2020 in archosaur paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Line 145: Line 145:
{{Flag|United States}}<br>({{Flag|Colorado}}<br>{{Flag|Utah}}<br>{{Flag|Wyoming}})
{{Flag|United States}}<br>({{Flag|Colorado}}<br>{{Flag|Utah}}<br>{{Flag|Wyoming}})
|
|
|
|-
|
''[[Amanzia]]''<ref>{{cite journal |author1=Daniela Schwarz | author2=Philip D. Mannion | author3=Oliver Wings | author4=Christian A. Meyer |year=2020 |title=Re-description of the sauropod dinosaur ''Amanzia ("Ornithopsis/Cetiosauriscus") greppini'' n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland |journal=Swiss Journal of Geosciences |volume=113 |issue=1 |pages=Article number 2 |doi=10.1186/s00015-020-00355-5 }}</ref>
|
Gen. et comb. nov
|
|
Schwarz ''et al.''
|
[[Late Jurassic]] ([[Kimmeridgian]])
|
[[Reuchenette Formation]]
|
{{Flag|Switzerland}}
|
A non-[[Neosauropoda|neosauropod]] [[Eusauropoda|eusauropod]] of uncertain phylogenetic placement. The type species is ''"[[Ornithopsis]]" greppini'' Huene (1922).
|
|
|-
|-

Revision as of 16:30, 25 February 2020

List of years in archosaur paleontology
In paleontology
2017
2018
2019
2020
2021
2022
2023
In science
2017
2018
2019
2020
2021
2022
2023
+...

This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2020, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2020.

General research

  • A study on the evolution of metabolic rates along the bird stem lineage is published by Rezende et al. (2020).[1]
  • A review of the anatomy of the respiratory systems and mechanics of breathing in living and fossil archosaurs, evaluating their physiological implications, is published by Brocklehurst et al. (2020).[2]
  • A study aiming to determine the relationship between atmospheric O2 and CO2 levels during the Late Triassic and the evolution of skeletal pneumaticity and respiratory systems in theropod dinosaurs and in paracrocodylomorphs is published by Hudgins, Uhen & Hinnov (2020).[3]
  • A study on the phylogenetic distribution and structural diversity of medullary bone in extant birds, reevaluating the criteria proposed to allow the identification of medullary bone in fossils of avemetatarsalians, is published by Canoville, Schweitzer & Zanno (2020).[4]
  • An archosaur egg of uncertain affinities, with eggshell containing several parallel dark bands, is reported from the Upper Cretaceous of South Korea by Choi et al. (2020), who investigate the origin of the dark bands, and name a new ootaxon Aenigmaoolithus vesicularis.[5]
  • A study on the relationship between the curvatures of ungual bones and behaviour in extant birds and squamates, evaluating its implications for the knowledge of the lifestyle of Mesozoic birds and non-avian theropods, is published by Cobb & Sellers (2020).[6]
  • Xing, Cockx & McKellar (2020) describe a large sample set of 150 specimens of the Cretaceous Burmese amber containing feathers most likely belonging to non-avian dinosaurs and enantiornithean birds.[7]

Pseudosuchians

Research

  • Redescription of the anatomy of the postcranial skeleton of Riojasuchus tenuisceps, and a study on the phylogenetic affinities of ornithosuchids, is published by von Baczko, Desojo & Ponce (2020).[8]
  • A three-dimensional reconstruction of the armour plates around the tail of Stagonolepis robertsoni is presented by Keeble & Benton (2020).[9]
  • Taxonomic revision, anatomical description, and a study on the phylogenetic relationships of the type and referred materials of Prestosuchus from the original collections of Friedrich von Huene is published by Desojo, von Baczko & Rauhut (2020), who transfer the species Stagonosuchus nyassicus to the genus Prestosuchus.[10]
  • A study on the impact of the habitat on the evolution of body size in Crocodyliformes, based on data from extant and fossil taxa, is published by Gearty & Payne (2020).[11]
  • A study on the thermophysiology of metriorhynchids, as indicated by the oxygen isotope composition of the tooth enamel phosphate, is published by Séon et al. (2020).[12]
  • New information on the anatomy of the endocranial cavities of Campinasuchus dinizi is presented by Fonseca et al. (2020).[13]
  • New specimen of Susisuchus anatoceps, displaying a non-eusuchian type palate (i.e. choana not entirely bounded by the pterygoids), is described by Montefeltro et al. (2020), who evaluate the implications of this finding for the knowledge of the anatomy of this taxon and the phylogenetic position of susisuchids.[14]
  • Reconstruction of the internal cavities of the skull of Agaresuchus fontisensis, including the cavities that contained the brain, nerves and blood vessels, is presented by Serrano‐Martínez et al. (2020).[15]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Dynamosuchus [16]

Gen. et sp. nov

Valid

Müller et al.

Late Triassic (Carnian)

Santa Maria Formation

 Brazil

A member of the family Ornithosuchidae. The type species is D. collisensis.

Non-avian dinosaurs

Research

  • A study on the biogeography of the Cretaceous Australian dinosaur fauna is published by Kubo (2020).[17]
  • A study aiming to determine dinosaur body temperatures on the basis of data from fossil eggshells, comparing them with paleoenvironmental temperatures, and evaluating their implications for the knowledge of dinosaur thermoregulation, is published by Dawson et al. (2020).[18]
  • A study on the trace elements and isotopic compositions of eggshells of dinosaur eggs from the Cretaceous Zhaoying Formation (Henan, China), evaluating their implications for reconstructions of local paleoenvironment, is published by He et al. (2020).[19]
  • A study on the affinities of putative gekkotan eggshells from the Late Cretaceous of Europe is published by Choi et al. (2020), who interpret the fossil material of Pseudogeckoolithus as theropod eggshells.[20]
  • The discovery of sternal plates of Tawa hallae from the Late Triassic of New Mexico and Arizona, representing the oldest known dinosaur sternal plates described so far, is reported by Bradley et al. (2020), who note the presence of morphological features similar to sternal traits in avialans.[21]
  • New fossil material of theropod dinosaurs representing a wide taxonomic range is reported from the Late Jurassic of the Langenberg Quarry (Lower Saxony, Germany) by Evers & Wings (2020), who interpret these fossils as evidence of the presence of several taxa of theropods in the Late Jurassic archipelago in the area of Central Europe.[22]
  • New theropod fossil material is reported from the Griman Creek Formation by Brougham, Smith & Bell (2020), who interpret it as evidence of the presence of noasaurids in Australia during the Cretaceous.[23]
  • A study on an indeterminate megaraptoran specimen from the Winton Formation (Australia) is published by White et al. (2020), who interpret this finding as evidence of either ontogenetic or intraspecific variation in Australovenator, or the presence of a second megaraptorid taxon in the Winton Formation.[24]
  • A study on the endocranial anatomy of Bistahieversor sealeyi, evaluating its implications for the knowledge of the evolution of the brains and sinuses of tyrannosauroids, is published by McKeown et al. (2020).[25]
  • A study on the bone microstructure of two half-grown specimens of Tyrannosaurus rex, evaluating its implications for the knowledge of the early life history of members of this species and the taxonomic validity of Nanotyrannus lancensis, is published by Woodward et al. (2020).[26]
  • New theropod teeth, possibly belonging to members of the family Dromaeosauridae and representing the first record of that group from the southern Junggar Basin, are reported from the Upper Jurassic Qigu Formation (China) by Maisch & Matzke (2020).[27]
  • A study on the differences in the locomotor and predatory specializations of eudromaeosaurs and unenlagiines, as indicated by the anatomy of their hindlimbs, is published by Gianechini, Ercoli & Díaz‐Martínez (2020).[28]
  • A study on the histology of the humeri of two basal sauropod specimens from the Jurassic of Niger and Thailand, reporting evidence of a layer of the radial fibrolamellar bone buried in the outer cortex of these bones, is published by Jentgen-Ceschino, Stein & Fischer (2020), who interpret their findings as evidence of these sauropods being affected by pathologies similar to Ewing's sarcoma and avian osteopetrosis or haemangioma.[29]
  • A study comparing articulation and range of motion of necks of extant giraffes and Spinophorosaurus nigerensis is published by Vidal et al. (2020).[30]
  • A review of the distribution of the Cretaceous fossils of rebbachisaurid sauropods is published by Pereira et al. (2020), who report the first occurrence of a rebbachisaurid from the Açu Formation (Potiguar Basin, Brazil), and discuss its paleobiogeographic implications.[31]
  • A large sauropod humerus, probably belonging to a member of the species Fusuisaurus zhaoi, is described from the Lower Cretaceous Xinlong Formation (Guangxi, China) by Mo et al. (2020).[32]
  • A study on the structure and development of the dermal skeleton of Scelidosaurus harrisonii is published by Norman (2020).[33]
  • A study on the bone microstructure of Mongolian hadrosauroid dinosaurs, evaluating its implications for the knowledge of growth strategies and evolution of gigantism in hadrosauroids, is published by Słowiak et al. (2020).[34]
  • A study on pathologies affecting two hadrosaurid vertebrae from the Dinosaur Provincial Park (Alberta, Canada) is published by Rothschild et al. (2020), who consider Langerhans cell histiocytosis to be the most likely diagnosis, making it the first case of LCH recognized in a dinosaur so far.[35]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Abdarainurus[36]

Gen. et sp. nov

Valid

Averianov & Lopatin

Late Cretaceous

Alagteeg Formation

 Mongolia

A sauropod dinosaur, probably a basal member of Titanosauria. Genus includes new species A. barsboldi.

Adratiklit[37]

Gen. et sp. nov

Valid

Maidment et al.

Middle Jurassic (Bathonian)

El Mers II Formation

 Morocco

A member of Stegosauria. Genus includes new species A. boulahfa. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Allosaurus jimmadseni[38]

Sp. nov

Valid

Chure & Loewen

Late Jurassic (Kimmeridgian)

Morrison Formation

 United States
( Colorado
 Utah
 Wyoming)

Amanzia[39]

Gen. et comb. nov

Schwarz et al.

Late Jurassic (Kimmeridgian)

Reuchenette Formation

  Switzerland

A non-neosauropod eusauropod of uncertain phylogenetic placement. The type species is "Ornithopsis" greppini Huene (1922).

Huinculsaurus[40]

Gen. et sp. nov

Valid

Baiano, Coria & Cau

Late Cretaceous (late Cenomanian-Turonian)

Huincul Formation

 Argentina

A theropod related to Elaphrosaurus. Genus includes new species H. montesi.

Jinbeisaurus[41]

Gen. et sp. nov

Valid

Wu et al.

Late Cretaceous

Huiquanpu Formation

 China

A tyrannosauroid theropod. Genus includes new species J. wangi. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Thanatotheristes[42]

Gen. et sp. nov

Valid

Voris et al.

Late Cretaceous (Campanian)

Foremost Formation

 Canada
( Alberta)

A tyrannosaurid theropod. Genus includes new species T. degrootorum.

Tralkasaurus[43]

Gen. et sp. nov

Valid

Cerroni et al.

Late Cretaceous (Cenomanian-Turonian)

Huincul Formation

 Argentina

An abelisaurid theropod. Genus includes new species T. cuyi. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Vallibonavenatrix[44]

Gen. et sp. nov

Valid

Malafaia et al.

Early Cretaceous (Barremian)

Arcillas de Morella Formation

 Spain

A spinosaurid theropod. Genus includes new species V. cani. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Wulong[45]

Gen. et sp. nov

Valid

Poust et al.

Early Cretaceous (Aptian)

Jiufotang Formation

 China

A microraptorine dromaeosaurid theropod. Genus includes new species W. bohaiensis.

Xunmenglong[46]

Gen. et sp. nov

Valid

Xing et al.

Early Cretaceous

Huajiying Formation

 China

A compsognathid theropod. Genus includes new species X. yinliangis. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Yamanasaurus[47]

Gen. et sp. nov

Valid

Apesteguía et al.

Late Cretaceous

Río Playas Formation

 Ecuador

A saltasaurine titanosaur. Genus includes new species Y. lojaensis. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Yunyangosaurus[48]

Gen. et sp. nov

Dai et al.

Middle Jurassic

Xintiangou Formation

 China

A tetanuran theropod, possibly a member of Megalosauroidea. The type species is Y. puanensis.

Birds

Research

  • A study aiming to determine the volumes of the brain structures used to infer behavior or functional capabilities in Archaeopteryx lithographica, Lithornis plebius, Dinornis robustus, Paraptenodytes antarcticus, Psilopterus lemoinei, Llallawavis scagliai and an unnamed Miocene galliform is published by Early, Ridgely & Witmer (2020).[49]
  • A feather fragment from an aquatic bird is reported from amber recovered from the Pipestone Creek bonebed from the Campanian Wapiti Formation (Alberta, Canada) by Cockx et al. (2020).[50]
  • Volkova & Zelenkov (2020) describe new fossil material of geese from the late Miocene locality Khyargas Nuur 2 in western Mongolia, and evaluate the implications of these fossils for the knowledge of the late Miocene evolution and paleogeography of geese.[51]
  • Barton et al. (2020) reinterpret purported chicken specimens from the Neolithic site at Dadiwan as remains of pheasants, and argue that these remains provide evidence of exploitation of grain-fed pheasants by early farmers in arid northwest China.[52]
  • Partial skeleton of an early penguin (possibly belonging to the species Muriwaimanu tuatahi), preserving the first complete wing of a Paleocene penguin reported so far and providing new information on the skeletal anatomy of this taxon, is described from the Waipara Greensand (New Zealand) by Mayr et al. (2020).[53]
  • An articulated wing of Palaeeudyptes gunnari, preserving mineralized skin, is described from the Eocene (Lutetian) of Seymour Island (Antarctica) by Acosta Hospitaleche et al. (2020).[54]
  • New fossil material of penguins and a member of Gruiformes is reported from the Eocene of the Seymour Island by Davis et al. (2020), supporting previously controversial reports of Gruiformes from Antarctica.[55]
  • An exceptionally well-preserved bird carcass found in the Siberian permafrost and dated to approximately 44–49 ka BP is described by Dussex et al. (2020), who identify this specimen as a female horned lark, and evaluate the implications of this specimen for the knowledge of the evolution and biogeography of its species during the Pleistocene.[56]
  • Flamingo-like and anatid-like fossil bird footprints will be described from the Vinchina Formation (Argentina) by Farina et al. (2020), who name new ichnotaxa Phoenicopterichnum lucioi and P. vinchinaensis.[57]
  • A study on the impact of the climate changes of the last 35,000 years on small birds from the La Brea Tar Pits is published by Long, Prothero & Syverson (2020).[58]
  • A study comparing predicted breeding and wintering distributions for landbird species identified from the La Brea Tar Pits during the Last Glacial Maximum, aiming to determine if niche models successfully predict species’ presence, to estimate the degree of species turnover, to evaluate the fluidity of life history strategies of birds from La Brea, and to compare niche breadths of bark-foraging birds from La Brea between the Last Glacial Maximum and the present, is published by Zink et al. (2020).[59]
  • New fossil material of seabirds, including remains of the little auk or a related species, is reported from the Pleistocene Kazusa and Shimosa groups (Japan) by Watanabe et al. (2020), who interpret this finding as possible evidence that the little auk more widespread in the North Pacific in the middle Pleistocene than it is today.[60]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Antarcticavis[61]

Gen. et sp. nov

In press

Cordes-Person et al.

Late Cretaceous (Maastrichtian)

Snow Hill Island Formation

Antarctica

A bird of uncertain phylogenetic placement, possibly a member of Ornithuromorpha belonging to the group Ornithurae. The type species is A. capelambensis. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

?Crossvallia waiparensis[62]

Sp. nov

Valid

Mayr et al.

Paleocene

Waipara Greensand

 New Zealand

A large-sized penguin. Announced in 2019; the final version of the article naming it was published in 2020.

Pterosaurs

Research

  • Mazin & Pouech (2020) describe non-pterodactyloid pterosaur tracks from the ichnological site known as "the Pterosaur Beach of Crayssac" (Tithonian; south-western France), evaluate the implications of these tracks for the knowledge of the terrestrial capabilities of non-pterodactyloid pterosaurs, and name a new ichnogenus Rhamphichnus.[63]
  • A coleoid cephalopod specimen preserved with an associated tooth of a pterosaur (probably Rhamphorhynchus) is reported from the Upper Jurassic Altmühltal Formation (Germany) by Hoffmann et al. (2020), who evaluate the implications of this finding for the knowledge of feeding behaviours of Rhamphorhynchus.[64]
  • A well-preserved basihyal is reported for the first time in a pterosaur specimen (possibly belonging to the species Gladocephaloideus jingangshanensis) from the Lower Cretaceous Yixian Formation (China) by Jiang et al. (2020).[65]
  • Jacobs et al. (2020) describe new fossil material of pterosaurs from the Kem Kem Beds (Morocco), bringing the Kem Kem pterosaur fauna up to at least nine species (of which three are ornithocheirids), and confirming that toothed pterosaurs remained diverse during the mid-Cretaceous.[66]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Albadraco [67]

Gen. et sp. nov

In press

Solomon et al.

Late Cretaceous (Maastrichtian)

 Romania

An azhdarchid pterosaur. Genus includes new species A. tharmisensis. Announced in 2019; the final version of the article naming it is not published yet.

Apatorhamphus[68]

Gen. et sp. nov

In press

McPhee et al.

Middle Cretaceous (Albian/Cenomanian)

Kem Kem beds

 Morocco

A possible chaoyangopterid azhdarchoid pterosaur. Genus includes new species A. gyrostega.[68]

Other archosaurs

  • A study on the anatomy, locomotion and phylogenetic relationships of Scleromochlus taylori is published by Bennett (2020).[69]
  • A study on the musculoskeletal apparatus and posture of Silesaurus opolensis, evaluating its implications for the knowledge of the evolution of the fully erect limb posture in archosaurs, is published by Piechowski & Tałanda (2020).[70]

References

  1. ^ Enrico L. Rezende; Leonardo D. Bacigalupe; Roberto F. Nespolo; Francisco Bozinovic (2020). "Shrinking dinosaurs and the evolution of endothermy in birds". Science Advances. 6 (1): eaaw4486. doi:10.1126/sciadv.aaw4486. PMC 6938711. PMID 31911937.
  2. ^ Robert J. Brocklehurst; Emma R. Schachner; Jonathan R. Codd; William I. Sellers (2020). "Respiratory evolution in archosaurs". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190140. doi:10.1098/rstb.2019.0140. PMID 31928195.
  3. ^ Michael Naylor Hudgins; Emma R. Schachner; Linda A. Hinnov (2020). "The evolution of respiratory systems in Theropoda and Paracrocodylomorpha, the end-Triassic extinction, and the role of Late Triassic atmospheric O2 and CO2". Palaeogeography, Palaeoclimatology, Palaeoecology. 545: Article 109638. doi:10.1016/j.palaeo.2020.109638.
  4. ^ Aurore Canoville; Mary H. Schweitzer; Lindsay Zanno (2020). "Identifying medullary bone in extinct avemetatarsalians: challenges, implications and perspectives". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190133. doi:10.1098/rstb.2019.0133. PMID 31928189.
  5. ^ Seung Choi; Sung Keun Lee; Noe-Heon Kim; Seongyeong Kim; Yuong-Nam Lee (2020). "Raman spectroscopy detects amorphous carbon in an enigmatic egg from the Upper Cretaceous Wido Volcanics of South Korea". Frontiers in Earth Science. 7: Article 349. doi:10.3389/feart.2019.00349.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. ^ Savannah Elizabeth Cobb; William I. Sellers (2020). "Inferring lifestyle for Aves and Theropoda: A model based on curvatures of extant avian ungual bones". PLoS ONE. 15 (2): e0211173. doi:10.1371/journal.pone.0211173. PMC 7001973. PMID 32023255.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. ^ Lida Xing; Pierre Cockx; Ryan C. McKellar (2020). "Disassociated feathers in Burmese amber shed new light on mid-Cretaceous dinosaurs and avifauna". Gondwana Research. 82: 241–253. doi:10.1016/j.gr.2019.12.017.
  8. ^ M. Belén von Baczko; Julia B. Desojo; Denis Ponce (2020). "Postcranial anatomy and osteoderm histology of Riojasuchus tenuisceps and a phylogenetic update on Ornithosuchidae (Archosauria, Pseudosuchia)". Journal of Vertebrate Paleontology. in press: e1693396. doi:10.1080/02724634.2019.1693396.
  9. ^ Emily Keeble; Michael J. Benton (2020). "Three-dimensional tomographic study of dermal armour from the tail of the Triassic aetosaur Stagonolepis robertsoni" (PDF). Scottish Journal of Geology. in press: sjg2019-026. doi:10.1144/sjg2019-026.
  10. ^ Julia Brenda Desojo; María Belén von Baczko; Oliver W.M. Rauhut (2020). "Anatomy, taxonomy and phylogenetic relationships of Prestosuchus chiniquensis (Archosauria: Pseudosuchia) from the original collection of von Huene, Middle-Late Triassic of southern Brazil". Palaeontologia Electronica. 23 (1): Article number 23(1):a04. doi:10.26879/1026.
  11. ^ William Gearty; Jonathan L. Payne (2020). "Physiological constraints on body size distributions in Crocodyliformes". Evolution. 74 (2): 245–255. doi:10.1111/evo.13901. PMID 31943148.
  12. ^ Nicolas Séon; Romain Amiot; Jeremy E. Martin; Mark T. Young; Heather Middleton; François Fourel; Laurent Picot; Xavier Valentin; Christophe Lécuyer (2020). "Thermophysiologies of Jurassic marine crocodylomorphs inferred from the oxygen isotope composition of their tooth apatite". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190139. doi:10.1098/rstb.2019.0139. PMID 31928186.
  13. ^ Pedro Henrique Morais Fonseca; Agustín Guillermo Martinelli; Thiago da Silva Marinho; Luiz Carlos Borges Ribeiro; Cesar Leandro Schultz; Marina Bento Soares (2020). "Morphology of the endocranial cavities of Campinasuchus dinizi (Crocodyliformes: Baurusuchidae) from the Upper Cretaceous of Brazil". Geobios. in press. doi:10.1016/j.geobios.2019.11.001.
  14. ^ Felipe C. Montefeltro; Mario Bronzati; Max C. Langer; Luiz E. Anelli (2020). "A new specimen of Susisuchus anatoceps (Crocodyliformes, Neosuchia) with a non-eusuchian-type palate". Journal of Vertebrate Paleontology. in press: e1716240. doi:10.1080/02724634.2019.1716240.
  15. ^ Alejandro Serrano‐Martínez; Fabien Knoll; Iván Narváez; Stephan Lautenschlager; Francisco Ortega (2020). "Neuroanatomical and neurosensorial analysis of the Late Cretaceous basal eusuchian Agaresuchus fontisensis (Cuenca, Spain)". Papers in Palaeontology. in press. doi:10.1002/spp2.1296.
  16. ^ Rodrigo T. Müller; M. Belén Von Baczko; Julia B. Desojo; Sterling J. Nesbitt (2020). "The first ornithosuchid from Brazil and its macroevolutionary and phylogenetic implications for Late Triassic faunas in Gondwana". Acta Palaeontologica Polonica. 65. doi:10.4202/app.00652.2019.
  17. ^ Tai Kubo (2020). "Biogeographical network analysis of Cretaceous Australian dinosaurs". Gondwana Research. 82: 39–47. doi:10.1016/j.gr.2019.12.012.
  18. ^ Robin R. Dawson; Daniel J. Field; Pincelli M. Hull; Darla K. Zelenitsky; François Therrien; Hagit P. Affek (2020). "Eggshell geochemistry reveals ancestral metabolic thermoregulation in Dinosauria". Science Advances. 6 (7): eaax9361. doi:10.1126/sciadv.aax9361.
  19. ^ Qing He; Sen Yang; Songhai Jia; Li Xu; Lida Xing; Diansong Gao; Di Liu; Yongli Gao; Yalin Zheng (2020). "Trace element and isotope geochemistry of macroelongatoolithid eggs as an indicator of palaeoenvironmental reconstruction from the Late Cretaceous Xixia Basin, China". Cretaceous Research. 109: Article 104373. doi:10.1016/j.cretres.2020.104373.
  20. ^ Seung Choi; Miguel Moreno‐Azanza; Zoltán Csiki‐Sava; Edina Prondvai; Yuong‐Nam Lee (2020). "Comparative crystallography suggests maniraptoran theropod affinities for latest Cretaceous European 'geckoid' eggshell". Papers in Palaeontology. in press. doi:10.1002/spp2.1294.
  21. ^ Alexander B. Bradley; Sara H. Burch; Alan H. Turner; Nathan D. Smith; Randall B. Irmis; Sterling J. Nesbitt (2020). "Sternal elements of early dinosaurs fill a critical gap in the evolution of the sternum in Avemetatarsalia (Reptilia: Archosauria)". Journal of Vertebrate Paleontology. in press: e1700992. doi:10.1080/02724634.2019.1700992.
  22. ^ Serjoscha W. Evers; Oliver Wings (2020). "Late Jurassic theropod dinosaur bones from the Langenberg Quarry (Lower Saxony, Germany) provide evidence for several theropod lineages in the central European archipelago". PeerJ. 8: e8437. doi:10.7717/peerj.8437. PMC 7007975. PMID 32071804.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  23. ^ Tom Brougham; Elizabeth T. Smith; Phil R. Bell (2020). "Noasaurids are a component of the Australian 'mid'-Cretaceous theropod fauna". Scientific Reports. 10 (1): Article number 1428. doi:10.1038/s41598-020-57667-7. PMC 6989633. PMID 31996712.
  24. ^ White, Matt A.; Bell, Phil R.; Poropat, Stephen F.; Pentland, Adele H.; Rigby, Samantha L.; Cook, Alex G.; Sloan, Trish; Elliott, David A. (2020). "New theropod remains and implications for megaraptorid diversity in the Winton Formation (lower Upper Cretaceous), Queensland, Australia". Royal Society Open Science. 7 (1): 191462. doi:10.1098/rsos.191462.
  25. ^ Matthew McKeown; Stephen L. Brusatte; Thomas E. Williamson; Julia A. Schwab; Thomas D. Carr; Ian B. Butler; Amy Muir; Katlin Schroeder; Michelle A. Espy; James F. Hunter; Adrian S. Losko; Ronald O. Nelson; D. Cort Gautier; Sven C. Vogel (2020). "Neurosensory and sinus evolution as tyrannosauroid dinosaurs developed giant size: insight from the endocranial anatomy of Bistahieversor sealeyi". The Anatomical Record. in press. doi:10.1002/ar.24374. PMID 31967416.
  26. ^ Holly N. Woodward; Katie Tremaine; Scott A. Williams; Lindsay E. Zanno; John R. Horner; Nathan Myhrvold (2020). "Growing up Tyrannosaurus rex: Osteohistology refutes the pygmy "Nanotyrannus" and supports ontogenetic niche partitioning in juvenile Tyrannosaurus". Science Advances. 6 (1): eaax6250. doi:10.1126/sciadv.aax6250. PMC 6938697. PMID 31911944.
  27. ^ Michael W. Maisch; Andreas T. Matzke (2020). "Small theropod teeth (Dinosauria) from the Upper Jurassic Qigu Formation of the southern Junggar Basin, NW China". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 295 (1): 91–100. doi:10.1127/njgpa/2020/0869.
  28. ^ Federico A. Gianechini; Marcos D. Ercoli; Ignacio Díaz‐Martínez (2020). "Differential locomotor and predatory strategies of Gondwanan and derived Laurasian dromaeosaurids (Dinosauria, Theropoda, Paraves): Inferences from morphometric and comparative anatomical studies". Journal of Anatomy. in press. doi:10.1111/joa.13153. PMID 32023660.
  29. ^ Benjamin Jentgen-Ceschino; Koen Stein; Valentin Fischer (2020). "Case study of radial fibrolamellar bone tissues in the outer cortex of basal sauropods". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190143. doi:10.1098/rstb.2019.0143. PMID 31928196.
  30. ^ Daniel Vidal; Pedro Mocho; Adrián Páramo; José Luis Sanz; Francisco Ortega (2020). "Ontogenetic similarities between giraffe and sauropod neck osteological mobility". PLoS ONE. 15 (1): e0227537. doi:10.1371/journal.pone.0227537. PMC 6957182. PMID 31929581.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  31. ^ Paulo Victor Luiz Gomes da Costa Pereira; Ingrid Martins Machado Garcia Veiga; Theo Baptista Ribeiro; Ryan Henrique Bezerra Cardozo; Carlos Roberto dos Anjos Candeiro; Lilian Paglarelli Bergqvist (2020). "The path of giants: a new occurrence of Rebbachisauridae (Dinosauria, Diplodocoidea) in the Açu Formation, NE Brazil, and its paleobiogeographic implications". Journal of South American Earth Sciences. in press: Article 102515. doi:10.1016/j.jsames.2020.102515.
  32. ^ Jinyou Mo; Jincheng Li; Yunchuan Ling; Eric Buffetaut; Suravech Suteethorn; Varavudh Suteethorn; Haiyan Tong; Gilles Cuny; Romain Amiot; Xing Xu (2020). "New fossil remain of Fusuisaurus zhaoi (Sauropoda: Titanosauriformes) from the Lower Cretaceous of Guangxi, southern China". Cretaceous Research. 109: Article 104379. doi:10.1016/j.cretres.2020.104379.
  33. ^ David B. Norman (2020). "Scelidosaurus harrisonii from the Early Jurassic of Dorset, England: the dermal skeleton". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlz085.
  34. ^ Justyna Słowiak; Tomasz Szczygielski; Michał Ginter; Łucja Fostowicz‐Frelik (2020). "Uninterrupted growth in a non‐polar hadrosaur explains the gigantism among duck‐billed dinosaurs". Palaeontology. in press. doi:10.1111/pala.12473.
  35. ^ Bruce M. Rothschild; Darren Tanke; Frank Rühli; Ariel Pokhojaev; Hila May (2020). "Suggested case of Langerhans Cell Histiocytosis in a Cretaceous dinosaur". Scientific Reports. 10 (1): Article number 2203. doi:10.1038/s41598-020-59192-z. PMC 7010826. PMID 32042034.
  36. ^ Alexander O. Averianov; Alexey V. Lopatin (2020). "An unusual new sauropod dinosaur from the Late Cretaceous of Mongolia". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2020.1716402.
  37. ^ Susannah C.R. Maidment; Thomas J. Raven; Driss Ouarhache; Paul M. Barrett (2020). "North Africa's first stegosaur: Implications for Gondwanan thyreophoran dinosaur diversity". Gondwana Research. 77: 82–97. Bibcode:2020GondR..77...82M. doi:10.1016/j.gr.2019.07.007.
  38. ^ Daniel J. Chure; Mark A. Loewen (2020). "Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America". PeerJ. 8: e7803. doi:10.7717/peerj.7803. PMC 6984342. PMID 32002317.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  39. ^ Daniela Schwarz; Philip D. Mannion; Oliver Wings; Christian A. Meyer (2020). "Re-description of the sauropod dinosaur Amanzia ("Ornithopsis/Cetiosauriscus") greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland". Swiss Journal of Geosciences. 113 (1): Article number 2. doi:10.1186/s00015-020-00355-5.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  40. ^ Mattia A. Baiano; Rodolfo A. Coria; Andrea Cau (2020). "A new abelisauroid (Dinosauria: Theropoda) from the Huincul formation (lower upper Cretaceous, Neuquén Basin) of Patagonia, Argentina". Cretaceous Research. 110: Article 104408. doi:10.1016/j.cretres.2020.104408.
  41. ^ Wu Xiao-chun; Shi Jian-Ru; Dong Li-Yang; Thomas D. Carr; Yi Jian; Xu Shi-Chao (2020). "A new tyrannosauroid from the Upper Cretaceous of Shanxi, China". Cretaceous Research. 108: Article 104357. doi:10.1016/j.cretres.2019.104357.
  42. ^ Jared T. Voris; François Therrien; Darla K. Zelenitsky; Caleb M. Brown (2020). "A new tyrannosaurine (Theropoda:Tyrannosauridae) from the Campanian Foremost Formation of Alberta, Canada, provides insight into the evolution and biogeography of tyrannosaurids". Cretaceous Research. 110: Article 104388. doi:10.1016/j.cretres.2020.104388.
  43. ^ M.A. Cerroni; M.J. Motta; F.L. Agnolín; A.M. Aranciaga Rolando; F. Brissón Egli; F.E. Novas (2020). "A new abelisaurid from the Huincul Formation (Cenomanian-Turonian; Upper Cretaceous) of Río Negro province, Argentina". Journal of South American Earth Sciences. 98: Article 102445. doi:10.1016/j.jsames.2019.102445.
  44. ^ Elisabete Malafaia; José Miguel Gasulla; Fernando Escaso; Iván Narváez; José Luis Sanz; Francisco Ortega (2020). "A new spinosaurid theropod (Dinosauria: Megalosauroidea) from the late Barremian of Vallibona, Spain: Implications for spinosaurid diversity in the Early Cretaceous of the Iberian Peninsula". Cretaceous Research. 106: Article 104221. doi:10.1016/j.cretres.2019.104221.
  45. ^ Ashley W. Poust; Chunling Gao; David J. Varricchio; Jianlin Wu; Fengjiao Zhang (2020). "A new microraptorine theropod from the Jehol Biota and growth in early dromaeosaurids". The Anatomical Record. in press. doi:10.1002/ar.24343. PMID 31943887.
  46. ^ Lida Xing; Tetsuto Miyashita; Donghao Wang; Kechung Niu; Philip J. Currie (2020). "A new compsognathid theropod dinosaur from the oldest assemblage of the Jehol Biota in the Lower Cretaceous Huajiying Formation, northeastern China". Cretaceous Research. 107: Article 104285. doi:10.1016/j.cretres.2019.104285.
  47. ^ S. Apesteguía; J.E. Soto Luzuriaga; P.A. Gallina; J. Tamay Granda; G.A. Guamán Jaramillo (2020). "The first dinosaur remains from the Cretaceous of Ecuador". Cretaceous Research. 108: Article 104345. doi:10.1016/j.cretres.2019.104345.
  48. ^ Hui Dai; Roger Benson; Xufeng Hu; Qingyu Ma; Chao Tan; Ning Li; Ming Xiao; Haiqian Hu; Yuxuan Zhou; Zhaoying Wei; Feng Zhang; Shan Jiang; Deliang Li; Guangzhao Peng; Yilun Yu; Xing Xu (2020). "A new possible megalosauroid theropod from the Middle Jurassic Xintiangou Formation of Chongqing, People's Republic of China and its implication for early tetanuran evolution". Scientific Reports. 10 (1): Article number 139. doi:10.1038/s41598-019-56959-x. PMC 6954265. PMID 31924836.
  49. ^ Catherine M. Early; Ryan C. Ridgely; Lawrence M. Witmer (2020). "Beyond endocasts: using predicted brain-structure volumes of extinct birds to assess neuroanatomical and behavioral inferences". Diversity. 12 (1): Article 34. doi:10.3390/d12010034.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  50. ^ Pierre Cockx; Ryan McKellar; Ralf Tappert; Matthew Vavrek; Karlis Muehlenbachs (2020). "Bonebed amber as a new source of paleontological data: The case of the Pipestone Creek deposit (Upper Cretaceous), Alberta, Canada". Gondwana Research. 81: 378–389. doi:10.1016/j.gr.2019.12.005.
  51. ^ N. V. Volkova; N. V. Zelenkov (2020). "On the diversity and morphology of Anserini (Aves: Anatidae) from the late Miocene of western Mongolia". Paleontological Journal. 54 (1).
  52. ^ Loukas Barton; Brittany Bingham; Krithivasan Sankaranarayanan; Cara Monroe; Ariane Thomas; Brian M. Kemp (2020). "The earliest farmers of northwest China exploited grain-fed pheasants not chickens". Scientific Reports. 10 (1): Article number 2556. doi:10.1038/s41598-020-59316-5. PMC 7018827. PMID 32054913.
  53. ^ Gerald Mayr; Vanesa L. de Pietri; Leigh Love; Al A. Mannering; Joseph J. Bevitt; R. Paul Scofield (2020). "First complete wing of a stem group sphenisciform from the Paleocene of New Zealand sheds light on the evolution of the penguin flipper". Diversity. 12 (2): Article 46. doi:10.3390/d12020046.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  54. ^ Carolina Acosta Hospitaleche; Martín De Los Reyes; Sergio Santillana; Marcelo Reguero (2020). "First fossilized skin of a giant penguin from the Eocene of Antarctica". Lethaia. in press. doi:10.1111/let.12366.
  55. ^ Sarah N. Davis; Christopher R. Torres; Grace M. Musser; James V. Proffitt; Nicholas M.A. Crouch; Ernest L. Lundelius; Matthew C. Lamanna; Julia A. Clarke (2020). "New mammalian and avian records from the late Eocene La Meseta and Submeseta formations of Seymour Island, Antarctica". PeerJ. 8: e8268. doi:10.7717/peerj.8268. PMC 6955110. PMID 31942255.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  56. ^ Nicolas Dussex; David W. G. Stanton; Hanna Sigeman; Per G. P. Ericson; Jacquelyn Gill; Daniel C. Fisher; Albert V. Protopopov; Victoria L. Herridge; Valery Plotnikov; Bengt Hansson; Love Dalén (2020). "Biomolecular analyses reveal the age, sex and species identity of a near-intact Pleistocene bird carcass". Communications Biology. 3: Article number 84. doi:10.1038/s42003-020-0806-7. PMID 32081985.
  57. ^ Martin Ezequiel Farina; Verónica Krapovickas; Lucas Fernández Piana; Rocío Belen Vera; María De Los Ángeles Ordoñez (2020). "Flamingo-like footprints and the problem of addressing biological diversity in the past". Historical Biology: An International Journal of Paleobiology. in press: 1–15. doi:10.1080/08912963.2019.1669024.
  58. ^ Katherine L. Long; Donald R. Prothero; Valerie J.P. Syverson (2020). "How do small birds evolve in response to climate change? Data from the long‐term record at La Brea tar pits". Integrative Zoology. in press. doi:10.1111/1749-4877.12426. PMID 31912657.
  59. ^ Robert M. Zink; Sebastian Botero-Cañola; Helen Martinez; Katelyn M. Herzberg (2020). "Niche modeling reveals life history shifts in birds at La Brea over the last twenty millennia". PLoS ONE. 15 (1): e0227361. doi:10.1371/journal.pone.0227361. PMC 6964907. PMID 31945101.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  60. ^ Junya Watanabe; Akihiro Koizumi; Ryohei Nakagawa; Keiichi Takahashi; Takeshi Tanaka; Hiroshige Matsuoka (2020). "Seabirds (Aves) from the Pleistocene Kazusa and Shimosa groups, central Japan". Journal of Vertebrate Paleontology. in press: e1697277. doi:10.1080/02724634.2019.1697277.
  61. ^ Amanda Cordes-Person; Carolina Acosta Hospitaleche; Judd Case; James Martin (2020). "An enigmatic bird from the lower Maastrichtian of Vega Island, Antarctica". Cretaceous Research. 108: Article 104314. doi:10.1016/j.cretres.2019.104314.
  62. ^ Gerald Mayr; Vanesa L. De Pietri; Leigh Love; Al Mannering; R. Paul Scofield (2020). "Leg bones of a new penguin species from the Waipara Greensand add to the diversity of very large-sized Sphenisciformes in the Paleocene of New Zealand". Alcheringa: An Australasian Journal of Palaeontology. 44 (1): 194–201. doi:10.1080/03115518.2019.1641619.
  63. ^ Jean-Michel Mazin; Joane Pouech (2020). "The first non-pterodactyloid pterosaurian trackways and the terrestrial ability of non-pterodactyloid pterosaurs". Geobios. in press. doi:10.1016/j.geobios.2019.12.002.
  64. ^ R. Hoffmann; J. Bestwick; G. Berndt; R. Berndt; D. Fuchs; C. Klug (2020). "Pterosaurs ate soft-bodied cephalopods (Coleoidea)". Scientific Reports. 10 (1): Article number 1230. doi:10.1038/s41598-020-57731-2. PMC 6985239. PMID 31988362.
  65. ^ Shunxing Jiang; Zhiheng Li; Xin Cheng; Xiaolin Wang (2020). "The first pterosaur basihyal, shedding light on the evolution and function of pterosaur hyoid apparatuses". PeerJ. 8: e8292. doi:10.7717/peerj.8292. PMC 6951291. PMID 31934505.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  66. ^ Megan L. Jacobs; David M. Martill; David M. Unwin; Nizar Ibrahim; Samir Zouhri; Nicholas R. Longrich (2020). "New toothed pterosaurs (Pterosauria: Ornithocheiridae) from the middle Cretaceous Kem Kem beds of Morocco and implications for pterosaur palaeobiogeography and diversity". Cretaceous Research. in press: Article 104413. doi:10.1016/j.cretres.2020.104413.
  67. ^ Alexandru A. Solomon; Vlad A. Codrea; Márton Venczel; Gerald Grellet-Tinner (2020). "A new species of large-sized pterosaur from the Maastrichtian of Transylvania (Romania)". Cretaceous Research. in press: Article 104316. doi:10.1016/j.cretres.2019.104316.
  68. ^ a b James McPhee; Nizar Ibrahim; Alex Kao; David M. Unwin; Roy Smith; David M. Martill (2020). "A new ?chaoyangopterid (Pterosauria: Pterodactyloidea) from the Cretaceous Kem Kem beds of Southern Morocco". Cretaceous Research. in press: Article 104410. doi:10.1016/j.cretres.2020.104410.
  69. ^ S. Christopher Bennett (2020). "Reassessment of the Triassic archosauriform Scleromochlus taylori: neither runner nor biped, but hopper". PeerJ. 8: e8418. doi:10.7717/peerj.8418. {{cite journal}}: no-break space character in |title= at position 44 (help)CS1 maint: unflagged free DOI (link)
  70. ^ Rafał Piechowski; Mateusz Tałanda (2020). "The locomotor musculature and posture of the early dinosauriform Silesaurus opolensis provides a new look into the evolution of Dinosauromorpha". Journal of Anatomy. in press. doi:10.1111/joa.13155. PMID 32003023.