Jump to content

Fatigue

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Maxim Masiutin (talk | contribs) at 07:20, 7 January 2024 (Alter: first2, title. Added the cs1 style template to denote Vancouver ("vanc") citation style, because references contain "vauthors" attribute to specify the list of authors.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Fatigue
Other namesExhaustion, weariness, tiredness, lethargy, listlessness
SpecialtyInternal medicine and most other specialities
TreatmentAvoid known stressors, avoid unhealthy habits such as: drug use, excessive alcohol consumption, smoking; healthy diet, exercise regularly, medication, staying hydrated, and vitamins

Fatigue describes a state of tiredness (which is not sleepiness) or exhaustion.[1] In general usage, fatigue often follows prolonged physical or mental activity. When fatigue occurs independently of physical or mental exertion, or does not resolve after rest or sleep, it may have other causes, such as a medical condition.[2]

Fatigue (in a medical context) is complex and its cause is often unknown.[3] Fatigue is associated with a wide variety of conditions including autoimmune disease, organ failure, chronic pain conditions, mood disorders, heart disease, infectious diseases, and post-infectious-disease states.[4]

Fatigue (in the general usage sense of normal tiredness) can include both physical and mental fatigue. Physical fatigue results from muscle fatigue brought about by intense physical activity.[5][6][7] Mental fatigue results from prolonged periods of cognitive activity which impairs cognitive ability. Mental fatigue can manifest as sleepiness, lethargy, or directed attention fatigue.[8] Mental fatigue can also impair physical performance.[9]

Definition

Fatigue in a medical context is used to cover experiences of low energy that are not caused by normal life.[10][11]

Fatigue is multi-faceted and broadly defined, which makes understanding the cause of its manifestations especially difficult in conditions with diverse pathology including autoimmune diseases.[12]

The use of the term "fatigue" in medical contexts may carry inaccurate connotations from the general usage of the word. More accurate terminology may also be needed to cover variants within the umbrella term of fatigue.[13]

Comparison with other terms

Tiredness

Tiredness which is a normal result of work, mental stress, anxiety, overstimulation and understimulation, jet lag, active recreation, boredom, or lack of sleep is not considered medical fatigue.[medical citation needed][14]

Sleepiness

Fatigue is generally considered a longer-term condition than sleepiness (somnolence).[15] Although sleepiness can be a symptom of a medical condition, it usually results from lack of restful sleep, or lack of stimulation.[16] Fatigue is often described as an uncomfortable tiredness, whereas sleepiness can be comfortable and inviting.

Classification

By effect

Overall life effect

Fatigue can have significant negative impacts on quality of life.[17][18] Profound and debilitating fatigue is the most common complaint reported among individuals with autoimmune disease, such as systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, celiac disease, chronic fatigue syndrome, and rheumatoid arthritis.[12]

It is disputed whether there are different dimensions of fatigue, such as peripheral (muscle) and central (mental) fatigue, or whether fatigue is a uni-dimensional phenomenon that influences different aspects of human life.[19]

Physical

Physical fatigue, or muscle fatigue, is the temporary physical inability of muscles to perform optimally. The onset of muscle fatigue during physical activity is gradual, and depends upon an individual's level of physical fitness – other factors include sleep deprivation and overall health.[20] Physical fatigue can be caused by a lack of energy in the muscle, by a decrease of the efficiency of the neuromuscular junction or by a reduction of the drive originating from the central nervous system, and can be reversed by rest.[21] The central component of fatigue is triggered by an increase of the level of serotonin in the central nervous system.[22] During motor activity, serotonin released in synapses that contact motor neurons promotes muscle contraction.[23] During high level of motor activity, the amount of serotonin released increases and a spillover occurs. Serotonin binds to extrasynaptic receptors located on the axonal initial segment of motor neurons with the result that nerve impulse initiation and thereby muscle contraction are inhibited.[24]

Muscle strength testing can be used to determine the presence of a neuromuscular disease, but cannot determine its cause. Additional testing, such as electromyography, can provide diagnostic information, but information gained from muscle strength testing alone is not enough to diagnose most neuromuscular disorders.[25]

Mental

Mental fatigue is a temporary inability to maintain optimal cognitive performance. The onset of mental fatigue during any cognitive activity is gradual, and depends upon an individual's cognitive ability, and also upon other factors, such as sleep deprivation and overall health.

Mental fatigue has also been shown to decrease physical performance.[8] It can manifest as somnolence, lethargy, directed attention fatigue, or disengagement. Research also suggests that mental fatigue is closely linked to the concept of ego depletion, though the validity of the concept is disputed. For example, one pre-registered study of 686 participants found that after exerting mental effort, people are likely to disengage and become less interested in exerting further effort.[26]

Decreased attention can also be described as a more or less decreased level of consciousness.[27] In any case, this can be dangerous when performing tasks that require constant concentration, such as operating large vehicles. For instance, a person who is sufficiently somnolent may experience microsleep. However, objective cognitive testing can be used to differentiate the neurocognitive deficits of brain disease from those attributable to tiredness.[citation needed]

The perception of mental fatigue is believed to be modulated by the brain's reticular activating system (RAS).[citation needed]

Fatigue impacts a driver's reaction time, awareness of hazards around them and their attention. Drowsy drivers are three times more likely to be involved in a car crash, and being awake over 20 hours is the equivalent of driving with a blood-alcohol concentration level of 0.08%.[28]

Neurological fatigue

People with multiple sclerosis experience a form of overwhelming tiredness that can occur at any time of the day, for any duration, and that does not necessarily recur in a recognizable pattern for any given patient, referred to as "neurological fatigue", and often as "multiple sclerosis fatigue" or "lassitude".[29][30]

People with inflammatory rheumatic diseases, including rheumatoid arthritis, psoriatic arthritis and primary Sjögren's syndrome, experience similar fatigue.[31]

Multiple subsets often present

Patients very often present with many types or subsets of fatigue.[31]

By timescale

Acute

Acute fatigue is that which is temporary and self-limited. Acute fatigue is most often caused by an infection such as the common cold and can be cognized as one part of the sickness behavior response occurring when the immune system fights an infection.[32]

Other common causes of acute fatigue include depression and chemical causes, such as dehydration, poisoning, low blood sugar, or mineral or vitamin deficiencies.

Prolonged

Prolonged fatigue is a self-reported, persistent (constant) fatigue lasting at least one month.[medical citation needed]

Chronic

Chronic fatigue is a self-reported fatigue lasting at least 6 consecutive months. Chronic fatigue may be either persistent or relapsing.[33] Chronic fatigue is a symptom of many chronic illnesses and of idiopathic chronic fatigue.

By mechanism

The mechanisms that cause fatigue are not well understood.[12]

Inflammation

Inflammation distorts neural chemistry, brain function and functional connectivity across a broad range of brain networks,[34] and has been linked to many types of fatigue.[35][36] Findings implicate neuroinflammation in the etiology of fatigue in autoimmune and related disorders.[31][35] Low-grade inflammation may cause an imbalance between energy availability and expenditure.[37] Cytokines are small protein molecules that modulate immune responses and inflammation (as well as other functions) and may have causal roles in fatigue.[38][39]

However the inflammation model may have difficulty in explaining the "unpredictability" and "variability" (i.e. appearing intermittently during the day, and not on all days) of the fatigue associated with inflammatory rheumatic diseases and autoimmune diseases (such as multiple sclerosis).[31]

Heat shock proteins

A small 2016 study found that primary Sjögren’s syndrome patients with high fatigue, when compared with those with low fatigue, had significantly higher plasma concentrations of HSP90α, and a tendency to higher concentrations of HSP72.[40]

By cause

The cause of fatigue is often undiagnosed.[41]

Idiopathic chronic fatigue

Idiopathic chronic fatigue is chronic fatigue not caused by a known proximate cause such as a discrete medical condition, drug or alcohol use.

Medications

Fatigue may be a side effect of certain medications (e.g., lithium salts, ciprofloxacin); beta blockers, which can induce exercise intolerance; and many cancer treatments, particularly chemotherapy and radiotherapy.

Drug use

Caffeine and alcohol can cause fatigue.[14]

Obesity

Obesity appears to correlate with greater fatigue incidence.[42]

Psychological stress and conditions

Depression and adverse life events have been associated with fatigue.[31]

Association with diseases

Fatigue is often associated with diseases and conditions. Some major categories of conditions that often list fatigue as a symptom include:

Primary vs. secondary

In some areas it has been proposed that fatigue be separated into primary fatigue, caused directly by a disease process, and secondary fatigue, caused by more general impacts on the person of having a disease (such as disrupted sleep).[53][54][55][56]

Measurement

Fatigue is currently measured by many different self-measurement surveys.[57] There is no consensus on best practice,[58] and the existing surveys do not capture the intermittent nature of some forms of fatigue.

Nintendo announced plans for a device to possibly quantitatively measure fatigue in 2014,[59] but the project was stopped in 2016.[60]

Diagnosis

Minor dark circles, in addition to a hint of eye bags, a combination which is suggestive of sleep deprivation and/or mental fatigue

One study concluded about 50% of people who have fatigue receive a diagnosis that could explain the fatigue after a year with the condition. In those people who have a possible diagnosis, musculoskeletal (19.4%) and psychological problems (16.5%) are the most common. Definitive physical conditions were only found in 8.2% of cases.[61]

If a person with fatigue decides to seek medical advice, the overall goal is to identify and rule out any treatable conditions. This is done by considering the person's medical history, any other symptoms that are present, and evaluating of the qualities of the fatigue itself. The affected person may be able to identify patterns to the fatigue, such as being more tired at certain times of day, whether fatigue increases throughout the day, and whether fatigue is reduced after taking a nap.

Because disrupted sleep is a significant contributor to fatigue, a diagnostic evaluation considers the quality of sleep, the emotional state of the person, sleep pattern, and stress level. The amount of sleep, the hours that are set aside for sleep, and the number of times that a person awakens during the night are important. A sleep study may be ordered to rule out a sleep disorder.

Depression and other psychological conditions can produce fatigue, so people who report fatigue are routinely screened for these conditions, along with substance use disorders, poor diet, and lack of physical exercise, which paradoxically increases fatigue.

Basic medical tests may be performed to rule out common causes of fatigue. These include blood tests to check for infection or anemia, a urinalysis to look for signs of liver disease or diabetes mellitus, and other tests to check for kidney and liver function, such as a comprehensive metabolic panel.[62] Other tests may be chosen depending on the patient's social history, such as an HIV test or pregnancy test.

Treatment and Management

Management may include the following;

Review of existing medications

Medications may be evaluated for side effects that contribute to fatigue[63][64][better source needed] and the interactions of medications are complex.[non-primary source needed][65]

Lifestyle changes

Reductions in obesity and in caffeine and alcohol intake may reduce fatigue.[66]

Medications used to treat fatigue

The UK NICE recommends consideration of amantadine, modafinil and SSRIs for MS fatigue.[67] Psychostimulants such as methylphenidate, amphetamines, and modafinil have been used in the treatment of fatigue related to depression,[68][69][70][71] and medical illness such as chronic fatigue syndrome[72][73] and cancer.[69][74][75][76][77][78][79] They have also been used to counteract fatigue in sleep loss[80] and in aviation.[81]

Vagus nerve stimulation

A small study showed possible efficacy of vagus nerve stimulation for fatigue reduction in Sjogren's patients.[82]

See also

References

  1. ^ "10 medical reasons for feeling tired". nhs.uk. 3 October 2018. Retrieved 24 November 2021.
  2. ^ "ICD-11 for Mortality and Morbidity Statistics". icd.who.int.
  3. ^ Haß U, Herpich C, Norman K (September 2019). "Anti-Inflammatory Diets and Fatigue". Nutrients. 11 (10): 2315. doi:10.3390/nu11102315. PMC 6835556. PMID 31574939.
  4. ^ Finsterer J, Mahjoub SZ (August 2014). "Fatigue in healthy and diseased individuals". Am J Hosp Palliat Care. 31 (5): 562–575. doi:10.1177/1049909113494748. PMID 23892338. S2CID 12582944.
  5. ^ Gandevia SC (February 1992). "Some central and peripheral factors affecting human motoneuronal output in neuromuscular fatigue". Sports Medicine. 13 (2): 93–98. doi:10.2165/00007256-199213020-00004. PMID 1561512. S2CID 20473830.
  6. ^ Hagberg M (July 1981). "Muscular endurance and surface electromyogram in isometric and dynamic exercise". Journal of Applied Physiology. 51 (1): 1–7. doi:10.1152/jappl.1981.51.1.1. PMID 7263402.
  7. ^ Hawley JA, Reilly T (June 1997). "Fatigue revisited". Journal of Sports Sciences. 15 (3): 245–246. doi:10.1080/026404197367245. PMID 9232549.
  8. ^ a b Marcora SM, Staiano W, Manning V (March 2009). "Mental fatigue impairs physical performance in humans". Journal of Applied Physiology. 106 (3): 857–864. CiteSeerX 10.1.1.557.3566. doi:10.1152/japplphysiol.91324.2008. PMID 19131473. S2CID 12221961.
  9. ^ Martin K, Meeusen R, Thompson KG, Keegan R, Rattray B (September 2018). "Mental Fatigue Impairs Endurance Performance: A Physiological Explanation". Sports Med. 48 (9): 2041–2051. doi:10.1007/s40279-018-0946-9. PMID 29923147. S2CID 49317682.
  10. ^ "Fatigue". Mayo Clinic.
  11. ^ Cancer terms
  12. ^ a b c Zielinski MR, Systrom DM, Rose NR (2019). "Fatigue, Sleep, and Autoimmune and Related Disorders". Frontiers in Immunology. 10: 1827. doi:10.3389/fimmu.2019.01827. PMC 6691096. PMID 31447842.
  13. ^ Hubbard AL, Golla H, Lausberg H (2020). "What's in a name? That which we call Multiple Sclerosis Fatigue". Multiple Sclerosis (Houndmills, Basingstoke, England). 27 (7): 983–988. doi:10.1177/1352458520941481. PMC 8142120. PMID 32672087.
  14. ^ a b "Tiredness and fatigue". 26 April 2018.
  15. ^ Shen J, Barbera J, Shapiro CM (February 2006). "Distinguishing sleepiness and fatigue: focus on definition and measurement". Sleep Medicine Reviews. 10 (1): 63–76. doi:10.1016/j.smrv.2005.05.004. PMID 16376590.
  16. ^ Hoddes E, Zarcone V, Smythe H, Phillips R, Dement WC (July 1973). "Quantification of sleepiness: a new approach". Psychophysiology. 10 (4): 431–436. doi:10.1111/j.1469-8986.1973.tb00801.x. PMID 4719486.
  17. ^ Hemmett L, Holmes J, Barnes M, Russell N (October 2004). "What drives quality of life in multiple sclerosis?". QJM. 97 (10): 671–676. doi:10.1093/qjmed/hch105. PMID 15367738.
  18. ^ Mæland E, Miyamoto ST, Hammenfors D, Valim V, Jonsson MV (2021). "Understanding Fatigue in Sjögren's Syndrome: Outcome Measures, Biomarkers and Possible Interventions". Frontiers in Immunology. 12: 703079. doi:10.3389/fimmu.2021.703079. PMC 8267792. PMID 34249008.
  19. ^ Roald Omdal, Svein Ivar Mellgren, Katrine Brække Norheim (July 2021). "Pain and fatigue in primary Sjögren's syndrome". Rheumatology. 6 (7): 3099–3106. doi:10.1093/rheumatology/kez027. PMID 30815693.
  20. ^ "Weakness and fatigue". Webmd. Healthwise Inc. Retrieved 2 January 2013.
  21. ^ Gandevia SC (October 2001). "Spinal and supraspinal factors in human muscle fatigue". Physiological Reviews. 81 (4): 1725–1789. doi:10.1152/physrev.2001.81.4.1725. PMID 11581501.
  22. ^ Davis JM, Alderson NL, Welsh RS (August 2000). "Serotonin and central nervous system fatigue: nutritional considerations". The American Journal of Clinical Nutrition. 72 (2 Suppl): 573S–578S. doi:10.1093/ajcn/72.2.573S. PMID 10919962.
  23. ^ Perrier JF, Delgado-Lezama R (August 2005). "Synaptic release of serotonin induced by stimulation of the raphe nucleus promotes plateau potentials in spinal motoneurons of the adult turtle". The Journal of Neuroscience. 25 (35): 7993–7999. doi:10.1523/JNEUROSCI.1957-05.2005. PMC 6725458. PMID 16135756.
  24. ^ Cotel F, Exley R, Cragg SJ, Perrier JF (March 2013). "Serotonin spillover onto the axon initial segment of motoneurons induces central fatigue by inhibiting action potential initiation". Proceedings of the National Academy of Sciences of the United States of America. 110 (12): 4774–4779. Bibcode:2013PNAS..110.4774C. doi:10.1073/pnas.1216150110. PMC 3607056. PMID 23487756.
  25. ^ Enoka RM, Duchateau J (January 2008). "Muscle fatigue: what, why and how it influences muscle function". The Journal of Physiology. 586 (1): 11–23. doi:10.1113/jphysiol.2007.139477. PMC 2375565. PMID 17702815.
  26. ^ Lin H, Saunders B, Friese M, Evans NJ, Inzlicht M (May 2020). "Strong Effort Manipulations Reduce Response Caution: A Preregistered Reinvention of the Ego-Depletion Paradigm". Psychological Science. 31 (5): 531–547. doi:10.1177/0956797620904990. PMC 7238509. PMID 32315259.
  27. ^ Giannini AJ (1991). "Fatigue, Chronic". In Taylor RB (ed.). Difficult Diagnosis 2. Philadelphia: W.B. Saunders Co. p. 156. ISBN 978-0721634814. OCLC 954530793.
  28. ^ "Drowsy Driving is Impaired Driving". National Safety Council. Retrieved 31 January 2019.
  29. ^ Hubbard AL, Golla H, Lausberg H (June 2021). "What's in a name? That which we call Multiple Sclerosis Fatigue". Multiple Sclerosis. 27 (7): 983–988. doi:10.1177/1352458520941481. PMC 8142120. PMID 32672087.
  30. ^ Mills RJ, Young CA, Pallant JF, Tennant A (February 2010). "Development of a patient reported outcome scale for fatigue in multiple sclerosis: The Neurological Fatigue Index (NFI-MS)". Health and Quality of Life Outcomes. 8: 22. doi:10.1186/1477-7525-8-22. PMC 2834659. PMID 20152031.
  31. ^ a b c d e Davies K, Dures E, Ng WF (November 2021). "Fatigue in inflammatory rheumatic diseases: current knowledge and areas for future research". Nature Reviews Rheumatology. 17 (11): 651–664. doi:10.1038/s41584-021-00692-1. PMID 34599320. S2CID 238233411.
  32. ^ Piraino B, Vollmer-Conna U, Lloyd A (2012-05-01). "Genetic associations of fatigue and other symptom domains of the acute sickness response to infection". Brain, Behavior, and Immunity. 26 (4): 552–558. doi:10.1016/j.bbi.2011.12.009. ISSN 0889-1591. PMC 7127134. PMID 22227623.
  33. ^ Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A (December 1994). "The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group". Annals of Internal Medicine. 121 (12): 953–959. doi:10.7326/0003-4819-121-12-199412150-00009. PMID 7978722. S2CID 510735.
  34. ^ Korte SM, Straub RH (November 2019). "Fatigue in inflammatory rheumatic disorders: pathophysiological mechanisms". Rheumatology. 58 (Suppl 5): v35–v50. doi:10.1093/rheumatology/kez413. PMC 6827268. PMID 31682277.
  35. ^ a b c Zielinski MR, Systrom DM, Rose NR (August 2019). "Fatigue, Sleep, and Autoimmune and Related Disorders". Frontiers in Immunology. 10: 1827. doi:10.3389/fimmu.2019.01827. PMC 6691096. PMID 31447842.
  36. ^ Omdal R (June 2020). "The biological basis of chronic fatigue: neuroinflammation and innate immunity". Current Opinion in Neurology. 33 (3): 391–396. doi:10.1097/WCO.0000000000000817. PMID 32304437. S2CID 215819309.
  37. ^ Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ (2018). "The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure". Frontiers in Behavioral Neuroscience. 12: 78. doi:10.3389/fnbeh.2018.00078. PMC 5932180. PMID 29755330.
  38. ^ Karshikoff B, Sundelin T, Lasselin J (2017). "Role of Inflammation in Human Fatigue: Relevance of Multidimensional Assessments and Potential Neuronal Mechanisms". Frontiers in Immunology. 8: 21. doi:10.3389/fimmu.2017.00021. PMC 5247454. PMID 28163706.
  39. ^ A small study showed possible efficacy of VNS for Sjogren's fatigue https://www.sciencedirect.com/science/article/pii/S1094715922012636 and inflammation has been suggested as a possible VNS mechanism (https://en.wikipedia.org/wiki/Vagus_nerve_stimulation#Reducing_inflammation).
  40. ^ Bårdsen K, Nilsen MM, Kvaløy JT, Norheim KB, Jonsson G, Omdal R (2016). "Heat shock proteins and chronic fatigue in primary Sjögren's syndrome". Innate Immunity. 22 (3): 162–167. doi:10.1177/1753425916633236. PMC 4804286. PMID 26921255.
  41. ^ "Medically unexplained symptoms". 19 October 2017.
  42. ^ Lim W, Hong S, Nelesen R, Dimsdale JE (25 April 2005). "The Association of Obesity, Cytokine Levels, and Depressive Symptoms With Diverse Measures of Fatigue in Healthy Subjects". Archives of Internal Medicine. 165 (8): 910–915. doi:10.1001/archinte.165.8.910. PMID 15851643.
  43. ^ "Autoimmune Fatigue: The Staggering Symptoms Beyond "Feeling Tired"". 5 March 2013.
  44. ^ Strober LB (2015). "Fatigue in multiple sclerosis: a look at the role of poor sleep". Frontiers in Neurology. 6: 21. doi:10.3389/fneur.2015.00021. PMC 4325921. PMID 25729378.
  45. ^ "Fatigue after brain injury".
  46. ^ "What is cancer fatigue? | Coping physically | Cancer Research UK".
  47. ^ a b Avellaneda Fernández A, Pérez Martín A, Izquierdo Martínez M, Arruti Bustillo M, Barbado Hernández FJ, de la Cruz Labrado J, et al. (October 2009). "Chronic fatigue syndrome: aetiology, diagnosis and treatment". BMC Psychiatry. 9 (Suppl 1): S1. doi:10.1186/1471-244X-9-S1-S1. PMC 2766938. PMID 19857242.
  48. ^ "Long-term effects of coronavirus (Long COVID)". 7 January 2021.
  49. ^ Williams ZJ, Gotham KO (2021-10-03), Current and Lifetime Somatic Symptom Burden Among Transition-aged Autistic Young Adults, Cold Spring Harbor Laboratory, doi:10.1101/2021.10.02.21264461, S2CID 238252764
  50. ^ a b c d e Friedman HH (2001). Problem-oriented Medical Diagnosis. Lippincott Williams & Wilkins. pp. 4–5. ISBN 978-0-7817-2909-3.
  51. ^ Whitehead WE, Palsson O, Jones KR (April 2002). "Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications?". Gastroenterology. 122 (4): 1140–1156. doi:10.1053/gast.2002.32392. PMID 11910364.
  52. ^ Gibson PR, Newnham E, Barrett JS, Shepherd SJ, Muir JG (February 2007). "Review article: fructose malabsorption and the bigger picture". Alimentary Pharmacology & Therapeutics. 25 (4): 349–363. doi:10.1111/j.1365-2036.2006.03186.x. PMID 17217453. S2CID 11487905.
  53. ^ "Fatigue in Patients with Multiple Sclerosis".
  54. ^ Chalah MA, Riachi N, Ahdab R, Créange A, Lefaucheur JP, Ayache SS (2015). "Fatigue in Multiple Sclerosis: Neural Correlates and the Role of Non-Invasive Brain Stimulation". Frontiers in Cellular Neuroscience. 9: 460. doi:10.3389/fncel.2015.00460. PMC 4663273. PMID 26648845.
  55. ^ Gerber LH, Weinstein AA, Mehta R, Younossi ZM (July 2019). "Importance of fatigue and its measurement in chronic liver disease". World Journal of Gastroenterology. 25 (28): 3669–3683. doi:10.3748/wjg.v25.i28.3669. PMC 6676553. PMID 31391765.
  56. ^ Hartvig Honoré P (June 2013). "Fatigue". European Journal of Hospital Pharmacy. 20 (3): 147–148. doi:10.1136/ejhpharm-2013-000309. S2CID 220171226.
  57. ^ Machado MO, Kang NY, Tai F, Sambhi RD, Berk M, Carvalho AF, Chada LP, Merola JF, Piguet V, Alavi A (September 2021). "Measuring fatigue: a meta-review". International Journal of Dermatology. 60 (9): 1053–1069. doi:10.1111/ijd.15341. hdl:11343/276722. PMID 33301180. S2CID 228087205.
  58. ^ "Fatigue Survey Results Released". 23 March 2015.
  59. ^ "Nintendo's first health care device will be sleep and fatigue tracker". The Japan Times. Reuters. 30 October 2014. Retrieved 29 June 2017.
  60. ^ "Nintendo presses snooze button on planned sleep-tracking device". 4 February 2016.
  61. ^ Nijrolder I, van der Windt D, de Vries H, van der Horst H (November 2009). "Diagnoses during follow-up of patients presenting with fatigue in primary care". CMAJ. 181 (10): 683–687. doi:10.1503/cmaj.090647. PMC 2774363. PMID 19858240.
  62. ^ Davis CP (11 September 2017). Doerr S (ed.). "Fatigue". eMedicineHealth. Archived from the original on 7 March 2010.
  63. ^ Siniscalchi A, Gallelli L, Russo E, De Sarro G (October 2013). "A review on antiepileptic drugs-dependent fatigue: pathophysiological mechanisms and incidence". European Journal of Pharmacology. 718 (1–3): 10–16. doi:10.1016/j.ejphar.2013.09.013. PMID 24051268.
  64. ^ "What to do when medication makes you sleepy". 8 March 2016.
  65. ^ Phansalkar S, van der Sijs H, Tucker AD, Desai AA, Bell DS, Teich JM, et al. (May 2013). "Drug-drug interactions that should be non-interruptive in order to reduce alert fatigue in electronic health records". Journal of the American Medical Informatics Association. 20 (3): 489–493. doi:10.1136/amiajnl-2012-001089. PMC 3628052. PMID 23011124.
  66. ^ See causal factors section
  67. ^ "Recommendations | Multiple sclerosis in adults: Management | Guidance | NICE".
  68. ^ Candy M, Jones L, Williams R, Tookman A, King M (April 2008). "Psychostimulants for depression". Cochrane Database Syst Rev (2): CD006722. doi:10.1002/14651858.CD006722.pub2. PMID 18425966.
  69. ^ a b Hardy SE (February 2009). "Methylphenidate for the treatment of depressive symptoms, including fatigue and apathy, in medically ill older adults and terminally ill adults". Am J Geriatr Pharmacother. 7 (1): 34–59. doi:10.1016/j.amjopharm.2009.02.006. PMC 2738590. PMID 19281939.
  70. ^ Malhi GS, Byrow Y, Bassett D, Boyce P, Hopwood M, Lyndon W, Mulder R, Porter R, Singh A, Murray G (March 2016). "Stimulants for depression: On the up and up?". Aust N Z J Psychiatry. 50 (3): 203–207. doi:10.1177/0004867416634208. PMID 26906078. S2CID 45341424.
  71. ^ Bahji A, Mesbah-Oskui L (September 2021). "Comparative efficacy and safety of stimulant-type medications for depression: A systematic review and network meta-analysis". J Affect Disord. 292: 416–423. doi:10.1016/j.jad.2021.05.119. PMID 34144366.
  72. ^ Van Houdenhove B, Pae CU, Luyten P (February 2010). "Chronic fatigue syndrome: is there a role for non-antidepressant pharmacotherapy?". Expert Opin Pharmacother. 11 (2): 215–223. doi:10.1517/14656560903487744. PMID 20088743. S2CID 34827174.
  73. ^ Valdizán Usón JR, Idiazábal Alecha MA (June 2008). "Diagnostic and treatment challenges of chronic fatigue syndrome: role of immediate-release methylphenidate". Expert Rev Neurother. 8 (6): 917–927. doi:10.1586/14737175.8.6.917. PMID 18505357. S2CID 37482754.
  74. ^ Masand PS, Tesar GE (September 1996). "Use of stimulants in the medically ill". Psychiatr Clin North Am. 19 (3): 515–547. doi:10.1016/s0193-953x(05)70304-x. PMID 8856815.
  75. ^ Breitbart W, Alici Y (August 2010). "Psychostimulants for cancer-related fatigue". J Natl Compr Canc Netw. 8 (8): 933–942. doi:10.6004/jnccn.2010.0068. PMID 20870637.
  76. ^ Minton O, Richardson A, Sharpe M, Hotopf M, Stone PC (April 2011). "Psychostimulants for the management of cancer-related fatigue: a systematic review and meta-analysis". J Pain Symptom Manage. 41 (4): 761–767. doi:10.1016/j.jpainsymman.2010.06.020. PMID 21251796.
  77. ^ Gong S, Sheng P, Jin H, He H, Qi E, Chen W, Dong Y, Hou L (2014). "Effect of methylphenidate in patients with cancer-related fatigue: a systematic review and meta-analysis". PLOS ONE. 9 (1): e84391. Bibcode:2014PLoSO...984391G. doi:10.1371/journal.pone.0084391. PMC 3885551. PMID 24416225.
  78. ^ Yennurajalingam S, Bruera E (2014). "Review of clinical trials of pharmacologic interventions for cancer-related fatigue: focus on psychostimulants and steroids". Cancer J. 20 (5): 319–324. doi:10.1097/PPO.0000000000000069. PMID 25299141. S2CID 29351114.
  79. ^ Dobryakova E, Genova HM, DeLuca J, Wylie GR (2015). "The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders". Front Neurol. 6: 52. doi:10.3389/fneur.2015.00052. PMC 4357260. PMID 25814977.
  80. ^ Bonnet MH, Balkin TJ, Dinges DF, Roehrs T, Rogers NL, Wesensten NJ (September 2005). "The use of stimulants to modify performance during sleep loss: a review by the sleep deprivation and Stimulant Task Force of the American Academy of Sleep Medicine". Sleep. 28 (9): 1163–1187. doi:10.1093/sleep/28.9.1163. PMID 16268386.
  81. ^ Ehlert AM, Wilson PB (March 2021). "Stimulant Use as a Fatigue Countermeasure in Aviation". Aerosp Med Hum Perform. 92 (3): 190–200. doi:10.3357/AMHP.5716.2021. PMID 33754977. S2CID 232325161.
  82. ^ Tarn J, Evans E, Traianos E, Collins A, Stylianou M, Parikh J, Bai Y, Guan Y, Frith J, Lendrem D, Macrae V, McKinnon I, Simon BS, Blake J, Baker MR, Taylor JP, Watson S, Gallagher P, Blamire A, Newton J, Ng WF (1 April 2023). "The Effects of Noninvasive Vagus Nerve Stimulation on Fatigue in Participants With Primary Sjögren's Syndrome". Neuromodulation: Technology at the Neural Interface. 26 (3): 681–689. doi:10.1016/j.neurom.2022.08.461. ISSN 1094-7159. PMID 37032583.

Further reading