Nociception: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
m Removed parameters. | You can use this bot yourself. Report bugs here. | Activated by User:AManWithNoPlan | All pages linked from User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked
No edit summary
Line 15: Line 15:


==Consequences==
==Consequences==
Nociception can also cause generalized [[Autonomic nervous system|autonomic responses]] before or without reaching consciousness to cause [[pallor]], [[sweating]], [[tachycardia]], [[hypertension]], [[lightheadedness]], [[nausea]] and [[fainting]].<ref>{{cite journal|url=http://findarticles.com/p/articles/mi_qa3987/is_200603/ai_n16117205/pg_1| archive-url=https://web.archive.org/web/20080212112325/http://findarticles.com/p/articles/mi_qa3987/is_200603/ai_n16117205/pg_1 |url-status=dead |archive-date=2008-02-12 |last=Feinstein |first=B. |first2=J. |last2=Langton |first3=R. |last3=Jameson |first4=F. |last4=Schiller |title=Experiments on pain referred from deep somatic tissues |journal=J Bone Joint Surg |year=1954 |volume=36-A |issue=5 |pages=981–97 |accessdate=2007-01-06 |pmid=13211692 | doi=10.2106/00004623-195436050-00007 }}</ref>
Nociception can also cause generalized [[Autonomic nervous system|autonomic responses]] before or without reaching consciousness to cause [[pallor]], [[sweating]], [[tachycardia]], [[hypertension]], [[lightheadedness]], [[nausea]] and [[fainting]].<ref>{{cite journal |last1=Feinstein |first1=B. |last2=Langton |first2=J. N. K. |last3=Jameson |first3=R. M. |last4=Schiller |first4=F. |title=Experiments on pain referred from deep somatic tissues |journal=The Journal of Bone & Joint Surgery |date=October 1954 |volume=36 |issue=5 |pages=981–997 |doi=10.2106/00004623-195436050-00007 |pmid=13211692 }}</ref>


== System overview ==
== System overview ==
Line 28: Line 28:


Thermoception refers to stimuli of moderate temperatures
Thermoception refers to stimuli of moderate temperatures
{{convert|24|&ndash;|28|C|F}}, as anything beyond that range is considered pain and moderated by nociceptors. TRP and potassium channels [TRPM (1-8), TRPV (1-6), TRAAK, and TREK] each respond to different temperatures (among other stimuli) which create action potentials in nerves which join the mechano (touch) system in the posterolateral tract. Thermoception, like proprioception, is then covered by the somatosensory system.<ref>Tillotson, Joanne. McCann, Stephanie. Kaplan’s Medical Flashcards. Apr. 02. 2013.</ref><ref>Albertine, Kurt. Barron’s Anatomy Flash Cards</ref><ref>Hofmann, Thomas, and Michael Schaefer. "Subunit Composition of Mammalian Transient Receptor Potential Channels in Living Cells." PNAS. 21 Mar. 2002. Web. 28 Mar. 2016.</ref><ref>Noel, Jacques, and Katharina Zimmermann. "The Mechano‐activated K Channels TRAAK and TREK‐1 Control Both Warm and Cold Perception." EMBO Press. 11 Feb. 2009. Web. 28 Mar. 2016.</ref><ref>Scholz, Joachim, and Clifford J. Woolf. "Can We Conquer Pain?" Nature Neuroscience. 28 Oct. 2002. Web. 28 Mar. 2016.</ref>
{{convert|24|&ndash;|28|C|F}}, as anything beyond that range is considered pain and moderated by nociceptors. TRP and potassium channels [TRPM (1-8), TRPV (1-6), TRAAK, and TREK] each respond to different temperatures (among other stimuli) which create action potentials in nerves which join the mechano (touch) system in the posterolateral tract. Thermoception, like proprioception, is then covered by the somatosensory system.<ref>{{cite book |last1=McCann |first1=Stephanie |title=Kaplan Medical Anatomy Flashcards: Clearly Labeled, Full-Color Cards |date=2017 |publisher=KAPLAN |isbn=978-1-5062-2353-7 }}{{pn}}</ref><ref>Albertine, Kurt. Barron’s Anatomy Flash Cards{{pn}}</ref><ref>{{cite journal |last1=Hofmann |first1=Thomas |last2=Schaefer |first2=Michael |last3=Schultz |first3=Günter |last4=Gudermann |first4=Thomas |title=Subunit composition of mammalian transient receptor potential channels in living cells |journal=Proceedings of the National Academy of Sciences |date=28 May 2002 |volume=99 |issue=11 |pages=7461–7466 |doi=10.1073/pnas.102596199 }}</ref><ref>{{cite journal |last1=Noël |first1=Jacques |last2=Zimmermann |first2=Katharina |last3=Busserolles |first3=Jérome |last4=Deval |first4=Emanuel |last5=Alloui |first5=Abdelkrim |last6=Diochot |first6=Sylvie |last7=Guy |first7=Nicolas |last8=Borsotto |first8=Marc |last9=Reeh |first9=Peter |last10=Eschalier |first10=Alain |last11=Lazdunski |first11=Michel |title=The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception |journal=The EMBO Journal |date=12 March 2009 |volume=28 |issue=9 |pages=1308–1318 |doi=10.1038/emboj.2009.57 }}</ref><ref>{{cite journal |last1=Scholz |first1=Joachim |last2=Woolf |first2=Clifford J. |title=Can we conquer pain? |journal=Nature Neuroscience |date=November 2002 |volume=5 |issue=11 |pages=1062–1067 |doi=10.1038/nn942 }}</ref>


TRP channels that detect noxious stimuli (mechanical, thermal, and chemical pain) relay that info to nociceptors that generate an action potential. Mechanical TRP channels react to depression of their cells (like touch), thermal TRP change shape in different temperatures, and chemical TRP act like [[taste bud]]s, signalling if their receptors bond to certain elements/chemicals.
TRP channels that detect noxious stimuli (mechanical, thermal, and chemical pain) relay that info to nociceptors that generate an action potential. Mechanical TRP channels react to depression of their cells (like touch), thermal TRP change shape in different temperatures, and chemical TRP act like [[taste bud]]s, signalling if their receptors bond to certain elements/chemicals.
Line 38: Line 38:
* [[Marginal nucleus of spinal cord|Lamina 1]] primarily project to the [[parabrachial area]] and [[Periaqueductal gray| periaqueductal grey]], which begins the suppression of pain via neural and hormonal inhibition. Lamina 1 receive input from thermoreceptors via the <!--Paleospinothalamic tract redirects here-->[[posterolateral tract]]. Marginal nucleus of the spinal cord are the only unsuppressible pain signals.
* [[Marginal nucleus of spinal cord|Lamina 1]] primarily project to the [[parabrachial area]] and [[Periaqueductal gray| periaqueductal grey]], which begins the suppression of pain via neural and hormonal inhibition. Lamina 1 receive input from thermoreceptors via the <!--Paleospinothalamic tract redirects here-->[[posterolateral tract]]. Marginal nucleus of the spinal cord are the only unsuppressible pain signals.
* The [[parabrachial area]] integrates taste and pain info, then relays it. Parabrachial checks if the pain is being received in normal temperatures and if the [[gustatory system]] is active; if both are so the pain is assumed to be due to poison.
* The [[parabrachial area]] integrates taste and pain info, then relays it. Parabrachial checks if the pain is being received in normal temperatures and if the [[gustatory system]] is active; if both are so the pain is assumed to be due to poison.
* [[Ao fiber]]s synapse on laminae 1 and 5 while [[Ab fiber|Ab]] synapses on 1, 3, 5, and C. [[C fiber]]s exclusively synapse on lamina 2.<ref>Braz, Joao M., and Mohammed A. Nassar. "Parallel “Pain” Pathways Arise from Subpopulations of Primary Afferent Nociceptor." Science Direct. 15 Sept. 2005. Web. 28 Mar. 2016.</ref><ref>Brown, A. G. "Organization in the Spinal Cord: The Anatomy and Physiology of Identified Neurones." Google Books. Springer, 06 Dec. 2012. Web. 28 Mar. 2016.</ref>
* [[Ao fiber]]s synapse on laminae 1 and 5 while [[Ab fiber|Ab]] synapses on 1, 3, 5, and C. [[C fiber]]s exclusively synapse on lamina 2.<ref>{{cite journal |last1=Braz |first1=Joao M. |last2=Nassar |first2=Mohammed A. |last3=Wood |first3=John N. |last4=Basbaum |first4=Allan I. |title=Parallel 'Pain' Pathways Arise from Subpopulations of Primary Afferent Nociceptor |journal=Neuron |date=September 2005 |volume=47 |issue=6 |pages=787–793 |doi=10.1016/j.neuron.2005.08.015 }}</ref><ref>{{cite book |last1=Brown |first1=A. G. |title=Organization in the Spinal Cord: The Anatomy and Physiology of Identified Neurones |date=2012 |publisher=Springer Science & Business Media |isbn=978-1-4471-1305-8 }}{{pn}}</ref>
* The [[amygdala]] and [[hippocampus]] create and encode the memory and emotion due to pain stimuli.
* The [[amygdala]] and [[hippocampus]] create and encode the memory and emotion due to pain stimuli.
* The [[hypothalamus]] signals for the release of hormones that make pain suppression more effective; some of these are sex hormones.
* The [[hypothalamus]] signals for the release of hormones that make pain suppression more effective; some of these are sex hormones.
* [[Periaqueductal grey]] (with hypothalamic hormone aid) hormonally signals [[reticular formation]]’s [[raphe nucleus| raphe nuclei]] to produce [[serotonin]] that inhibits laminae pain nuclei.<ref>Van Den Pol, Anthony D. "Hypothalamic Hypocretin (Orexin): Robust Innervation of the Spinal Cord." JNeurosci. 15 Apr. 1999. Web. 28 Mar. 2016.</ref>
* [[Periaqueductal grey]] (with hypothalamic hormone aid) hormonally signals [[reticular formation]]’s [[raphe nucleus| raphe nuclei]] to produce [[serotonin]] that inhibits laminae pain nuclei.<ref>{{cite journal |last1=van den Pol |first1=Anthony N. |title=Hypothalamic Hypocretin (Orexin): Robust Innervation of the Spinal Cord |journal=The Journal of Neuroscience |date=15 April 1999 |volume=19 |issue=8 |pages=3171–3182 |doi=10.1523/JNEUROSCI.19-08-03171.1999 }}</ref>
* <!--Neospinothalamic tract redirects here-->
* <!--Neospinothalamic tract redirects here-->
* [[Lateral spinothalamic tract]] aids in localization of pain.
* [[Lateral spinothalamic tract]] aids in localization of pain.
* [[Spinoreticular tract| Spinoreticular]] and [[spinotectal tract]]s are merely relay tracts to the [[thalamus]] that aid in the perception of pain and alertness towards it. Fibers cross over (left becomes right) via the spinal [[anterior white commissure]].
* [[Spinoreticular tract| Spinoreticular]] and [[spinotectal tract]]s are merely relay tracts to the [[thalamus]] that aid in the perception of pain and alertness towards it. Fibers cross over (left becomes right) via the spinal [[anterior white commissure]].
* [[Lateral lemniscus]] is the first point of integration of sound and pain information.<ref>Bajo, Victoria M., and Miguel A. Merchan. "Topographic Organization of the Dorsal Nucleus of the Lateral Lemniscus in the Cat." Wiley Online Library. 10 May 1999. Web. 27 Mar. 2016.</ref>
* [[Lateral lemniscus]] is the first point of integration of sound and pain information.<ref>{{cite journal |last1=Bajo |first1=Victoria M. |last2=Merchán |first2=Miguel A. |last3=Malmierca |first3=Manuel S. |last4=Nodal |first4=Fernando R. |last5=Bjaalie |first5=Jan G. |title=Topographic organization of the dorsal nucleus of the lateral lemniscus in the cat |journal=The Journal of Comparative Neurology |date=10 May 1999 |volume=407 |issue=3 |pages=349–366 |doi=10.1002/(SICI)1096-9861(19990510)407:3<349::AID-CNE4>3.0.CO;2-5 }}</ref>
* [[Inferior colliculus]] (IC) aids in sound orienting to pain stimuli.<ref>Oliver, Douglas M. "Neuronal Organization in the Inferior Colliculus." Springer. 2005. Web. 27 Mar. 2016.</ref>
* [[Inferior colliculus]] (IC) aids in sound orienting to pain stimuli.<ref>{{cite journal |doi=10.1007/0-387-27083-3_2 }}</ref>
* [[Superior colliculus]] receives IC’s input, integrates visual orienting info, and uses the balance topographical map to orient the body to the pain stimuli.<ref>Corneil, Brian D., and Etienne Olivier. "Neck Muscle Responses to Stimulation of Monkey Superior Colliculus. I. Topography and Manipulation of Stimulation Parameters." ARTICLES. 01 Oct. 2002. Web. 28 Mar. 2016.</ref><ref>May, Paul J. "The Mammalian Superior Colliculus: Laminar Structure and Connections." Science Direct. 2006. Web. 28 Mar. 2016.</ref>
* [[Superior colliculus]] receives IC’s input, integrates visual orienting info, and uses the balance topographical map to orient the body to the pain stimuli.<ref>{{cite journal |last1=Corneil |first1=Brian D. |last2=Olivier |first2=Etienne |last3=Munoz |first3=Douglas P. |title=Neck Muscle Responses to Stimulation of Monkey Superior Colliculus. I. Topography and Manipulation of Stimulation Parameters |journal=Journal of Neurophysiology |date=1 October 2002 |volume=88 |issue=4 |pages=1980–1999 |doi=10.1152/jn.2002.88.4.1980 }}</ref><ref>{{cite journal |doi=10.1016/S0079-6123(05)51011-2 }}</ref>
* [[Inferior cerebellar peduncle]] integrates proprioceptive info and outputs to the [[vestibulocerebellum]]. The peduncle is not part of the lateral-spinothalamic-tract-pathway; the medulla receives the info and passes it onto the peduncle from elsewhere (see [[somatosensory system]]).
* [[Inferior cerebellar peduncle]] integrates proprioceptive info and outputs to the [[vestibulocerebellum]]. The peduncle is not part of the lateral-spinothalamic-tract-pathway; the medulla receives the info and passes it onto the peduncle from elsewhere (see [[somatosensory system]]).
* The thalamus is where pain is thought to be brought into [[perception]]; it also aids in pain suppression and modulation, acting like a [[bouncer (doorman)|bouncer]], allowing certain intensities through to the cerebrum and rejecting others.<ref>Benevento, Louis A., and Gregg P. Strandage. "The Organization of Projections of the Retinorecipient and Nonretinorecipient Nuclei of the Pretectal Complex and Layers of the Superior Colliculus to the Lateral Pulvinar and Medial Pulvinar in the Macaque Monkey." Wiley Online Library. 01 Jul. 1983. Web. 27 Mar. 2016.</ref>
* The thalamus is where pain is thought to be brought into [[perception]]; it also aids in pain suppression and modulation, acting like a [[bouncer (doorman)|bouncer]], allowing certain intensities through to the cerebrum and rejecting others.<ref>{{cite journal |last1=Benevento |first1=Louis A. |last2=Standage |first2=Gregg P. |title=The organization of projections of the retinorecipient and nonretinorecipient nuclei of the pretectal complex and layers of the superior colliculus to the lateral pulvinar and medial pulvinar in the macaque monkey |journal=The Journal of Comparative Neurology |date=1 July 1983 |volume=217 |issue=3 |pages=307–336 |doi=10.1002/cne.902170307 }}</ref>
* The [[somatosensory cortex]] decodes nociceptor info to determine the exact location of pain and is where proprioception is brought into consciousness; inferior cerebellar peduncle is all unconscious proprioception.
* The [[somatosensory cortex]] decodes nociceptor info to determine the exact location of pain and is where proprioception is brought into consciousness; inferior cerebellar peduncle is all unconscious proprioception.
* [[Insular cortex|Insula]] judges the intensity of the pain and provides the ability to imagine pain.<ref>Sawamoto, Nobukatsu, and Manabu Honda. "Expectation of Pain Enhances Responses to Nonpainful Somatosensory Stimulation in the Anterior Cingulate Cortex and Parietal Operculum/Posterior Insula: An Event-Related Functional Magnetic Resonance Imaging Study." JNeurosci. 01 Oct. 2000. Web. 28 Mar. 2016.</ref><ref>Menon, Vinod, and Lucina Q. Uddin. "Saliency, Switching, Attention and Control: A Network Model of Insula." Springer. 29 May 2010. Web. 28 Mar. 2016.</ref>
* [[Insular cortex|Insula]] judges the intensity of the pain and provides the ability to imagine pain.<ref>{{cite journal |last1=Sawamoto |first1=Nobukatsu |last2=Honda |first2=Manabu |last3=Okada |first3=Tomohisa |last4=Hanakawa |first4=Takashi |last5=Kanda |first5=Masutaro |last6=Fukuyama |first6=Hidenao |last7=Konishi |first7=Junji |last8=Shibasaki |first8=Hiroshi |title=Expectation of Pain Enhances Responses to Nonpainful Somatosensory Stimulation in the Anterior Cingulate Cortex and Parietal Operculum/Posterior Insula: an Event-Related Functional Magnetic Resonance Imaging Study |journal=The Journal of Neuroscience |date=1 October 2000 |volume=20 |issue=19 |pages=7438–7445 |doi=10.1523/JNEUROSCI.20-19-07438.2000 }}</ref><ref>{{cite journal |last1=Menon |first1=Vinod |last2=Uddin |first2=Lucina Q. |title=Saliency, switching, attention and control: a network model of insula function |journal=Brain Structure and Function |date=29 May 2010 |volume=214 |issue=5-6 |pages=655–667 |doi=10.1007/s00429-010-0262-0 }}</ref>
* [[Cingulate cortex]] is presumed to be the memory hub for pain.<ref>Shackman, Alexander J., and Tim V. Salomons. "The Integration of Negative Affect, Pain and Cognitive Control in the Cingulate Cortex." Nature.com. Nature Publishing Group, Mar. 2011. Web. 28 Mar. 2016.</ref>
* [[Cingulate cortex]] is presumed to be the memory hub for pain.<ref>{{cite journal |last1=Shackman |first1=Alexander J. |last2=Salomons |first2=Tim V. |last3=Slagter |first3=Heleen A. |last4=Fox |first4=Andrew S. |last5=Winter |first5=Jameel J. |last6=Davidson |first6=Richard J. |title=The integration of negative affect, pain and cognitive control in the cingulate cortex |journal=Nature Reviews Neuroscience |date=March 2011 |volume=12 |issue=3 |pages=154–167 |doi=10.1038/nrn2994 }}</ref>


==In non-mammalian animals==
==In non-mammalian animals==


Nociception has been documented in non-mammalian animals, including fish<ref>{{cite journal |last=Sneddon |first=L. U. |first2=V. A. |last2=Braithwaite |first3=M. J. |last3=Gentle |year=2003 |title=Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system |journal=[[Proceedings of the Royal Society B]] |volume=270 |issue= 1520|pages=1115–1121 |doi=10.1098/rspb.2003.2349 |pmid=12816648 |pmc=1691351}}</ref> and a wide range of [[Pain in invertebrates|invertebrates]],<ref>{{cite journal |author=Jane A. Smith |title=A Question of Pain in Invertebrates |journal=Institute for Laboratory Animals Journal |volume=33 |issue=1–2 |pages= |year=1991 |pmid= |doi= |url=http://www.abolitionist.com/darwinian-life/invertebrate-pain.html}}</ref> including leeches,<ref>{{cite journal |last=Pastor |first=J. |first2=B. |last2=Soria |first3=C. |last3=Belmonte |year=1996 |title=Properties of the nociceptive neurons of the leech segmental ganglion |journal=Journal of Neurophysiology |volume=75 |issue=6 |pages=2268–2279 |doi= 10.1152/jn.1996.75.6.2268|pmid=8793740 }}</ref> nematode worms,<ref>{{cite journal |last=Wittenburg |first=N. |first2=R. |last2=Baumeister |year=1999 |title=Thermal avoidance in ''Caenorhabditis elegans'': an approach to the study of nociception |journal=[[Proceedings of the National Academy of Sciences|PNAS]] |volume=96 |issue=18 |pages=10477–10482 |doi=10.1073/pnas.96.18.10477 |pmid=10468634 |pmc=17914 }}</ref> sea slugs,<ref>{{cite journal |last=Illich |first=P. A. |first2=E. T. |last2=Walters |year=1997 |title=Mechanosensory neurons innervating ''Aplysia'' siphon encode noxious stimuli and display nociceptive sensitization |journal=Journal of Neuroscience |volume=17 |issue= 1|pages=459–469 |url=http://www.jneurosci.org/cgi/content/abstract/17/1/459 |pmid=8987770 |pmc=6793714 |doi=10.1523/JNEUROSCI.17-01-00459.1997 }}</ref> and fruit flies.<ref>{{cite journal |last=Tracey |first=J. |first2=W. |last2=Daniel |first3=R. I. |last3=Wilson |first4=G. |last4=Laurent |first5=S. |last5=Benzer |year=2003 |title=''painless'', a ''Drosophila'' gene essential for nociception |journal=[[Cell (journal)|Cell]] |volume=113 |issue= 2|pages=261–273 |doi=10.1016/S0092-8674(03)00272-1 |pmid=12705873}}</ref> As in mammals, nociceptive neurons in these species are typically characterized by responding preferentially to high [[temperature]] (40° Celsius or more), low pH, capsaicin, and tissue damage.
Nociception has been documented in non-mammalian animals, including fish<ref>{{cite journal |last=Sneddon |first=L. U. |first2=V. A. |last2=Braithwaite |first3=M. J. |last3=Gentle |year=2003 |title=Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system |journal=[[Proceedings of the Royal Society B]] |volume=270 |issue= 1520|pages=1115–1121 |doi=10.1098/rspb.2003.2349 |pmid=12816648 |pmc=1691351}}</ref> and a wide range of [[Pain in invertebrates|invertebrates]],<ref>{{cite journal |author=Jane A. Smith |title=A Question of Pain in Invertebrates |journal=Institute for Laboratory Animals Journal |volume=33 |issue=1–2 |pages= |year=1991 |pmid= |doi= |url=http://www.abolitionist.com/darwinian-life/invertebrate-pain.html}}</ref> including leeches,<ref>{{cite journal |last=Pastor |first=J. |first2=B. |last2=Soria |first3=C. |last3=Belmonte |year=1996 |title=Properties of the nociceptive neurons of the leech segmental ganglion |journal=Journal of Neurophysiology |volume=75 |issue=6 |pages=2268–2279 |doi= 10.1152/jn.1996.75.6.2268|pmid=8793740 }}</ref> nematode worms,<ref>{{cite journal |last=Wittenburg |first=N. |first2=R. |last2=Baumeister |year=1999 |title=Thermal avoidance in ''Caenorhabditis elegans'': an approach to the study of nociception |journal=[[Proceedings of the National Academy of Sciences|PNAS]] |volume=96 |issue=18 |pages=10477–10482 |doi=10.1073/pnas.96.18.10477 |pmid=10468634 |pmc=17914 }}</ref> sea slugs,<ref>{{cite journal |last=Illich |first=P. A. |first2=E. T. |last2=Walters |year=1997 |title=Mechanosensory neurons innervating ''Aplysia'' siphon encode noxious stimuli and display nociceptive sensitization |journal=Journal of Neuroscience |volume=17 |issue= 1|pages=459–469 |pmid=8987770 |pmc=6793714 |doi=10.1523/JNEUROSCI.17-01-00459.1997 }}</ref> and fruit flies.<ref>{{cite journal |last1=Tracey |first1=W.Daniel |last2=Wilson |first2=Rachel I |last3=Laurent |first3=Gilles |last4=Benzer |first4=Seymour |title=''painless'', a ''Drosophila'' Gene Essential for Nociception |journal=Cell |date=April 2003 |volume=113 |issue=2 |pages=261–273 |doi=10.1016/s0092-8674(03)00272-1 |pmid=12705873 }}</ref> As in mammals, nociceptive neurons in these species are typically characterized by responding preferentially to high [[temperature]] (40° Celsius or more), low pH, capsaicin, and tissue damage.


==History of term==
==History of term==
The term "nociception" was coined by [[Charles Scott Sherrington]] to distinguish the physiological process (nervous activity) from pain (a subjective experience).<ref>{{cite book |last=Sherrington |first=C. |title=The Integrative Action of the Nervous System |url=https://archive.org/details/integrativeacti00shergoog |location=Oxford |publisher=Oxford University Press |year=1906 }}</ref> It is derived from the Latin verb "''nocēre''", which means "to harm".
The term "nociception" was coined by [[Charles Scott Sherrington]] to distinguish the physiological process (nervous activity) from pain (a subjective experience).<ref>{{cite book |last=Sherrington |first=C. |title=The Integrative Action of the Nervous System |url=https://archive.org/details/integrativeacti00shergoog |location=Oxford |publisher=Oxford University Press |year=1906 }}{{pn}}</ref> It is derived from the Latin verb "''nocēre''", which means "to harm".


==References==
==References==

Revision as of 14:21, 17 May 2020

Nociception (also nocioception or nociperception, from Latin nocere 'to harm or hurt') is the sensory nervous system's response to certain harmful or potentially harmful stimuli. In nociception, intense chemical (e.g., cayenne powder), mechanical (e.g., cutting, crushing), or thermal (heat and cold) stimulation of sensory nerve cells called nociceptors produces a signal that travels along a chain of nerve fibers via the spinal cord to the brain.[1] Nociception triggers a variety of physiological and behavioral responses and usually results in a subjective experience, or perception, of pain in sentient beings.[2]

Detection of noxious stimuli

Mechanism of nociception via sensory afferents

Potentially damaging mechanical, thermal, and chemical stimuli are detected by nerve endings called nociceptors, which are found in the skin, on internal surfaces such as the periosteum, joint surfaces, and in some internal organs. Some nociceptors are unspecialized free nerve endings that have their cell bodies outside the spinal column in the dorsal root ganglia.[3] Nociceptors are categorized according to the axons which travel from the receptors to the spinal cord or brain.

Nociceptors have a certain threshold; that is, they require a minimum intensity of stimulation before they trigger a signal. Once this threshold is reached a signal is passed along the axon of the neuron into the spinal cord.

Nociceptive threshold testing deliberately applies a noxious stimulus to a human or animal subject in order to study pain. In animals, the technique is often used to study the efficacy of analgesic drugs and to establish dosing levels and period of effect. After establishing a baseline, the drug under test is given and the elevation in threshold recorded at specified time points. When the drug wears off, the threshold should return to the baseline (pre-treatment) value.

In some conditions, excitation of pain fibers becomes greater as the pain stimulus continues, leading to a condition called hyperalgesia.

Theory

Consequences

Nociception can also cause generalized autonomic responses before or without reaching consciousness to cause pallor, sweating, tachycardia, hypertension, lightheadedness, nausea and fainting.[4]

System overview

This diagram linearly (unless otherwise mentioned) tracks the projections of all known structures that allow for pain, proprioception, thermoception, and chemoception to their relevant endpoints in the human brain. Click to enlarge.

This overview discusses proprioception, thermoception, chemoception and nociception as they are all integrally connected.

Mechanical

Proprioception is determined by using standard mechanoreceptors (especially ruffini corpuscles (stretch) and transient receptor potential (TRP) channels). Proprioception is completely covered within the somatosensory system as the brain processes them together.

Thermoception refers to stimuli of moderate temperatures 24–28 °C (75–82 °F), as anything beyond that range is considered pain and moderated by nociceptors. TRP and potassium channels [TRPM (1-8), TRPV (1-6), TRAAK, and TREK] each respond to different temperatures (among other stimuli) which create action potentials in nerves which join the mechano (touch) system in the posterolateral tract. Thermoception, like proprioception, is then covered by the somatosensory system.[5][6][7][8][9]

TRP channels that detect noxious stimuli (mechanical, thermal, and chemical pain) relay that info to nociceptors that generate an action potential. Mechanical TRP channels react to depression of their cells (like touch), thermal TRP change shape in different temperatures, and chemical TRP act like taste buds, signalling if their receptors bond to certain elements/chemicals.

Neural

In non-mammalian animals

Nociception has been documented in non-mammalian animals, including fish[21] and a wide range of invertebrates,[22] including leeches,[23] nematode worms,[24] sea slugs,[25] and fruit flies.[26] As in mammals, nociceptive neurons in these species are typically characterized by responding preferentially to high temperature (40° Celsius or more), low pH, capsaicin, and tissue damage.

History of term

The term "nociception" was coined by Charles Scott Sherrington to distinguish the physiological process (nervous activity) from pain (a subjective experience).[27] It is derived from the Latin verb "nocēre", which means "to harm".

References

  1. ^ Portenoy, Russell K.; Brennan, Michael J. (1994). "Chronic Pain Management". In Good, David C.; Couch, James R. (eds.). Handbook of Neurorehabilitation. Informa Healthcare. ISBN 978-0-8247-8822-3. {{cite book}}: External link in |chapterurl= (help); Unknown parameter |chapterurl= ignored (|chapter-url= suggested) (help)
  2. ^ "Assessing Pain and Distress: A Veterinary Behaviorist's Perspective by Kathryn Bayne". Definition of Pain and Distress and Reporting Requirements for Laboratory Animals. Proceedings of the Workshop Held June 22, 2000. 2000.{{cite journal}}: CS1 maint: location (link)[permanent dead link]
  3. ^ Purves, D. (2001). "Nociceptors". In Sunderland, MA. (ed.). Neuroscience. Sinauer Associates. {{cite book}}: External link in |chapterurl= (help); Unknown parameter |chapterurl= ignored (|chapter-url= suggested) (help)
  4. ^ Feinstein, B.; Langton, J. N. K.; Jameson, R. M.; Schiller, F. (October 1954). "Experiments on pain referred from deep somatic tissues". The Journal of Bone & Joint Surgery. 36 (5): 981–997. doi:10.2106/00004623-195436050-00007. PMID 13211692.
  5. ^ McCann, Stephanie (2017). Kaplan Medical Anatomy Flashcards: Clearly Labeled, Full-Color Cards. KAPLAN. ISBN 978-1-5062-2353-7.[page needed]
  6. ^ Albertine, Kurt. Barron’s Anatomy Flash Cards[page needed]
  7. ^ Hofmann, Thomas; Schaefer, Michael; Schultz, Günter; Gudermann, Thomas (28 May 2002). "Subunit composition of mammalian transient receptor potential channels in living cells". Proceedings of the National Academy of Sciences. 99 (11): 7461–7466. doi:10.1073/pnas.102596199.
  8. ^ Noël, Jacques; Zimmermann, Katharina; Busserolles, Jérome; Deval, Emanuel; Alloui, Abdelkrim; Diochot, Sylvie; Guy, Nicolas; Borsotto, Marc; Reeh, Peter; Eschalier, Alain; Lazdunski, Michel (12 March 2009). "The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception". The EMBO Journal. 28 (9): 1308–1318. doi:10.1038/emboj.2009.57.
  9. ^ Scholz, Joachim; Woolf, Clifford J. (November 2002). "Can we conquer pain?". Nature Neuroscience. 5 (11): 1062–1067. doi:10.1038/nn942.
  10. ^ Braz, Joao M.; Nassar, Mohammed A.; Wood, John N.; Basbaum, Allan I. (September 2005). "Parallel 'Pain' Pathways Arise from Subpopulations of Primary Afferent Nociceptor". Neuron. 47 (6): 787–793. doi:10.1016/j.neuron.2005.08.015.
  11. ^ Brown, A. G. (2012). Organization in the Spinal Cord: The Anatomy and Physiology of Identified Neurones. Springer Science & Business Media. ISBN 978-1-4471-1305-8.[page needed]
  12. ^ van den Pol, Anthony N. (15 April 1999). "Hypothalamic Hypocretin (Orexin): Robust Innervation of the Spinal Cord". The Journal of Neuroscience. 19 (8): 3171–3182. doi:10.1523/JNEUROSCI.19-08-03171.1999.
  13. ^ Bajo, Victoria M.; Merchán, Miguel A.; Malmierca, Manuel S.; Nodal, Fernando R.; Bjaalie, Jan G. (10 May 1999). "Topographic organization of the dorsal nucleus of the lateral lemniscus in the cat". The Journal of Comparative Neurology. 407 (3): 349–366. doi:10.1002/(SICI)1096-9861(19990510)407:3<349::AID-CNE4>3.0.CO;2-5.
  14. ^ . doi:10.1007/0-387-27083-3_2. {{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help)
  15. ^ Corneil, Brian D.; Olivier, Etienne; Munoz, Douglas P. (1 October 2002). "Neck Muscle Responses to Stimulation of Monkey Superior Colliculus. I. Topography and Manipulation of Stimulation Parameters". Journal of Neurophysiology. 88 (4): 1980–1999. doi:10.1152/jn.2002.88.4.1980.
  16. ^ . doi:10.1016/S0079-6123(05)51011-2. {{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help)
  17. ^ Benevento, Louis A.; Standage, Gregg P. (1 July 1983). "The organization of projections of the retinorecipient and nonretinorecipient nuclei of the pretectal complex and layers of the superior colliculus to the lateral pulvinar and medial pulvinar in the macaque monkey". The Journal of Comparative Neurology. 217 (3): 307–336. doi:10.1002/cne.902170307.
  18. ^ Sawamoto, Nobukatsu; Honda, Manabu; Okada, Tomohisa; Hanakawa, Takashi; Kanda, Masutaro; Fukuyama, Hidenao; Konishi, Junji; Shibasaki, Hiroshi (1 October 2000). "Expectation of Pain Enhances Responses to Nonpainful Somatosensory Stimulation in the Anterior Cingulate Cortex and Parietal Operculum/Posterior Insula: an Event-Related Functional Magnetic Resonance Imaging Study". The Journal of Neuroscience. 20 (19): 7438–7445. doi:10.1523/JNEUROSCI.20-19-07438.2000.
  19. ^ Menon, Vinod; Uddin, Lucina Q. (29 May 2010). "Saliency, switching, attention and control: a network model of insula function". Brain Structure and Function. 214 (5–6): 655–667. doi:10.1007/s00429-010-0262-0.
  20. ^ Shackman, Alexander J.; Salomons, Tim V.; Slagter, Heleen A.; Fox, Andrew S.; Winter, Jameel J.; Davidson, Richard J. (March 2011). "The integration of negative affect, pain and cognitive control in the cingulate cortex". Nature Reviews Neuroscience. 12 (3): 154–167. doi:10.1038/nrn2994.
  21. ^ Sneddon, L. U.; Braithwaite, V. A.; Gentle, M. J. (2003). "Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system". Proceedings of the Royal Society B. 270 (1520): 1115–1121. doi:10.1098/rspb.2003.2349. PMC 1691351. PMID 12816648.
  22. ^ Jane A. Smith (1991). "A Question of Pain in Invertebrates". Institute for Laboratory Animals Journal. 33 (1–2).
  23. ^ Pastor, J.; Soria, B.; Belmonte, C. (1996). "Properties of the nociceptive neurons of the leech segmental ganglion". Journal of Neurophysiology. 75 (6): 2268–2279. doi:10.1152/jn.1996.75.6.2268. PMID 8793740.
  24. ^ Wittenburg, N.; Baumeister, R. (1999). "Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception". PNAS. 96 (18): 10477–10482. doi:10.1073/pnas.96.18.10477. PMC 17914. PMID 10468634.
  25. ^ Illich, P. A.; Walters, E. T. (1997). "Mechanosensory neurons innervating Aplysia siphon encode noxious stimuli and display nociceptive sensitization". Journal of Neuroscience. 17 (1): 459–469. doi:10.1523/JNEUROSCI.17-01-00459.1997. PMC 6793714. PMID 8987770.
  26. ^ Tracey, W.Daniel; Wilson, Rachel I; Laurent, Gilles; Benzer, Seymour (April 2003). "painless, a Drosophila Gene Essential for Nociception". Cell. 113 (2): 261–273. doi:10.1016/s0092-8674(03)00272-1. PMID 12705873.
  27. ^ Sherrington, C. (1906). The Integrative Action of the Nervous System. Oxford: Oxford University Press.[page needed]