Jump to content

Radial glial cell

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by AM Borman (talk | contribs) at 22:43, 5 February 2011 (→‎Radial glya and senescence). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

G-CSF receptor expression clearly delineates cells of radial glia in the embryonic murine brain. From Kirsch et al., 2008.[1]

Radial glial cells are a pivotal cell type in the developing central nervous system (CNS) involved in key developmental processes, from patterning and neuronal migration to their recently discovered role as precursors during neurogenesis.[2][3][4] They arise early in development from neuroepithelial cells. Radial phenotype is typically transient, but some cells, such as Bergmann glia in the cerebellum and Muller glia in the retina, retain radial glia-like morphology postnatally. According to recent research, during the late stages of cortical development, radial glial cells divide asymmetrically in the ventricular zone to generate radial glial cells, postmitotic neurons and intermediate progenitor cells. Intermediate progenitor cells then divide symmetrically in the subventricular zone to generate neurons. During gliogenesis, radial glial cells differentiate into astrocytes.[5][6][7]

The term 'radial glial cell' refers to their two major characteristics, their long radial processes extending from the ventricular zone (VZ) to the pial surface and their glial properties, such as the content of glycogen granules or the expression of the astrocyte-specific glutamate transporter or the glial fibrillary acidic protein (GFAP). Another radial glia-specific protein is the brain lipid binding protein (FABP7), expression of which could be induced by Notch-1 activation,[8] in particular, when acted upon by reelin.[9] Interestingly, Notch 1, then activated before birth, induces radial glia differentiation,[10] but postnatally induces the differentiation into astrocytes.[11]

Studies show that radial glial cells characterized by long radial processes and astroglial properties constitute the majority of precursors during neurogenesis. Indeed, all radial glial cells divide throughout neurogenesis and give rise to the majority of projection neurons in the cerebral cortex.

Expression of the PAX6, a transcription factor, was found to be the key feature of neurogenic radial glia.[12][13]

Radial glya and senescence

The astrocytic hypothesis of aging of mammals - suggests that aging of mammals is a genetic disease that causes death, the cause of which consists in aromorphosis in the theriomorph lineage of the vertebrates: - transformation of radial glia cells into star-shaped astrocytes during the postnatal development, i.e. disappearance of the fetal radial ways of neuroblasts migration from proliferative zones to the sites of their ultimate localization in the brain of adult individuals[14][15].

The astrocytic hypothesis is based on common knowledge that in vertebrates (Vertebrata) the place of generation neuroblasts in an adult as well as in embryonic phenotype are separated from their final localization. If you bear in mind the adult phenotype, in this case neuroblasts are produced in ventricular / subventricular zone where persisted neural stem cells into adulthood, and then migrate along fibers of radial glia on a long distance, that except for mammals. In other words, the disappearance of radial glia cells in the postnatal period of a mammal development prohibits physiological and reparative regeneration of nervous tissue. Therefore, “a postmitotic brain" where neurons are not updated pool for life is a unique phenomenon among vertebrates and specific only to mammals.

See also

References

  1. ^ Kirsch F, Krüger C, Schneider A (2008). "The receptor for granulocyte-colony stimulating factor (G-CSF) is expressed in radial glia during development of the nervous system". BMC Dev. Biol. 8: 32. doi:10.1186/1471-213X-8-32. PMC 2329616. PMID 18371196.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  2. ^ Noctor S, Flint A, Weissman T, Dammerman R, Kriegstein, A (2001). "Neurons derived from radial glial cells establish radial units in neocortex". Nature. 409 (6821): 714–20. doi:10.1038/35055553. PMID 11217860. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  3. ^ Campbell K, Götz M (2002). "Radial glia: multi-purpose cells for vertebrate brain development". Trends Neurosci. 25 (5): 235–8. doi:10.1016/S0166-2236(02)02156-2. PMID 11972958. {{cite journal}}: Unknown parameter |month= ignored (help)
  4. ^ Merkle FT, Tramontin AD, García-Verdugo JM, Alvarez-Buylla A (2004). "Radial glia give rise to adult neural stem cells in the subventricular zone". Proc. Natl. Acad. Sci. U.S.A. 101 (50): 17528–32. doi:10.1073/pnas.0407893101. PMC 536036. PMID 15574494. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  5. ^ Noctor S, Martinez-Cerdeno V, Ivic L, Kriegstein A (2004). "Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases". Nature Neuroscience. 7 (2): 136–44. doi:10.1038/nn1172. PMID 14703572. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  6. ^ Mart�nez-Cerde�o, V; Noctor, SC; Kriegstein, AR (2006). "The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex". Cerebral cortex (New York, N.Y. : 1991). 16 Suppl 1: i152–61. doi:10.1093/cercor/bhk017. PMID 16766701. {{cite journal}}: Cite has empty unknown parameter: |author-name-separator= (help); Unknown parameter |author-separator= ignored (help); replacement character in |last1= at position 5 (help)
  7. ^ Noctor S, Martinez-Cerdeno V, Kriegstein A (2008). "Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis". Journal of Comparative Neurology. 508 (1): 28–44. doi:10.1002/cne.21669. PMC 2635107. PMID 18288691. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  8. ^ Anthony TE, Mason HA, Gridley T, Fishell G, Heintz N (2005). "Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells". Genes Dev. 19 (9): 1028–33. doi:10.1101/gad.1302105. PMC 1091737. PMID 15879553. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  9. ^ Keilani S, Sugaya K (2008). "Reelin induces a radial glial phenotype in human neural progenitor cells by activation of Notch-1". BMC Dev. Biol. 8 (1): 69. doi:10.1186/1471-213X-8-69. PMC 2447831. PMID 18593473. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: unflagged free DOI (link)
  10. ^ Gaiano N, Nye JS, Fishell G (2000). "Radial glial identity is promoted by Notch1 signaling in the murine forebrain". Neuron. 26 (2): 395–404. doi:10.1016/S0896-6273(00)81172-1. PMID 10839358. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  11. ^ Chambers CB, Peng Y, Nguyen H, Gaiano N, Fishell G, Nye JS (2001). "Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain precursors". Development. 128 (5): 689–702. PMID 11171394. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  12. ^ Götz M, Stoykova A, Gruss P (1998). "Pax6 controls radial glia differentiation in the cerebral cortex". Neuron. 21 (5): 1031–44. doi:10.1016/S0896-6273(00)80621-2. PMID 9856459. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  13. ^ Mo Z, Zecevic N (2008). "Is Pax6 critical for neurogenesis in the human fetal brain?". Cereb. Cortex. 18 (6): 1455–65. doi:10.1093/cercor/bhm181. PMC 2670483. PMID 17947347. {{cite journal}}: Unknown parameter |month= ignored (help)
  14. ^ Boĭko AG (2007). "Дифференцировка клеток радиальной глии в астроциты — вероятный механизм старения млекопитающих" (PDF). Zh Obshch Biol (in Russian). 68 (1): 35–51. PMID 17338265Translated into English URL: http://elementy.ru/downloads/elt/o.g.boyko_ageing_mechanism_in_mammals_(eng).doc {{cite journal}}: Cite has empty unknown parameters: |laydate=, |separator=, |laysummary=, |laysource=, and |month= (help); External link in |postscript= (help); Unknown parameter |trans_title= ignored (|trans-title= suggested) (help)CS1 maint: postscript (link)
  15. ^ Boyko O.G. (2007). "Differentiation of radial glia cells into astrocytes is a possible ageing mechanism in mammals". Rejuvenation Research. 10 (suppl. 1): S 51. doi:10.1089/rej.2007.4003. {{cite journal}}: Check |doi= value (help); Cite has empty unknown parameters: |laydate=, |separator=, |trans_title=, |laysummary=, |laysource=, and |month= (help)