Passive cooling

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Passive Cooling is a building design approach that focuses on heat gain control and heat dissipation in a building in order to improve the indoor thermal comfort with low or nil energy consumption.[1][2] This approach works either by preventing heat from entering the interior (heat gain prevention) or by removing heat from the building (natural cooling). Natural cooling utilizes on-site energy, available from the natural environment, combined with the architectural design of building components (e.g. building envelope), rather than mechanical systems to dissipate heat.[3] Therefore, natural cooling depends not only on the architectural design of the building but how it uses the local site natural resources as heat sinks (i.e. everything that absorbs or dissipates heat). Examples of on-site heat sinks are the upper atmosphere (night sky), the outdoor air (wind), and the earth/soil.

Passive cooling systems overview[edit]

Passive cooling covers all natural processes and techniques of heat dissipation and modulation without the use of energy.[1] Some authors consider that minor and simple mechanical systems (e.g. pumps and economizers) can be integrated in passive cooling techniques, as long they are used to enhance the effectiveness of the natural cooling process.[4] Such applications are also called ‘hybrid cooling systems’. [1] The techniques for passive cooling can be grouped in two main categories:

  • Preventative techniques that aims to provide protection and/or prevention of external and internal heat gains.
  • Modulation and heat dissipation techniques allow the building to store and dissipate heat gain through the transfer of heat from heat sinks to the climate. This technique can be the result of thermal mass or natural cooling.

Preventative Techniques[edit]

Protection from or prevention of heat gains encompasses all the design techniques that minimizes the impact of solar heat gains through the building’s envelope and of internal heat gains that is generated inside the building due occupancy and equipment. It includes the following design techniques:[1]

  • Microclimate and site design - By taking into account the local climate and the site context, specific cooling strategies can be selected to apply which are the most appropriate for preventing overheating through the envelope of the building. The microclimate can play a huge role in determining the most favorable building location by analyzing the combined availability of sun and wind. The bioclimatic chart, the solar diagram and the wind rose are relevant analysis tools in the application of this technique.[5]
  • Solar control - A properly designed shading system can effectively contribute to minimizing the solar heat gains. Shading both transparent and opaque surfaces of the building envelope will minimize the amount of solar radiation that induces overheating in both indoor spaces and building’s structure. By shading the building structure, the heat gain captured through the windows and envelope will be reduced.
  • Building form and layout - Building orientation and an optimized distribution of interior spaces can prevent overheating. Rooms can be zoned within the buildings in order to reject sources of internal heat gain and/or allocating heat gains where they can be useful, considering the different activities of the building. For example, creating a flat, horizontal plan will increase the effectiveness of cross-ventilation across the plan. Locating the zones vertically can take advantage of temperature stratification. Typically, building zones in the upper levels are warmer than the lower zones due to stratification. Vertical zoning of spaces and activities uses this temperature stratification to accommodate zone uses according to their temperature requirements.[5] Form factor (i.e. the ratio between volume and surface) also plays a major role in the building’s energy and thermal profile. This ratio can be used to shape the building form to the specific local climate. For example, more compact forms tend to preserve more heat than less compact forms because the ratio of the internal loads to envelope area is significant.[6][7]
  • Thermal insulation - Insulation in the building’s envelope will decrease the amount of heat transferred by radiation through the facades. This principle applies both to the opaque (walls and roof) and transparent surfaces (windows) of the envelope. Since roofs could be a larger contributor to the interior heat load, especially in lighter constructions (e.g. building and workshops with roof made out of metal structures), providing thermal insulation can effectively decrease heat transfer from the roof.
  • Behavioral and occupancy patterns - Some building management policies such as limiting the amount of people in a given area of the building can also contribute effectively to the minimization of heat gains inside a building. Building occupants can also contribute to indoor overheating prevention by: shutting off the lights and equipment of unoccupied spaces, operating shading when necessary to reduce solar heat gains through windows, or dress lighter in order to adapt better to the indoor environment by increasing their thermal comfort tolerance.
  • Internal gain control - More energy-efficient lighting and electronic equipment tend to release less energy thus contributing to less internal heat loads inside the space.

Modulation and heat dissipation techniques[edit]

The modulation and heat dissipation techniques rely on natural heat sinks to store and remove the internal heat gains. Examples of natural sinks are night sky, earth soil, and building mass.[8] Therefore passive cooling techniques that use heat sinks can act to either modulate heat gain with thermal mass or dissipate heat through natural cooling strategies.[1]

  • Thermal mass - Heat gain modulation of an indoor space can be achieved by the proper use of the building’s thermal mass as a heat sink. The thermal mass will absorb and store heat during daytime hours and return it to the space at a later time.[1] Thermal mass can be coupled with night ventilation natural cooling strategy if the stored heat that will be delivered to the space during the evening/night is not desirable.
  • Natural cooling - Natural cooling refers to the use of ventilation or natural heat sinks for heat dissipation from indoor spaces. Natural cooling can be separated into four different categories: cooling and ventilation, radiative cooling, evaporative cooling, and earth coupling.

Ventilation[edit]

Ventilation as a natural cooling strategy uses the physical properties of air to remove heat or provide cooling to occupants. In select cases, ventilation can be used to cool the building structure, which subsequently may serve as a heat sink.

  • Cross Ventilation - The strategy of cross ventilation relies on wind to pass through the building for the purpose of cooling the occupants. Cross ventilation requires openings on two sides of the space, called the inlet and outlet. The sizing and placement of the ventilation inlets and outlets will determine the direction and velocity of cross ventilation through the building. Generally, an equal (or greater) area of outlet openings must also be provided to provide adequate cross ventilation.[9]
  • Stack Ventilation - Cross ventilation is an effective cooling strategy, however, wind is an unreliable resource. Stack ventilation is an alternative design strategy that relies on the buoyancy of warm air to rise and exit through openings located at ceiling height. Cooler outside area replaces the rising warm air through carefully designed inlets placed near the floor.
  • Night Flush Cooling – The building structure acts as a sink through the day and absorbs internal heat gains and solar radiation. Heat can be dissipated from the structure by convective heat loss by allowing cooler air to pass through the building at night. The flow of outdoor air can be induced naturally or mechanically. The next day, the building will perform as a heat sink, maintaining indoor temperatures below the outdoor temperature. This strategy is most effective in climates with a large diurnal swing so the typical maximum indoor temperature is below the outdoor maximum temperature during the hottest months.[10] Thermal mass is a necessary component to dissipate heat at night.

Radiative Cooling[edit]

All objects constantly emit and absorb radiant energy. An object will cool by radiation if the net flow is outward, which is the case during the night. At night, the long-wave radiation from the clear sky is less than the long-wave infrared radiation emitted from a building, thus there is a net flow to the sky. Since the roof provides the greatest surface visible to the night sky, designing the roof to act as a radiator is an effective strategy. There are two types of radiative cooling strategies that utilize the roof surface: direct and indirect.[8]

  • Direct Radiant Cooling - In a building designed to optimize direct radiation cooling, the building roof acts as a heat sink to absorb the daily internal loads. The roof acts as the best heat sink because it is the greatest surface exposed to the night sky. Radiate heat transfer with the night sky will remove heat from the building roof, thus cooling the building structure. Roof ponds are an example of this strategy. The roof pond design became popular with the development of the Sky thermal system designed by Harold Hay in 1977. There are various designs and configurations for the roof pond system but the concept is the same for all designs. The roof uses water, either plastic bags filled with water or an open pond, as the heat sink while a system of movable insulation panels regulate the mode of heating or cooling. During daytime in the summer, the water on the roof is protected from the solar radiation and ambient air temperature by movable insulation, which allows it to serve as a heat sink and absorb, though the ceiling, the heat generated inside. At night, the panels are retracted to allow nocturnal radiation between the roof pond and the night sky, thus removing the stored heat from the day’s internal loads. In winter, the process is reversed so that the roof pond is allowed to absorb solar radiation during the day and release it during the night into the space below.[4]
  • Indirect Radiant cooling - A heat transfer fluid removes heat from the building structure through radiate heat transfer with the night sky. A common design for this strategy involves a plenum between the building roof and the radiator surface. Air is drawn into the building through the plenum, cooled from the radiator, and cools the mass of the building structure. During the day, the building mass acts as a heat sink.

Evaporative Cooling[edit]

Evaporative cooling. The design relies on the evaporative process of water to cool the incoming air while simultaneously increasing the relative humidity. A saturated filter is placed at the supply inlet so the natural process of evaporation can cool the supply air. Apart from the energy to drive the fans, water is the only other resource required to provide conditioning to indoor spaces. A study of field performance results in Kuwait revealed that power requirements for an evaporative cooler are approximately 75% less than the power requirements for a conventional packaged unit air-conditioner.[11] As for interior comfort, a study found that evaporative cooling reduced inside air temperature by 9.6°C compared to outdoor temperature..[12]

Earth Coupling[edit]

Earth Coupling uses the moderate and consistent temperature of the soil to act as a heat sink to cool a building through conduction. This passive cooling strategy is most effective when earth temperatures are cooler than ambient air temperature, such as hot climates.

  • Direct coupling - Direct coupling, or earth sheltering, occurs when a building uses earth as a buffer for the walls. The earth is an endless heat sink and can effectively mitigate temperature extremes. Earth sheltering improves the performance of building envelope assemblies by reducing the magnitude of conductive and convective heat loss and gains by reducing infiltration.[13]
  • Indirect Coupling. A building can be indirectly coupled with the earth by means of earth ducts. An earth ducts is a buried tube that acts as avenue for supply air to travel through before entering the building. Supply air is cooled by way of conductive heat transfer between the concrete tubes and soil. Therefore, earth ducts will not perform well as a source of cooling unless the soil temperature is lower than the desired room air temperature.[13] Earth ducts typically require long tubes to cool the supply air to an appropriate temperature before entering the building. A fan is required to draw the cool air from the earth duct into the building. Some of the factors that effect the performance of an earth duct are: duct length, number of bends, thickness of duct, depth of duct, diameter of the duct, and air velocity.

References[edit]

  1. ^ a b c d e f Santamouris, M.; Asimakoupolos, D. (1996). Passive cooling of buildings (1st ed.). 35-37 William Road, London NW1 3ER, UK: James & James (Science Publishers) Ltd. ISBN 1-873936-47-8. 
  2. ^ Leo Samuel, D.G.; Shiva Nagendra, S.M.; Maiya, M.P. (August 2013). "Passive alternatives to mechanical air conditioning of building: A review". Building and Environment 66: 54–64. doi:10.1016/j.buildenv.2013.04.016. 
  3. ^ Niles, Philip; Kenneth, Haggard (1980). Passive Solar Handbook. California Energy Resources Conservation. ASIN B001UYRTMM. 
  4. ^ a b Givoni, Baruch (1994). Passive and Low Energy Cooling of Buildings (1st ed.). 605 Third Avenue, New York, NY 10158-0012, USA: John Wiley & Sons, Inc. ISBN 0-471-28473-4. 
  5. ^ a b Brown, G.Z.; DeKay, Mark (2001). Sun, wind, and light: architectural design strategies (2nd ed.). 605 Third Avenue, New York, NY 10158-0012, USA: John Wiley & Sons, Inc. ISBN 0-471-34877-5. 
  6. ^ Caldas, L. (January 2008). "Generation of energy-efficient architecture solutions applying GENE_ARCH: An evolution-based generative design system". Advanced Engineering Informatics 22 (1): 54–64. doi:10.1016/j.aei.2007.08.012. 
  7. ^ Caldas, L.; Santos, L. (September 2012). "Generation of energy-efficient patio houses with GENE_ARCH: combining an evolutionary Generative Design System with a Shape Grammar". Proceedings of the 30th eCAADe Conference - Digital Physicality. eCAADe 1: 459–470. Retrieved 26 November 2013. 
  8. ^ a b Lechner, Norbert (2009). Heating,Cooling, Lighting: sustainable design methods for architects (3rd ed.). 605 Third Avenue, New York, NY 10158-0012, USA: John Wiley & Sons, Inc. ISBN 978-0-470-04809-2. 
  9. ^ Grondzik, Walter T.; Kwok, Alison G.; Stein, Benjamim; Reynolds, John S. (2010). Mechanical and Electrical Equipment For Building (11th ed.). 111 River Street, Hoboken, NJ 07030, USA: John Wiley & Sons. ISBN 978-0-470-19565-9. 
  10. ^ Givoni, B. (1991). "Performance and applicability of passive and low-energy cooling systems". Energy and Buildings 17 (3): 177–199. doi:10.1016/0378-7788(91)90106-D. 
  11. ^ Maheshwari, G.P.; Al-Ragom, F.; Suri, R.K. (May 2001). "Energy-saving potential of an indirect evaporative cooler". Applied Energy 69 (1): 69–76. doi:10.1016/S0306-2619(00)00066-0. 
  12. ^ Amer, E.H. (July 2006). "Passive options for solar cooling of buildings in arid areas". Energy 31 (8-9): 1332–1344. doi:10.1016/j.energy.2005.06.002. 
  13. ^ a b Kwok, Alison G.; Grondzik, Walter T. (2011). The Green Studio Handbook. Environmental strategies for schematic design (2nd ed.). 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA: Architectural Press. ISBN 978-0-08-089052-4.