Strontium iodide

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Strontium iodide
CAS number 10476-86-5 (anhydrous) YesY
PubChem 25304
EC number 233-972-1
RTECS number WK9275000
Jmol-3D images Image 1
Molecular formula SrI2 (anhydrous)
SrI2·6H2O (hexahydrate)
Molar mass 341.43 g/mol (anhydrous)
Appearance Colorless to white crystalline plates
Density 4.55 g/cm³ (anhydrous)[1]
4.40 g/cm³ (hexahydrate)[1]
Melting point 507-645°C [2]
Boiling point 1773 °C (decomp)
Solubility in water 177.0 g/100 mL (20°C)[3]
Solubility in ethanol 3.1 g/100 ml (4°C) [3]
Crystal structure Orthorhombic, oP24
Space group Pbca, No. 61
R-phrases R14 R34
S-phrases S22 S26 S27 S36/37/39S45 [4]
Main hazards Corrosive
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 1: Exposure would cause irritation but only minor residual injury. E.g., turpentine Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Related compounds
Other anions strontium fluoride
strontium chloride
strontium bromide
Other cations beryllium iodide
magnesium iodide
calcium iodide
barium iodide
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY (verify) (what is: YesY/N?)
Infobox references

Strontium iodide (SrI2) is a salt of strontium and iodine. It is an ionic, water-soluble, and deliquescent compound that can be used in medicine as a substitute for potassium iodide .[5] It is also used as a scintillation gamma radiation detector, typically doped with europium, due to its optical clarity, relatively high density, high effective atomic number (Z=63), and high scintillation light yield.


Strontium iodide can be prepared by reacting strontium carbonate with hydroiodic acid:

SrCO3 + 2 HI → SrI2 + H2O + CO2

Strontium iodide yellows when exposed to air. At high temperatures (when in the presence of air) strontium iodide completely decomposes to form strontium oxide and free iodine.[6]


  1. ^ a b Yaws, C.L. (2008). Thermophysical properties of chemicals and hydrocarbons. William Andrew. ISBN 978-0-8155-1596-8. 
  2. ^ Turner, Jr., Francis M., ed. (1920), The Condensed Chemical Dictionary, New York: The Chemical Catalog Company, p. 449, retrieved 2007-12-10 
  3. ^ a b
    177 g/100 mL (20 °C) Seidell, Atherton (1907), Solubilities of Inorganic and Organic Substances, New York: D. Van Nostrand, p. 318, retrieved 2007-12-10 
  4. ^ 400696 Strontium iodide anhydrous, beads, −10 mesh, 99.99+ %
  5. ^ Shoemaker, John V. (1908), A Practical Treatise on Materia Medica and Therapeutics (7th ed.), Philadelphia: F. A. Davis, p. 854, retrieved 2007-12-10 
  6. ^ Bartley, Elias H. (1898), Text-book of Medical and Pharmaceutical Chemistry (5th ed.), Philadelphia: P. Blakiston, pp. 267–268, retrieved 2007-12-10