Jump to content

Effective field theory

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Puzl bustr (talk | contribs) at 15:04, 29 April 2012 (→‎The renormalization group: More precise subsection wikilink given as parent article is very long). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In physics, an effective field theory is, as any effective theory, an approximate theory, (usually a quantum field theory) that includes appropriate degrees of freedom to describe physical phenomena occurring at a chosen length scale, while ignoring substructure and degrees of freedom at shorter distances (or, equivalently, at higher energies).

The renormalization group

Presently, effective field theories are discussed in the context of the renormalization group (RG) where the process of integrating out short distance degrees of freedom is made systematic. Although this method is not sufficiently concrete to allow the actual construction of effective field theories, the gross understanding of their usefulness becomes clear through a RG analysis. This method also lends credence to the main technique of constructing effective field theories, through the analysis of symmetries. If there is a single mass scale M in the microscopic theory, then the effective field theory can be seen as an expansion in 1/M. The construction of an effective field theory accurate to some power of 1/M requires a new set of free parameters at each order of the expansion in 1/M. This technique is useful for scattering or other processes where the maximum momentum scale k satisfies the condition k/M≪1. Since effective field theories are not valid at small length scales, they need not be renormalizable. Indeed, the ever expanding number of parameters at each order in 1/M required for an effective field theory means that they are generally not renormalizable in the same sense as quantum electrodynamics which requires only the renormalization of three parameters.

Examples of effective field theories

Fermi theory of beta decay

The best-known example of an effective field theory is the Fermi theory of beta decay. This theory was developed during the early study of weak decays of nuclei when only the hadrons and leptons undergoing weak decay were known. The typical reactions studied were:

This theory posited a pointlike interaction between the four fermions involved in these reactions. The theory had great phenomenological success and was eventually understood to arise from the gauge theory of electroweak interactions, which forms a part of the standard model of particle physics. In this more fundamental theory, the interactions are mediated by a flavour-changing gauge boson, the W±. The immense success of the Fermi theory was because the W particle has mass of about 80 GeV, whereas the early experiments were all done at an energy scale of less than 10 MeV. Such a separation of scales, by over 3 orders of magnitude, has not been met in any other situation as yet.

BCS theory of superconductivity

Another famous example is the BCS theory of superconductivity. Here the underlying theory is of electrons in a metal interacting with lattice vibrations called phonons. The phonons cause attractive interactions between some electrons, causing them to form Cooper pairs. The length scale of these pairs is much larger than the wavelength of phonons, making it possible to neglect the dynamics of phonons and construct a theory in which two electrons effectively interact at a point. This theory has had remarkable success in describing and predicting the results of experiments.

Other examples

Presently, effective field theories are written for many situations.

See also

References and external links