Weight training

From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article is about strength training using weight (gravity) to generate resistance to contraction. For basic principles on increasing the strength of muscles, see strength training.
A complete weight training workout can be performed with a pair of adjustable dumbbells and a set of weight disks (plates).

Weight training is a common type of strength training for developing the strength and size of skeletal muscles. It uses the weight force of gravity (in the form of weighted bars, dumbbells or weight stacks) to oppose the force generated by muscle through concentric or eccentric contraction. Weight training uses a variety of specialized equipment to target specific muscle groups and types of movement.

Sports where strength training is central are bodybuilding, weightlifting, powerlifting, and strongman, Highland games, shotput, discus throw, and javelin throw. Many other sports use strength training as part of their training regimen, notably; mixed martial arts, American football, wrestling, rugby football, track and field, rowing, lacrosse, basketball, baseball and hockey. Strength training for other sports and physical activities is becoming increasingly popular.

Weight training versus other types of exercise[edit]

US male engaged in weight training.

Strength training is an inclusive term that describes all exercises devoted toward increasing physical strength. Weight training is a type of strength training that uses weights rather than elastic, Eccentric Training or muscular resistance to increase strength. Endurance training is associated with aerobic exercise while flexibility training is associated with stretching exercise like yoga or pilates. Weight training is often used as a synonym for strength training, but is actually a specific type within the more inclusive category. Contrary to popular belief, weight training can be beneficial for both men and women. Effective weight training develops lean muscle, increasing your resting metabolic rate, helping your body burn fat.

History[edit]

An early plate-loading barbell and kettlebell

The genealogy of lifting can be traced back to the beginning of recorded history[1] where humanity's fascination with physical abilities can be found among numerous ancient writings. Progressive resistance training dates back at least to Ancient Greece, when legend has it that wrestler Milo of Croton trained by carrying a newborn calf on his back every day until it was fully grown. Another Greek, the physician Galen, described strength training exercises using the halteres (an early form of dumbbell) in the 2nd century.

Ancient Greek sculptures also depict lifting feats. The weights were generally stones, but later gave way to dumbbells. The dumbbell was joined by the barbell in the later half of the 19th century. Early barbells had hollow globes that could be filled with sand or lead shot, but by the end of the century these were replaced by the plate-loading barbell commonly used today.[2]

Another early device was the Indian club, which came from ancient Persia where it was called the "meels". It subsequently became popular during the 19th century, and has recently made a comeback in the form of the clubbell.

The 1960s saw the gradual introduction of exercise machines into the still-rare strength training gyms of the time. Weight training became increasingly popular in the 1970s, following the release of the bodybuilding movie Pumping Iron, and the subsequent popularity of Arnold Schwarzenegger. Since the late 1990s increasing numbers of women have taken up weight training, influenced by programs like Body for Life; currently nearly one in five U.S. women engage in weight training on a regular basis.[3]

Basic principles[edit]

Main article: Strength training

The basic principles of weight training are essentially identical to those of strength training, and involve a manipulation of the number of repetitions (reps), sets, tempo, exercise types, and weight moved to cause desired increases in strength, endurance, and size. The specific combinations of reps, sets, exercises, and weights depends on the aims of the individual performing the exercise. Sets with fewer reps can be performed with heavier weights, as well as sets with higher reps with lighter weights.

In addition to the basic principles of strength training, a further consideration added by weight training is the equipment used. Types of equipment include barbells, dumbbells, pulleys and stacks in the form of weight machines, and the body's own weight in the case of chin-ups and push-ups. Different types of weights will give different types of resistance, and often the same absolute weight can have different relative weights depending on the type of equipment used. For example, lifting 10 kilograms using a dumbbell sometimes requires more force than moving 10 kilograms on a weight stack if certain pulley arrangements are used. In other cases, the weight stack may require more force than the equivalent dumbbell weight due to additional torque or resistance in the machine. Additionally, although they may display the same weight stack, different machines may be heavier or lighter depending on the number of pulleys and their arrangements.

Weight training also requires the use of 'good form', performing the movements with the appropriate muscle group, and not transferring the weight to different body parts in order to move greater weight (called 'cheating'). Failure to use good form during a training set can result in injury or a failure to meet training goals; since the desired muscle group is not challenged sufficiently, the threshold of overload is never reached and the muscle does not gain in strength. At a particularly advanced level; however, "cheating" can be used to break through strength plateaus and encourage neurological and muscular adaptation.

Comparison to other types of strength training[edit]

The benefits of weight training overall are comparable to most other types of strength training: increased muscle, tendon and ligament strength, bone density, flexibility, tone, metabolic rate, and postural support. There are benefits and limitations to weight training as compared to other types of strength training.

Weight training versus isometric training[edit]

Isometric exercise provides a fixed amount of resistance based on the force output of the muscle. This strengthens the muscle at the specific joint angle at which the isometric exercise occurs, with some lesser gains in strength also occurring at proximal joint angles.[4] In comparison, weight training strengthens the muscle throughout the range of motion the joint is trained in, causing an increase in physical strength from the initiating through to terminating joint angle.

Weight training and bodybuilding[edit]

Although weight training is similar to bodybuilding, they have different objectives. Bodybuilders use weight training to develop their muscles for size, shape, and symmetry regardless of any increase in strength for competition in bodybuilding contests; they train to maximize their muscular size and develop extremely low levels of body fat. In contrast, many weight trainers train to improve their strength and anaerobic endurance while not giving special attention to reducing body fat far below normal.

The bodybuilding community has been the source of many of weight training's principles, techniques, vocabulary, and customs. Weight training does allow tremendous flexibility in exercises and weights which can allow bodybuilders to target specific muscles and muscle groups, as well as attain specific goals. Not all bodybuilding is undertaken to compete in bodybuilding contests and, in fact, the vast majority of bodybuilders never compete, but bodybuild for their own personal reasons.

Safety[edit]

Weight training is a safe form of exercise when the movements are controlled and carefully defined. However, as with any form of exercise, improper execution and the failure to take appropriate precautions can result in injury.

Maintaining proper form[edit]

A dumbbell half-squat.[5]

When the exercise becomes difficult towards the end of a set, there is a temptation to cheat, i.e., to use poor form to recruit other muscle groups to assist the effort. This may shift the effort to weaker muscles that cannot handle the weight. For example, the squat and the deadlift are used to exercise the largest muscles in the body—the leg and buttock muscles—so they require substantial weight. Beginners are tempted to round their back while performing these exercises. The relaxation of the spinal erectors which allows the lower back to round can cause shearing in the vertebrae of the lumbar spine, potentially damaging the spinal discs.

Stretching and warm-up[edit]

The cross trainer can be used to warm up muscles in both the upper and lower body.

Weight trainers commonly spend 5 to 20 minutes warming up their muscles before starting a workout. It is common to stretch the entire body to increase overall flexibility; however, many people stretch just the area being worked that day. The main reason for warming up is injury prevention. Warming up increases blood flow and flexibility, which lessens the chance of a muscle pull or joint pain.

Warm up sets are also important. For example the same lifter working on his chest would also be advised to complete at least two warm up sets prior to hitting his "core tonnage." Core tonnage refers to the heavier lifts that actually strain your muscles. For example if the lifter's main sets were at 205 lbs, 225 lbs and 235 lbs on the bench, then a warmup of 5 reps of 135 and 5 reps of 185 would be advisable. When properly warmed up the lifter will then have more strength and stamina since the blood has begun to flow to the muscle groups.

Breathing[edit]

Breathing shallowly or holding one's breath while working out limits the oxygen supply to the muscles and the brain, decreasing performance and, under extreme stress, risking a black-out or a stroke by aneurysm.[6] Most trainers advise weight trainees to consciously "exhale on effort" and to inhale when lowering the weight. This technique ensures that the trainee breathes through the most difficult part of the exercise, where one would reflexively hold one's breath.[7]

However, biomechanics and kinesiology expert Stuart McGill indicates that spine stabilization is assured by "the ability to cocontract the abdominal wall (abdominal brace) independently of any lung ventilation patterns. Good stabilizers maintain the critical symmetrical muscle stiffness...Poor stabilizers allow abdominal contraction levels to cycle with breathing at critical moments when stability is required. Grooving muscular activation patterns so that a particular direction in lung air flow is entrained to a particular part of any exertion is not helpful. This would be of little carryover value to other activities; in fact it would be counterproductive." [8]

Other coaches advise trainees to perform the valsalva maneuver during exercises which place a load on the spine, since the risk of a stroke by aneurysm is astronomically lower than the risk of an orthopedic injury caused by inadequate rigidity of the torso.[9] Stuart McGill adds that the mechanism of building "high levels of intra-abdominal pressure (IAP)...produced by breath holding using the Valsava maneuver", to "ensure spine stiffness and stability during these extraordinary demands", "should be considered only for extreme weight-lifting challenges — not for rehabilitation exercise".[10]

Hydration[edit]

As with other sports, weight trainers should avoid dehydration throughout the workout by drinking sufficient water, even while not thirsty. If an athlete relies on thirst alone for when and how much to drink, it may lead to them becoming dehydrated. This is particularly true in hot environments, or for those older than 65.[11][12][13][14][15]

Some athletic trainers advise athletes to drink about 7 imperial fluid ounces (200 mL) every 15 minutes while exercising, and about 80 imperial fluid ounces (2.3 L) throughout the day.[16]

However, a much more accurate determination of how much fluid is necessary can be made by performing appropriate weight measurements before and after a typical exercise session, to determine how much fluid is lost during the workout. The greatest source of fluid loss during exercise is through perspiration, but as long as your fluid intake is roughly equivalent to your rate of perspiration, hydration levels will be maintained.[13]

Under most circumstances, sports drinks do not offer a physiological benefit over water during weight training.[17] However, high-intensity exercise for a continuous duration of at least one hour may require the replenishment of electrolytes which a sports drink may provide.[18] Some may maintain that Energy drinks, such as Red Bull that contain caffeine, improve performance in weight training and other physical exercise, but in fact, these energy drinks can cause dehydration, tremors, heat stroke, and heart attack when consumed in excess.[19] 'Sports drinks' that contain simple carbohydrates & water do not cause ill effects, but are most likely unnecessary for the average trainee.

Insufficient hydration may cause lethargy, soreness or muscle cramps.[20] The urine of well-hydrated persons should be nearly colorless, while an intense yellow color is normally a sign of insufficient hydration.[20]

Avoiding pain[edit]

An exercise should be halted if marked or sudden pain is felt, to prevent further injury. However, not all discomfort indicates injury. Weight training exercises are brief but very intense, and many people are unaccustomed to this level of effort. The expression "no pain, no gain" refers to working through the discomfort expected from such vigorous effort, rather than to willfully ignore extreme pain, which may indicate serious soft tissue injuries.

Discomfort can arise from other factors. Individuals who perform large numbers of repetitions, sets, and exercises for each muscle group may experience a burning sensation in their muscles. These individuals may also experience a swelling sensation in their muscles from increased blood flow (the "pump"). True muscle fatigue is experienced as a marked and uncontrollable loss of strength in a muscle, arising from the nervous system (motor unit) rather than from the muscle fibers themselves. Extreme neural fatigue can be experienced as temporary muscle failure. Some weight training programs actively seek temporary muscle failure; evidence to support this type of training is mixed at best[citation needed]. Irrespective of their program, however, most athletes engaged in high-intensity weight training will experience muscle failure during their regimens.

Beginners are advised to build up slowly to a weight training program. Untrained individuals may have some muscles that are comparatively stronger than others. An injury can result if, in a particular exercise, the primary muscle is stronger than its stabilising muscles. Building up slowly allows muscles time to develop appropriate strengths relative to each other. This can also help to minimize delayed onset muscle soreness. A sudden start to an intense program can cause significant muscular soreness. Unexercised muscles contain cross-linkages that are torn during intense exercise.

Other precautions[edit]

Anyone beginning an intensive physical training program is typically advised to consult a physician, because of possible undetected heart or other conditions for which such activity is contraindicated.

Exercises like the bench press or the squat in which a failed lift can potentially result in the lifter becoming trapped under the weight are normally performed inside a power rack or in the presence of one or more spotters, who can safely re-rack the barbell if the weight trainer is unable to do so.

Equipment[edit]

A pull-up, a type of bodyweight exercise that can be performed on equipment such as a pull-up bar, or items in one's surroundings, such as a stable tree branch.

Weight training usually requires different types of equipment, most commonly dumbbells, barbells, and weight machines. Various combinations of specific exercises, machines, dumbbells, and barbells allow trainees to exercise body parts in numerous ways. Some exercise approaches use only bodyweight exercises such as press-ups that require no equipment, while others such as a pull-up require no weights but do require a pull-up bar that is strong enough to support the weight of the trainee.

Other types of equipment include:

Wrist strap
Lifting belt
  • Lifting straps, which allow more weight to be lifted by transferring the load to the wrists and avoiding limitations in forearm muscles and grip strength
  • Weightlifting belts, which are meant to brace the core through intra-abdominal pressure. Controversy exists regarding the safety of these devices[21] and their proper use is often misunderstood.
  • Weighted clothing, bags of sand, lead shot, or other materials that are strapped to wrists, ankles, torso or other body parts to increase the amount of work required by muscles
  • Gloves can improve grip, prevent the formation of calluses on the hands, relieve pressure on the wrists, and provide support.[22]
  • Chalk
  • Wrist and knee wraps

Types of exercises[edit]

Isotonic and plyometric exercises[edit]

These terms combine the prefix "iso" (meaning "same") with "tonic" (strength) and "plio" (more) with "metric" (distance). In "isotonic" exercises the force applied to the muscle does not change (while the length of the muscle decreases or increases) while in "plyometric" exercises the length of the muscle stretches and contracts rapidly to increase the power output of a muscle.

Weight training is primarily an isotonic form of exercise, as the force produced by the muscle to push or pull weighted objects should not change (though in practice the force produced does decrease as muscles fatigue). Any object can be used for weight training, but dumbbells, barbells, and other specialised equipment are normally used because they can be adjusted to specific weights and are easily gripped. Many exercises are not strictly isotonic because the force on the muscle varies as the joint moves through its range of motion. Movements can become easier or harder depending on the angle of muscular force relative to gravity; for example, a standard biceps curl becomes easier as the hand approaches the shoulder as more of the load is taken by the structure of the elbow. Certain machines such as the Nautilus involve special adaptations to keep resistance constant irrespective of the joint angle.

Plyometrics exploit the stretch-shortening cycle of muscles to enhance the myotatic (stretch) reflex. This involves rapid alternation of lengthening and shortening of muscle fibers against resistance. The resistance involved is often a weighted object such as a medicine ball or sandbag, but can also be the body itself as in jumping exercises or the body with a weight vest that allows movement with resistance. Plyometrics is used to develop explosive speed, and focuses on maximal power instead of maximal strength by compressing the force of muscular contraction into as short a period as possible, and may be used to improve the effectiveness of a boxer's punch, or to increase the vertical jumping ability of a basketball player. Care must be taken when performing plyometric exercises because they inflict greater stress upon the involved joints and tendons than other forms of exercise.

Isolation exercises versus compound exercises[edit]

The leg extension is an isolation exercise.

An isolation exercise is one where the movement is restricted to one joint only. For example, the leg extension is an isolation exercise for the quadriceps. Specialized types of equipment are used to ensure that other muscle groups are only minimally involved—they just help the individual maintain a stable posture—and movement occurs only around the knee joint. Most isolation exercises involve machines rather than dumbbells and barbells (free weights), though free weights can be used when combined with special positions and joint bracing.

Compound exercises work several muscle groups at once, and include movement around two or more joints. For example, in the leg press, movement occurs around the hip, knee and ankle joints. This exercise is primarily used to develop the quadriceps, but it also involves the hamstrings, glutes and calves. Compound exercises are generally similar to the ways that people naturally push, pull and lift objects, whereas isolation exercises often feel a little unnatural.

The leg press is a compound exercise.

Each type of exercise has its uses. Compound exercises build the basic strength that is needed to perform everyday pushing, pulling and lifting activities. Isolation exercises are useful for "rounding out" a routine, by directly exercising muscle groups that cannot be fully exercised in the compound exercises.

The type of exercise performed also depends on the individual's goals. Those who seek to increase their performance in sports would focus mostly on compound exercises, with isolation exercises being used to strengthen just those muscles that are holding the athlete back. Similarly, a powerlifter would focus on the specific compound exercises that are performed at powerlifting competitions. However, those who seek to improve the look of their body without necessarily maximising their strength gains (including bodybuilders) would put more of an emphasis on isolation exercises. Both types of athletes, however, generally make use of both compound and isolation exercises.

Free weights versus weight machines[edit]

Exercise balls allow a wider range of free weight exercises to be performed. They are also known as Swiss balls, stability balls, fitness balls, gym balls, sports balls, therapy balls or body balls. They are sometimes confused with medicine balls

Free weights include dumbbells, barbells, medicine balls, sandbells, and kettlebells. Unlike weight machines, they do not constrain users to specific, fixed movements, and therefore require more effort from the individual's stabilizer muscles. It is often argued that free weight exercises are superior for precisely this reason. For example, they are recommended for golf players, since golf is a unilateral exercise that can break body balances, requiring exercises to keep the balance in muscles.[23]

The weight stack from a Cable machine.

Some free weight exercises can be performed while sitting or lying on an exercise ball. This makes it extremely difficult to maintain proper form, thus preventing the use of heavier weight, severely limiting any long-term gains in strength.[citation needed]

There are a number of weight machines that are commonly found in neighborhood gyms. The Smith machine is a barbell that is constrained to vertical movement. The cable machine consists of two weight stacks separated by 2.5 metres, with cables running through adjustable pulleys (that can be fixed at any height) to various types of handles. There are also exercise-specific weight machines such as the leg press. A multigym includes a variety of exercise-specific mechanisms in one apparatus.

One limitation of many free weight exercises and exercise machines is that the muscle is working maximally against gravity during only a small portion of the lift. Some exercise-specific machines feature an oval cam (first introduced by Nautilus) which varies the resistance, so that the resistance, and the muscle force required, remains constant throughout the full range of motion of the exercise.

Push-pull workout[edit]

A push–pull workout is a method of arranging a weight training routine so that exercises alternate between push motions and pull motions.[24] A push–pull superset is two complementary segments (one pull/one push) done back-to-back. An example is bench press (push) / bent-over row (pull). Another push–pull technique is to arrange workout routines so that one day involves only push exercises, and an alternate day only pull exercises.

Health benefits[edit]

The benefits of weight training include greater muscular strength, improved muscle tone and appearance, increased endurance and enhanced bone density. Weight lifting and resistance training can also lead to a multitude of medical benefits including increased insulin sensitivity, decreased visceral fat, increased GLUT 4 density, reduced blood pressure, increased HDL cholesterol, decrease LDL cholesterol, decreased triglycerides, increased bone mineral density and improved cardiovascular health.[25]

Most men can achieve significant increases in muscle mass; most women lack the natural testosterone levels to add a lot of mass, but they can develop a firm, "toned" physique, and can increase their strength significantly.

The body's basal metabolic rate increases with increases in muscle mass, which promotes long-term fat loss and helps dieters avoid yo-yo dieting.[26][dubious ] Moreover, intense workouts elevate metabolism for several hours following the workout, which also promotes fat loss.[27]

Weight training also provides functional benefits. Stronger muscles improve posture, provide better support for joints, and reduce the risk of injury from everyday activities. Older people who take up weight training can prevent some of the loss of muscle tissue that normally accompanies aging—and even regain some functional strength—and by doing so become less frail.[citation needed] They may be able to avoid some types of physical disability. Weight-bearing exercise also helps to prevent osteoporosis. The benefits of weight training for older people have been confirmed by studies of people who began engaging in it even in their 80s and 90s.

For many people in rehabilitation or with an acquired disability, such as following stroke or orthopaedic surgery, strength training for weak muscles is a key factor to optimise recovery.[28] For people with such a health condition, their strength training is likely to need to be designed by an appropriate health professional, such as a physiotherapist.

Stronger muscles improve performance in a variety of sports. Sport-specific training routines are used by many competitors. These often specify that the speed of muscle contraction during weight training should be the same as that of the particular sport.

Though weight training can stimulate the cardiovascular system, many exercise physiologists, based on their observation of maximal oxygen uptake, argue that aerobics training is a better cardiovascular stimulus. Central catheter monitoring during resistance training reveals increased cardiac output, suggesting that strength training shows potential for cardiovascular exercise. However, a 2007 meta-analysis found that, though aerobic training is an effective therapy for heart failure patients, combined aerobic and strength training is ineffective; "the favorable antiremodeling role of aerobic exercise was not confirmed when this mode of exercise was combined with strength training".[29]

One side-effect of any intense exercise is increased levels of dopamine, serotonin and norepinephrine, which can help to improve mood and counter feelings of depression.[30]

Weight training has also been shown to benefit dieters as it inhibits lean body mass loss (as opposed to fat loss) when under a caloric deficit. Weight training also strengthens bones, helping to prevent bone loss and osteoporosis. By increasing muscular strength and improving balance, weight training can also reduce falls by elderly persons.[31]

A study published in 2009 found that weightlifting may reduce the symptoms of lymphedema in women who have undergone a mastectomy.[32] For decades prior to the study, women were told to "avoid heavy lifting" as it was thought that it would increase the risk of developing lymphedema.[32]

See also[edit]

References[edit]

  1. ^ "The History of Weightlifting". USA Weightlifting. United States Olympic Committee. Retrieved 4 October 2011. 
  2. ^ Todd, Jan (1995). From Milo to Milo: A History of Barbells, Dumbbells, and Indian Clubs. Iron Game History (Vol.3, No.6).
  3. ^ "MSNBC article on the U.S. Centers for Disease Control and Prevention report on the prevalence of strength training". Retrieved 2007-02-01. 
  4. ^ Kitai TA, Sale DG (1989). "Specificity of joint angle in isometric training". European journal of applied physiology and occupational physiology 58 (7): 744–8. doi:10.1007/BF00637386. PMID 2737195. 
  5. ^ In the first picture, the knees are too close and get twisted. For appropriate muscular development and safety the knee should be in line with the foot. Rippetoe, Mark; Lon Kilgore (2005). "Knees". Starting Strength. The Aasgard Company. pp. 46–49. ISBN 0-9768054-0-5. 
  6. ^ Johnson-Cane et al., p.151
  7. ^ Johnson-Cane et al., p.152
  8. ^ Stuart McGill, Low Back Disorders, 2d ed., Human Kinetics, 2007, "Breathing", p. 187
  9. ^ Rippetoe, Mark; Lon Kilgore (2005). "Squat". Starting Strength. The Aasgard Company. pp. 46–49. ISBN 0-9768054-0-5. 
  10. ^ Stuart McGill, Low Back Disorders, 2d ed., Human Kinetics, 2007, "Breathing", p. 186-7
  11. ^ "Water, Water, Everywhere". WebMD. 
  12. ^ Dr. Mark Dedomenico. "Metabolism Myth #5". MSN Health. 
  13. ^ a b "Exercise and Fluid Replacement". American College of Sports Medicine. 
  14. ^ Nancy Cordes (2008-04-02). "Busting The 8-Glasses-A-Day Myth". CBS. 
  15. ^ ""Drink at Least 8 Glasses of Water a Day" - Really?". Dartmouth Medical School. 
  16. ^ Johnson-Cane et al., p.75
  17. ^ Johnson-Cane et al., p.76
  18. ^ "Hydration and Exercise - What to Drink for Proper Hydration During Exercise". Sportsmedicine.about.com. 2011-04-15. Retrieved 2014-02-22. 
  19. ^ McCarthy, Michael (2009-07-06). "Overuse of energy drinks worries health pros". USA Today. 
  20. ^ a b Johnson-Cane et al., p. 153
  21. ^ Kingma, I.; Faber, G. S.; Suwarganda, E. K.; Bruijnen, T. B. M.; Peters, R. J. A.; Van Die??n, J. H. (2006). "Effect of a Stiff Lifting Belt on Spine Compression During Lifting". Spine 31 (22): E833–E839. doi:10.1097/01.brs.0000240670.50834.77. PMID 17047531.  edit
  22. ^ "The benefits of wearing weight lifting gloves". 
  23. ^ Ahn Hyejung (November 11, 2012), World Class Fitness Trainers, John Sitaras, Golf Digest (Korean edition)
  24. ^ Frontera, Walter R.; Slovik, David M.; Dawson, David Michael (2006), Exercise in Rehabilitation Medicine, Human Kinetics, 2006, p. 350, ISBN 978-0-7360-5541-3 
  25. ^ Westcott PhD, Wayne (July–August 2012). "Resistance Training is Medicine: The Role of Strength Training on Health". Current Sports Medicine Reports 11 (4): 209–216. 
  26. ^ The Metabolism Myth
  27. ^ De Mello Meirelles, C.; Gomes, P.S.C. (2004). "Acute effects of resistance exercise on energy expenditure: revisiting the impact of the training variables" (PDF). Rev Bras Med Esporte 10: 131–8. Retrieved 2008-02-06. 
  28. ^ Ada L, Dorsch S, Canning C G. Strengthening interventions increase strength and improve activity after stroke: a systematic review. Australian Journal of Physiotherapy. 2006;52(4):241-248.
  29. ^ Haykowsky MJ, Liang Y, Pechter D, Jones LW, McAlister FA, Clark AM (2007-06-19). "A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed". J Am Coll Cardiol 49 (24): 2329–36. doi:10.1016/j.jacc.2007.02.055. PMID 17572248. 
  30. ^ How Exercise Helps Depression
  31. ^ "Best Exercises to Prevent Osteoporosis". 
  32. ^ a b Cox, Lauren; Hutchinson, Courtney (August 13, 2009). "Study Gives Lift to Mastectomy Patients". ABC News. 

Bibliography[edit]

  • Delavier, Frederic (2001). Strength Training Anatomy. Human Kinetics Publishers. ISBN 0-7360-4185-0. 
  • DeLee, MD, J; D. Drez, MD (2003). DeLee & Drez's Orthopaedic Sports Medicine; Principles and Practice. Philadelphia,Pa: Saunders. ISBN 0-7216-8845-4. 
  • Hatfield, Frederick (1993). Hardcore Bodybuilding: A Scientific Approach. McGraw-Hill. ISBN 0-8092-3728-8. 
  • Kennedy, Robert; Dennis Weis (1986). Mass!, New Scientific Bodybuilding Secrets. Contemporary Books. ISBN 0-8092-4940-5. 
  • Lombardi, V. Patteson (1989). Beginning Weight Training. Wm. C. Brown Publishers. ISBN 0-697-10696-9. 
  • Powers, Scott; Edward Howley (2003). Exercise Physiology. McGraw Hill. ISBN 0-07-255728-1. 
  • Schoenfeld, Brad (2002). Sculpting Her Body Perfect. Human Kinetics Publishers. ISBN 0-7360-4469-8. 
  • Schwarzenegger, Arnold (1999). The New Encyclopedia of Modern Bodybuilding. Simon & Schuster. ISBN 0-684-85721-9. 
  • Stuart McGill, Low Back Disorders, 2d. ed., Human Kinetics, 2007 ISBN 0-7360-6692-6
  • Stuart McGill, Ultimate Back Fitness And Performance, 4th ed., Backfitpro Inc., Waterloo, Ontario, 2009 ISBN 0-9735018-1-2

External links[edit]