sarah J., ed. (2011-01-01). Nanoparticle Therapeutics: FDA Approval, Clinical Trials, Regulatory Pathways, and Case Study - Springer. Methods in Molecular Biology. Humana Press. doi:10.1007/978-1-61779-052-2_21. ISBN 978-1-61779-051-5.
  22. ^ Anderson, Michele L.; Morris, Catherine A.; Stroud, Rhonda M.; Merzbacher, Celia I.; Rolison, Debra R. (1999-02-01). "Colloidal Gold Aerogels:  Preparation, Properties, and Characterization". Langmuir. 15 (3): 674–681. doi:10.1021/la980784i. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  23. ^ a b Ghosh, Sujit Kumar; Nath, Sudip; Kundu, Subrata; Esumi, Kunio; Pal, Tarasankar (2004-09-01). "Solvent and Ligand Effects on the Localized Surface Plasmon Resonance (LSPR) of Gold Colloids". The Journal of Physical Chemistry B. 108 (37): 13963–13971. doi:10.1021/jp047021q. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  24. ^ a b Underwood, Sylvia; Mulvaney, Paul (1994-10-01). "Effect of the Solution Refractive Index on the Color of Gold Colloids". Langmuir. 10 (10): 3427–3430. doi:10.1021/la00022a011. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  25. ^ Xing, Shuangxi; Tan, Li Huey; Yang, Miaoxin; Pan, Ming; Lv, Yunbo; Tang, Qinghu; Yang, Yanhui; Chen, Hongyu (2009-05-12). "Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains". Journal of Materials Chemistry. 19 (20): 3286. doi:10.1039/b900993k. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  26. ^ Ghosh SK, Pal T (November 2007). "Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications". Chemical Reviews. 107 (11): 4797–862. doi:10.1021/cr0680282. PMID 17999554.
  27. ^ Horisberger M, Rosset J (April 1977). "Colloidal gold, a useful marker for transmission and scanning electron microscopy". The Journal of Histochemistry and Cytochemistry. 25 (4): 295–305. doi:10.1177/25.4.323352. PMID 323352.
  28. ^ Electron Microscopy, 2nd Edition, by John J. Bozzola, Jones & Bartlett Publishers; 2 Sub edition (October 1998) ISBN 0-7637-0192-0
  29. ^ Practical Electron Microscopy: A Beginner's Illustrated Guide, by Elaine Evelyn Hunter. Cambridge University Press; 2nd edition (September 24, 1993) ISBN 0-521-38539-3
  30. ^ Electron Microscopy: Methods and Protocols (Methods in Molecular Biology), by John Kuo (Editor). Humana Press; 2nd edition (February 27, 2007) ISBN 1-58829-573-7
  31. ^ Romano, Egidio L (1977). "Staphylococcal protein a bound to colloidal gold: A useful reagent to label antigen-antibody sites in electron microscopy". Immunochemistry. 14: 711–715. doi:10.1016/0019-2791(77)90146-X.
  32. ^ Simultaneous visualization of chromosome bands and hybridization signal using colloidal-gold labeling in electron microscopy [1]
  33. ^ Double labeling with colloidal gold particles of different sizes
  34. ^ Grobelny, Jaroslaw, et al. "Size Measurement of Nanoparticles using Atomic Force Microscopy." Characterization of Nanoparticles Intended for Drug Delivery.Springer, 2011. 71–82. Print.
  35. ^ Han G, Ghosh P, Rotello VM (February 2007). "Functionalized gold nanoparticles for drug delivery". Nanomedicine. 2 (1): 113–23. doi:10.2217/17435889.2.1.113. PMID 17716197.
  36. ^ Han G, Ghosh P, Rotello VM (2007). "Multi-functional gold nanoparticles for drug delivery". Advances in Experimental Medicine and Biology. 620: 48–56. PMID 18217334.
  37. ^ Langer R (February 2000). "Biomaterials in drug delivery and tissue engineering: one laboratory's experience". Accounts of Chemical Research. 33 (2): 94–101. doi:10.1021/ar9800993. PMID 10673317.
  38. ^ Gibson JD, Khanal BP, Zubarev ER (September 2007). "Paclitaxel-functionalized gold nanoparticles". Journal of the American Chemical Society. 129 (37): 11653–61. doi:10.1021/ja075181k. PMID 17718495.
  39. ^ Qian, Ximei. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnology. 2008. Vol 26 No 1.
  40. ^ Sajjadi AY, Suratkar AA, Mitra KK, Grace MS (2012). "Short-Pulse Laser-Based System for Detection of Tumors: Administration of Gold Nanoparticles Enhances Contrast". J. Nanotechnol. Eng. Med. 3 (2): 021002. doi:10.1115/1.4007245.
  41. ^ Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 2009;131:2072–2073.
  42. ^ Mackey MA, Ali MR, Austin LA, Near RD, El-Sayed MA (February 2014). "The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments". The Journal of Physical Chemistry. B. 118 (5): 1319–26. doi:10.1021/jp409298f. PMC 3983380. PMID 24433049.
  43. ^ Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (September 2006). "PEG-modified gold nanorods with a stealth character for in vivo applications". Journal of Controlled Release. 114 (3): 343–7. doi:10.1016/j.jconrel.2006.06.017. PMID 16876898.
  44. ^ Hainfeld, James et al. "The use of gold nanoparticles to enhance radiotherapy in mice." Phys. Med. Biol. 2004. Vol 49, N309–315
  45. ^ McMahon, Stephen et al. "Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles." Scientific Reports http://www.nature.com/srep/2011/110620/srep00018/full/srep00018.html
  46. ^ Zhang Z, Chen Z, Wang S, Qu C, Chen L (May 2014). "On-site visual detection of hydrogen sulfide in air based on enhancing the stability of gold nanoparticles". ACS Applied Materials & Interfaces. 6 (9): 6300–7. doi:10.1021/am500564w. PMID 24754960.
  47. ^ a b c d e Xu S (2010). "Gold nanoparticle-based biosensors". Gold Bulletin. 43: 29–41.
  48. ^ Wang J, Polsky R, Xu D (2001). "Silver-Enhanced Colloidal Gold Electrochemical Stripping Detection of DNA Hybridization". Langmuir. 17: 5739. doi:10.1021/la011002f.
  49. ^ Wang J, Xu D, Polsky R (April 2002). "Magnetically-induced solid-state electrochemical detection of DNA hybridization". Journal of the American Chemical Society. 124 (16): 4208–9. doi:10.1021/ja0255709. PMID 11960439.
  50. ^ Daniel MC, Astruc D (January 2004). "Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology". Chemical Reviews. 104 (1): 293–346. doi:10.1021/cr030698+. PMID 14719978.
  51. ^ Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia Y (November 2006). "Gold nanostructures: engineering their plasmonic properties for biomedical applications". Chemical Society Reviews. 35 (11): 1084–94. doi:10.1039/b517615h. PMID 17057837.
  52. ^ Link S, El-Sayed MA (1996). "Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods". J. Phys. Chem. B. 103: 8410. doi:10.1021/jp9917648.
  53. ^ Mulvaney, P. (1996). "Surface Plasmon Spectroscopy of Nanosized Metal Particles". Langmuir. 12: 788. doi:10.1021/la9502711.
  54. ^ Lin HY, Chen CT, Chen YC (October 2006). "Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized on glass substrates". Analytical Chemistry. 78 (19): 6873–8. doi:10.1021/ac060833t. PMID 17007509.
  55. ^ He L, Musick MD, Nicewarner SR, Salinas FG (2000). "Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization". Journal of the American Chemical Society. 122: 9071. doi:10.1021/ja001215b.
  56. ^ Okamoto, Takayuki; Yamaguchi, Ichirou; Kobayashi, Tetsushi (2000). "Local plasmon sensor with gold colloid monolayers deposited upon glass substrates". Opt Lett. 25: 372. Bibcode:2000OptL...25..372O. doi:10.1364/OL.25.000372. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  57. ^ Brown KR, Fox P, Natan MJ (1996). "Morphology-Dependent Electrochemistry of Cytochromecat Au Colloid-Modified SnO2Electrodes". Journal of the American Chemical Society. 118: 1154. doi:10.1021/ja952951w.
  58. ^ Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (March 2003). ""Plugging into Enzymes": nanowiring of redox enzymes by a gold nanoparticle". Science. 299 (5614): 1877–81. Bibcode:2003Sci...299.1877X. doi:10.1126/science.1080664. PMID 12649477.
  59. ^ Gole, A.; et al. (2001). "Pepsin−Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity". Langmuir. 17: 1674. doi:10.1021/la001164w. {{cite journal}}: Explicit use of et al. in: |last2= (help)
  60. ^ Gole, A.; et al. (2002). "Studies on the formation of bioconjugates of Endoglucanase with colloidal gold". Colloids and Surfaces B: Biointerfaces. 25: 129. doi:10.1016/s0927-7765(01)00301-0. {{cite journal}}: Explicit use of et al. in: |last2= (help)
  61. ^ Valden M, Lai X, Goodman DW (September 1998). "Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties". Science. 281 (5383): 1647–50. Bibcode:1998Sci...281.1647V. doi:10.1126/science.281.5383.1647. PMID 9733505.
  62. ^ Lou Y, Maye MM, Han L, Zhong CJ (2001). "Gold–platinum alloy nanoparticle assembly as catalyst for methanol electrooxidation". Chemical Communications. 2001: 473. doi:10.1039/b008669j.
  63. ^ Turner M, Golovko VB, Vaughan OP, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BF, Lambert RM (August 2008). "Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters". Nature. 454 (7207): 981–3. Bibcode:2008Natur.454..981T. doi:10.1038/nature07194. PMID 18719586.
  64. ^ Mueggenburg KE, Lin XM, Goldsmith RH, Jaeger HM (September 2007). "Elastic membranes of close-packed nanoparticle arrays". Nature Materials. 6 (9): 656–60. Bibcode:2007NatMa...6..656M. doi:10.1038/nmat1965. PMID 17643104.
  65. ^ He J, Kanjanaboos P, Frazer NL, Weis A, Lin XM, Jaeger HM (July 2010). "Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes". Small. 6 (13): 1449–56. doi:10.1002/smll.201000114. PMID 20521265.
  66. ^ Wang Y, Kanjanaboos P, Barry E, McBride S, Lin XM, Jaeger HM (February 2014). "Fracture and failure of nanoparticle monolayers and multilayers". Nano Letters. 14 (2): 826–30. Bibcode:2014NanoL..14..826W. doi:10.1021/nl404185b. PMID 24467462.
  67. ^ Wang Y, Liao J, McBride SP, Efrati E, Lin XM, Jaeger HM (October 2015). "Strong Resistance to Bending Observed for Nanoparticle Membranes". Nano Letters. 15 (10): 6732–7. Bibcode:2015NanoL..15.6732W. doi:10.1021/acs.nanolett.5b02587. PMID 26313627.
  68. ^ Griesemer, S. et al. The Role of Ligands in the Mechanical Properties of Langmuir Nanoparticle Films. Soft Matter 2017, 13, 3125-3133.
  69. ^ a b c Sperling RA, Parak WJ (March 2010). "Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles". Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences. 368 (1915): 1333–83. Bibcode:2010RSPTA.368.1333S. doi:10.1098/rsta.2009.0273. PMID 20156828.
  70. ^ Tauran Y, Brioude A, Coleman AW, Rhimi M, Kim B (August 2013). "Molecular recognition by gold, silver and copper nanoparticles". World Journal of Biological Chemistry. 4 (3): 35–63. doi:10.4331/wjbc.v4.i3.35. PMC 3746278. PMID 23977421.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  71. ^ Taguchi T, Isozaki K, Miki K (December 2012). "Enhanced catalytic activity of self-assembled-monolayer-capped gold nanoparticles". Advanced Materials. 24 (48): 6462–7. doi:10.1002/adma.201202979. PMID 22968900.
  72. ^ Heinecke CL, Ni TW, Malola S, Mäkinen V, Wong OA, Häkkinen H, Ackerson CJ (August 2012). "Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters". Journal of the American Chemical Society. 134 (32): 13316–22. doi:10.1021/ja3032339. PMC 4624284. PMID 22816317.
  73. ^ Perumal S, Hofmann A, Scholz N, Rühl E, Graf C (April 2011). "Kinetics study of the binding of multivalent ligands on size-selected gold nanoparticles". Langmuir. 27 (8): 4456–64. doi:10.1021/la105134m. PMID 21413796.
  74. ^ McMahon JM, Emory SR (January 2007). "Phase transfer of large gold nanoparticles to organic solvents with increased stability". Langmuir. 23 (3): 1414–8. doi:10.1021/la0617560. PMID 17241067.
  75. ^ Tyo EC, Vajda S (July 2015). "Catalysis by clusters with precise numbers of atoms". Nature Nanotechnology. 10 (7): 577–88. Bibcode:2015NatNa..10..577T. doi:10.1038/nnano.2015.140. PMID 26139144.
  76. ^ Niu, Zhiqiang; Li, Yadong (2014-01-14). "Removal and Utilization of Capping Agents in Nanocatalysis". Chemistry of Materials. 26 (1): 72–83. doi:10.1021/cm4022479. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  77. ^ a b Häkkinen H, Walter M, Grönbeck H (May 2006). "Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings". The Journal of Physical Chemistry. B. 110 (20): 9927–31. doi:10.1021/jp0619787. PMID 16706449.
  78. ^ Reimers JR, Ford MJ, Halder A, Ulstrup J, Hush NS (March 2016). "Gold surfaces and nanoparticles are protected by Au(0)-thiyl species and are destroyed when Au(I)-thiolates form". Proceedings of the National Academy of Sciences of the United States of America. 113 (11): E1424-33. Bibcode:2016PNAS..113E1424R. doi:10.1073/pnas.1600472113. PMC 4801306. PMID 26929334.
  79. ^ Park JW, Shumaker-Parry JS (February 2014). "Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles". Journal of the American Chemical Society. 136 (5): 1907–21. doi:10.1021/ja4097384. PMID 24422457.
  80. ^ a b c Alkilany AM, Murphy CJ (September 2010). "Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?". Journal of Nanoparticle Research. 12 (7): 2313–2333. Bibcode:2010JNR....12.2313A. doi:10.1007/s11051-010-9911-8. PMC 2988217. PMID 21170131.
  81. ^ Perala SR, Kumar S (August 2013). "On the mechanism of metal nanoparticle synthesis in the Brust-Schiffrin method". Langmuir. 29 (31): 9863–73. doi:10.1021/la401604q. PMID 23848382.
  82. ^ Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (March 2009). "Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects". Small. 5 (6): 701–8. doi:10.1002/smll.200801546. PMID 19226599.
  83. ^ a b Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (March 2009). "Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects". Small. 5 (6): 701–8. doi:10.1002/smll.200801546. PMID 19226599.
  84. ^ Takahashi H, Niidome Y, Niidome T, Kaneko K, Kawasaki H, Yamada S (January 2006). "Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity". Langmuir. 22 (1): 2–5. doi:10.1021/la0520029. PMID 16378388.
  85. ^ a b Goodman CM, McCusker CD, Yilmaz T, Rotello VM (June 2004). "Toxicity of gold nanoparticles functionalized with cationic and anionic side chains". Bioconjugate Chemistry. 15 (4): 897–900. doi:10.1021/bo049951i. PMID 15264879.
  86. ^ Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (March 2005). "Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity". Small. 1 (3): 325–7. doi:10.1002/smll.2004000093. PMID 17193451.
  87. ^ Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE (June 2009). "Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles". Nanomedicine. 5 (2): 106–17. doi:10.1016/j.nano.2008.08.001. PMC 3683956. PMID 19071065.
  88. ^ Chen YS, Hung YC, Liau I, Huang GS (May 2009). "Assessment of the In Vivo Toxicity of Gold Nanoparticles". Nanoscale Research Letters. 4 (8): 858–864. Bibcode:2009NRL.....4..858C. doi:10.1007/s11671-009-9334-6. PMID 20596373.
  89. ^ Cho WS, Cho M, Jeong J, Choi M, Cho HY, Han BS, Kim SH, Kim HO, Lim YT, Chung BH, Jeong J (April 2009). "Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles". Toxicology and Applied Pharmacology. 236 (1): 16–24. doi:10.1016/j.taap.2008.12.023. PMID 19162059.
  90. ^ Gref R, Couvreur P, Barratt G, Mysiakine E (November 2003). "Surface-engineered nanoparticles for multiple ligand coupling". Biomaterials. 24 (24): 4529–37. doi:10.1016/s0142-9612(03)00348-x. PMID 12922162.
  91. ^ Boisselier E, Astruc D (June 2009). "Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity". Chemical Society Reviews. 38 (6): 1759–82. doi:10.1039/b806051g. PMID 19587967.
  92. ^ Tandon A, Sharma A, Rodier JT, Klibanov AM, Rieger FG, Mohan RR (June 2013). "BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo". PloS One. 8 (6): e66434. Bibcode:2013PLoSO...866434T. doi:10.1371/journal.pone.0066434. PMID 23799103.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  93. ^ Goodman CM, McCusker CD, Yilmaz T, Rotello VM (June 2004). "Toxicity of gold nanoparticles functionalized with cationic and anionic side chains". Bioconjugate Chemistry. 15 (4): 897–900. doi:10.1021/bc049951i. PMID 15264879.
  94. ^ Gratton SE, Pohlhaus PD, Lee J, Guo J, Cho MJ, Desimone JM (August 2007). "Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINT nanoparticles". Journal of Controlled Release. 121 (1–2): 10–8. doi:10.1016/j.jconrel.2007.05.027. PMC 1994820. PMID 17643544.
  95. ^ a b c d e f g Sonavane G, Tomoda K, Makino K (October 2008). "Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size". Colloids and Surfaces. B, Biointerfaces. 66 (2): 274–80. doi:10.1016/j.colsurfb.2008.07.004. PMID 18722754.
  96. ^ a b c De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE (April 2008). "Particle size-dependent organ distribution of gold nanoparticles after intravenous administration". Biomaterials. 29 (12): 1912–9. doi:10.1016/j.biomaterials.2007.12.037. PMID 18242692.
  97. ^ Turkevich J, Stevenson PC, Hillier J (1951). "A study of the nucleation and growth processes in the synthesis of colloidal gold". Discuss. Faraday. Soc. 11: 55–75. doi:10.1039/df9511100055.
  98. ^ Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (August 2006). "Turkevich method for gold nanoparticle synthesis revisited". The Journal of Physical Chemistry. B. 110 (32): 15700–7. doi:10.1021/jp061667w. PMID 16898714.
  99. ^ a b Frens, G. (1972). "Particle size and sol stability in metal colloids". Colloid & Polymer Science. 250: 736–741. doi:10.1007/bf01498565.
  100. ^ a b Frens, G. (1973). "Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions". Nature. 241: 20–22. Bibcode:1973NPhS..241...20F. doi:10.1038/physci241020a0.
  101. ^ Niu, Zhiqiang; Li, Yadong (2014). "Removal and Utilization of Capping Agents in Nanocatalysis". Chemistry of Materials. 26: 72–83. doi:10.1021/cm4022479. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  102. ^ Pong BK, Elim HI, Chong JX, Trout BL, Lee JY (2007). "New Insights on the Nanoparticle Growth Mechanism in the Citrate Reduction of Gold(III) Salt: Formation of the Au Nanowire Intermediate and Its Nonlinear Optical Properties". J. Phys. Chem. C. 111 (17): 6281–6287. doi:10.1021/jp068666o.
  103. ^ M. Brust; M. Walker; D. Bethell; D. J. Schiffrin; R. Whyman (1994). "Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System". Chem. Commun. (7): 801–802. doi:10.1039/C39940000801.
  104. ^ Manna, A.; Chen, P.; Akiyama, H.; Wei, T.; Tamada, K.; Knoll, W. (2003). "Optimized Photoisomerization on Gold Nanoparticles Capped by Unsymmetrical Azobenzene Disulfides". Chem. Mater. 15 (1): 20–28. doi:10.1021/cm0207696.
  105. ^ Gao J, Huang X, Liu H, Zan F, Ren J (March 2012). "Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging". Langmuir. 28 (9): 4464–71. doi:10.1021/la204289k. PMID 22276658.
  106. ^ Bekalé, Laurent, Saïd Barazzouk, and Surat Hotchandani. "Beneficial Role of Gold Nanoparticles as Photoprotector of Magnesium Tetraphenylporphyrin." SpringerReference (n.d.): n. pag. Web. 14 Nov. 2016.
  107. ^ "Phosphine-Stabilized Gold Nanoparticles." Nanomanufacturing Process Database (n.d.): n. pag. Web. 14 Nov. 2016. http://www.chemistry.illinois.edu/research/inorganic/seminar_abstracts/2008-2009/Shen.Abstract.pdf.
  108. ^ "Phosphine-Stabilized Gold Nanoparticles." Nanomanufacturing Process Database (n.d.): n. pag. Web. 14 Nov. 2016. http://www.chemistry.illinois.edu/research/inorganic/seminar_abstracts/2008-2009/Shen.Abstract.pdf.
  109. ^ Perrault SD, Chan WC (December 2009). "Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm". Journal of the American Chemical Society. 131 (47): 17042–3. doi:10.1021/ja907069u. PMID 19891442.
  110. ^ Martin MN, Basham JI, Chando P, Eah SK (May 2010). "Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly". Langmuir. 26 (10): 7410–7. doi:10.1021/la100591h. PMID 20392108. A 3-min demonstration video for the Martin synthesis method is available at YouTube
  111. ^ Kalishwaralal K, Deepak V, Ram Kumar Pandian S, Gurunathan S (November 2009). "Biological synthesis of gold nanocubes from Bacillus licheniformis". Bioresource Technology. 100 (21): 5356–8. doi:10.1016/j.biortech.2009.05.051. PMID 19574037.
  112. ^ Navarro JR, Lerouge F, Cepraga C, Micouin G, Favier A, Chateau D, Charreyre MT, Lanoë PH, Monnereau C, Chaput F, Marotte S, Leverrier Y, Marvel J, Kamada K, Andraud C, Baldeck PL, Parola S (November 2013). "Nanocarriers with ultrahigh chromophore loading for fluorescence bio-imaging and photodynamic therapy". Biomaterials. 34 (33): 8344–51. doi:10.1016/j.biomaterials.2013.07.032. PMID 23915950.
  113. ^ Baigent CL, Müller G (1980). "A colloidal gold prepared using ultrasonics". Experientia. 36 (4): 472–473. doi:10.1007/BF01975154.
  114. ^ Jianling Zhang; Jimin Du; Buxing Han; Zhimin Liu; Tao Jiang; Zhaofu Zhang (2006). "Sonochemical Formation of Single-Crystalline Gold Nanobelts". Angew. Chem. 118 (7): 1134–7. doi:10.1002/ange.200503762.
  115. ^ Sakai T, Alexandridis P (April 2005). "Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions". The Journal of Physical Chemistry. B. 109 (16): 7766–77. doi:10.1021/jp046221z. PMID 16851902.
  116. ^ Ray D, Aswal VK, Kohlbrecher J (April 2011). "Synthesis and characterization of high concentration block copolymer-mediated gold nanoparticles". Langmuir. 27 (7): 4048–56. doi:10.1021/la2001706. PMID 21366279.

Further reading

  • Boisselier, E.; Astruc, D (2009). "Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity". Chemical Society Reviews. Vol. 38, no. 6. pp. 1759–1782. doi:10.1039/b806051g. - " This critical review provides an overall survey of the basic concepts and up-to-date literature results concerning the very promising use of gold nanoparticles (AuNPs) for medicinal applications."

External links