Radiant energy

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Visible light, such as sunlight carries radiant energy, which is used in solar power generation.

In radiometry, radiant energy is the energy of electromagnetic radiation.[1] The SI unit of radiant energy is the joule (J). The quantity of radiant energy may be calculated by integrating radiant flux (or power) with respect to time. The symbol Qe is often used throughout literature to denote radiant energy. In branches of physics other than radiometry, electromagnetic energy is referred to using E or W. The term is used particularly when electromagnetic radiation is emitted by a source into the surrounding environment. This radiation may be visible or invisible to the human eye.[2][3]

Terminology use and history[edit]

The term "radiant energy" is most commonly used in the fields of radiometry, solar energy, heating and lighting, but is also sometimes used in other fields (such as telecommunications). In modern applications involving transmission of power from one location to another, "radiant energy" is sometimes used to refer to the electromagnetic waves themselves, rather than their energy (a property of the waves). In the past, the term "electro-radiant energy" has also been used.[4]

Analysis[edit]

Cherenkov radiation glowing in the core of a TRIGA reactor.

Because electromagnetic (EM) radiation can be conceptualized as a stream of photons, radiant energy can be viewed as the energy carried by these photons. Alternatively, EM radiation can be viewed as an electromagnetic wave, which carries energy in its oscillating electric and magnetic fields. These two views are completely equivalent and are reconciled to one another in quantum field theory (see wave-particle duality).

EM radiation can have various frequencies. The bands of frequency present in a given EM signal may be sharply defined, as is seen in atomic spectra, or may be broad, as in blackbody radiation. In the photon picture, the energy carried by each photon is proportional to its frequency. In the wave picture, the energy of a monochromatic wave is proportional to its intensity. This implies that if two EM waves have the same intensity, but different frequencies, the one with the higher frequency "contains" fewer photons, since each photon is more energetic.

When EM waves are absorbed by an object, the energy of the waves is converted to heat (or converted to electricity in case of a photoelectric material). This is a very familiar effect, since sunlight warms surfaces that it irradiates. Often this phenomenon is associated particularly with infrared radiation, but any kind of electromagnetic radiation will warm an object that absorbs it. EM waves can also be reflected or scattered, in which case their energy is redirected or redistributed as well.

Open systems[edit]

Radiant energy is one of the mechanisms by which energy can enter or leave an open system.[5][6][7] Such a system can be man-made, such as a solar energy collector, or natural, such as the Earth's atmosphere. In geophysics, most atmospheric gases, including the greenhouse gases, allow the Sun's short-wavelength radiant energy to pass through to the Earth's surface, heating the ground and oceans. The absorbed solar energy is partly re-emitted as longer wavelength radiation (chiefly infrared radiation), some of which is absorbed by the atmospheric greenhouse gases. Radiant energy is produced in the sun as a result of nuclear fusion.[8]

Applications[edit]

Radiant energy is used for radiant heating.[9] It can be generated electrically by infrared lamps, or can be absorbed from sunlight and used to heat water. The heat energy is emitted from a warm element (floor, wall, overhead panel) and warms people and other objects in rooms rather than directly heating the air. Because of this, the air temperature may be lower than in a conventionally heated building, even though the room appears just as comfortable.

Various other applications of radiant energy have been devised.[10] These include:

  • Treatment and inspection
  • Separating and sorting
  • Medium of control
  • Medium of communication

Many of these applications involve a source of radiant energy and a detector that responds to that radiation and provides a signal representing some characteristic of the radiation. Radiant energy detectors produce responses to incident radiant energy either as an increase or decrease in electric potential or current flow or some other perceivable change, such as exposure of photographic film.

One of the earliest wireless telephones to be based on radiant energy was invented by Nikola Tesla. The device used transmitters and receivers whose resonances were tuned to the same frequency, allowing communication between them. In 1916, he recounted an experiment he had done in 1896.[11] He recalled that "Whenever I received the effects of a transmitter, one of the simplest ways [to detect the wireless transmissions] was to apply a magnetic field to currents generated in a conductor, and when I did so, the low frequency gave audible notes."

SI radiometry units[edit]

SI radiometry units
Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol Symbol
Radiant energy Qe[nb 2] joule J ML2T−2 Energy received, emitted, reflected, or transmitted by a system in form of electromagnetic radiation.
Radiant energy density we joule per cubic metre J/m3 ML−1T−2 Radiant energy of a system per unit volume at a given location.
Radiant flux / Radiant power Φe[nb 2] watt W or J/s ML2T−3 Radiant energy of a system per unit time at a given time.
Spectral flux / Spectral power Φe,ν[nb 3]
or
Φe,λ[nb 4]
watt per hertz
or
watt per metre
W/Hz
or
W/m
ML2T−2
or
MLT−3
Radiant power of a system per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1.
Radiant intensity Ie,Ω[nb 5] watt per steradian W/sr ML2T−3 Radiant power of a system per unit solid angle around a given direction. It is a directional quantity.
Spectral intensity Ie,Ω,ν[nb 3]
or
Ie,Ω,λ[nb 4]
watt per steradian per hertz
or
watt per steradian per metre
W⋅sr−1⋅Hz−1
or
W⋅sr−1⋅m−1
ML2T−2
or
MLT−3
Radiant intensity of a system per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. It is a directional quantity.
Radiance Le,Ω[nb 5] watt per steradian per square metre W⋅sr−1⋅m−2 MT−3 Radiant power of a surface per unit solid angle around a given direction per unit projected area of that surface along that direction. It is a directional quantity. It is sometimes also confusingly called "intensity".
Spectral radiance Le,Ω,ν[nb 3]
or
Le,Ω,λ[nb 4]
watt per steradian per square metre per hertz
or
watt per steradian per square metre, per metre
W⋅sr−1⋅m−2⋅Hz−1
or
W⋅sr−1⋅m−3
MT−2
or
ML−1T−3
Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. It is a directional quantity. It is sometimes also confusingly called "spectral intensity".
Irradiance Ee[nb 2] watt per square metre W/m2 MT−3 Radiant power received by a surface per unit area. It is sometimes also confusingly called "intensity".
Spectral irradiance Ee,ν[nb 3]
or
Ee,λ[nb 4]
watt per square metre per hertz
or
watt per square metre, per metre
W⋅m−2⋅Hz−1
or
W/m3
MT−2
or
ML−1T−3
Irradiance of a surface per unit frequency or wavelength. The former is commonly measured in 10−22 W⋅m−2⋅Hz−1, known as solar flux unit, and the latter in W⋅m−2⋅nm−1.[nb 6] It is sometimes also confusingly called "spectral intensity".
Radiosity Je[nb 2] watt per square metre W/m2 MT−3 Radiant power leaving (emitted, reflected and transmitted by) a surface per unit area. It is sometimes also confusingly called "intensity".
Spectral radiosity Je,ν[nb 3]
or
Je,λ[nb 4]
watt per square metre per hertz
or
watt per square metre, per metre
W⋅m−2⋅Hz−1
or
W/m3
MT−2
or
ML−1T−3
Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. It is sometimes also confusingly called "spectral intensity".
Radiant exitance Me[nb 2] watt per square metre W/m2 MT−3 Radiant power emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. It is sometimes also confusingly called "intensity".
Spectral exitance Me,ν[nb 3]
or
Me,λ[nb 4]
watt per square metre per hertz
or
watt per square metre, per metre
W⋅m−2⋅Hz−1
or
W/m3
MT−2
or
ML−1T−3
Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. "Spectral emittance" is an old term for this quantity. It is sometimes also confusingly called "spectral intensity".
Radiant exposure He joule per square metre J/m2 MT−2 Irradiance of a surface times exposure time. It is sometimes also called fluence.
See also: SI · Radiometry · Photometry
  1. ^ Standards organizations recommend that radiometric quantities should be denoted with a suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
  2. ^ a b c d e Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
  3. ^ a b c d e f Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek)—not to be confused with the suffix "v" (for "visual") indicating a photometric quantity.
  4. ^ a b c d e f Spectral quantities given per unit wavelength are denoted with suffix "λ" (Greek) to indicate a spectral concentration. Spectral functions of wavelength are indicated by "(λ)" in parentheses instead, for example in spectral transmittance, spectral reflectance and spectral responsivity.
  5. ^ a b The two directional quantities, radiant intensity and radiance, are denoted with suffix "Ω" (Greek) to indicate a directional concentration.
  6. ^ NOAA / Space Weather Prediction Center includes a definition of the solar flux unit (SFU).

See also[edit]

Notes and references[edit]

  1. ^ "Radiant energy". Federal standard 1037C
  2. ^ George Frederick Barker, Physics: Advanced Course, page 367
  3. ^ Hardis, Jonathan E., "Visibility of Radiant Energy". PDF.
  4. ^ Examples: US 1005338  "Transmitting apparatus", US 1018555  "Signaling by electroradiant energy", and US 1597901  "Radio apparatus".
  5. ^ Moran, M.J. and Shapiro, H.N., Fundamentals of Engineering Thermodynamics, Chapter 4. "Mass Conservation for an Open System", 5th Edition, John Wiley and Sons. ISBN 0-471-27471-2.
  6. ^ Robert W. Christopherson, Elemental Geosystems, Fourth Edition. Prentice Hall, 2003. Pages 608. ISBN 0-13-101553-2
  7. ^ James Grier Miller and Jessie L. Miller, The Earth as a System.
  8. ^ Energy transformation. assets.cambridge.org. (excerpt)
  9. ^ US 1317883  "Method of generating radiant energy and projecting same through free air for producing heat"
  10. ^ Class 250, Radiant Energy, USPTO. March 2006.
  11. ^ Anderson, Leland I. (editor), Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power, 2002, ISBN 1-893817-01-6.

Further reading[edit]

  • Caverly, Donald Philip, Primer of Electronics and Radiant Energy. New York, McGraw-Hill, 1952.
  • Whittaker, E. T. (Apr 1929). "What is energy?". The Mathematical Gazette (The Mathematical Association) 14 (200): 401–406. doi:10.2307/3606954. JSTOR 3606954.