Jump to content

Nonlinear Dirac equation

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Comech (talk | contribs) at 13:23, 5 February 2020 (See also). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

See Ricci calculus and Van der Waerden notation for the notation.

In quantum field theory, the nonlinear Dirac equation is a model of self-interacting Dirac fermions. This model is widely considered in quantum physics as a toy model of self-interacting electrons.[1][2][3][4][5]

The nonlinear Dirac equation appears in the Einstein-Cartan-Sciama-Kibble theory of gravity, which extends general relativity to matter with intrinsic angular momentum (spin).[6][7] This theory removes a constraint of the symmetry of the affine connection and treats its antisymmetric part, the torsion tensor, as a variable in varying the action. In the resulting field equations, the torsion tensor is a homogeneous, linear function of the spin tensor. The minimal coupling between torsion and Dirac spinors thus generates an axial-axial, spin–spin interaction in fermionic matter, which becomes significant only at extremely high densities. Consequently, the Dirac equation becomes nonlinear (cubic) in the spinor field,[8][9] which causes fermions to be spatially extended and may remove the ultraviolet divergence in quantum field theory.[10]

Models

Two common examples are the massive Thirring model and the Soler model.

Thirring model

The Thirring model[11] was originally formulated as a model in (1 + 1) space-time dimensions and is characterized by the Lagrangian density

where ψ ∈ ℂ2 is the spinor field, ψ = ψ*γ0 is the Dirac adjoint spinor,

(Feynman slash notation is used), g is the coupling constant, m is the mass, and γμ are the two-dimensional gamma matrices, finally μ = 0, 1 is an index.

Soler model

The Soler model[12] was originally formulated in (3 + 1) space-time dimensions. It is characterized by the Lagrangian density

using the same notations above, except

is now the four-gradient operator contracted with the four-dimensional Dirac gamma matrices γμ, so therein μ = 0, 1, 2, 3.

Einstein-Cartan theory

In Einstein-Cartan theory the Lagrangian density for a Dirac spinor field is given by ()

where

is the Fock-Ivanenko covariant derivative of a spinor with respect to the affine connection, is the spin connection, is the determinant of the metric tensor , and the Dirac matrices satisfy

The Einstein-Cartan field equations for the spin connection yield an algebraic constraint between the spin connection and the spinor field rather than a partial differential equation, which allows the spin connection to be explicitly eliminated from the theory. The final result is a nonlinear Dirac equation containing an effective "spin-spin" self-interaction,

where is the general-relativistic covariant derivative of a spinor. The cubic term in this equation becomes significant at densities on the order of .

See also

References

  1. ^ Д.Д. Иваненко (1938). "Замечание к теории взаимодействия через частицы" [translated in: D.D. Ivanenko, Notes to the theory of interaction via particles, Sov. Phys. JETP 13 (1938), 141)] (PDF). ЖЭТФ. 8: 260–266.
  2. ^ R. Finkelstein; R. LeLevier; M. Ruderman (1951). "Nonlinear spinor fields". Phys. Rev. 83 (2): 326–332. Bibcode:1951PhRv...83..326F. doi:10.1103/PhysRev.83.326. {{cite journal}}: Unknown parameter |last-author-amp= ignored (|name-list-style= suggested) (help)
  3. ^ R. Finkelstein; C. Fronsdal; P. Kaus (1956). "Nonlinear Spinor Field". Phys. Rev. 103 (5): 1571–1579. Bibcode:1956PhRv..103.1571F. doi:10.1103/PhysRev.103.1571. {{cite journal}}: Unknown parameter |last-author-amp= ignored (|name-list-style= suggested) (help)
  4. ^ W. Heisenberg (1957). "Quantum Theory of Fields and Elementary Particles". Rev. Mod. Phys. 29 (3): 269–278. Bibcode:1957RvMP...29..269H. doi:10.1103/RevModPhys.29.269.
  5. ^ Gross, David J. and Neveu, André (1974). "Dynamical symmetry breaking in asymptotically free field theories". Phys. Rev. D. 10 (10): 3235–3253. Bibcode:1974PhRvD..10.3235G. doi:10.1103/PhysRevD.10.3235.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Dennis W. Sciama, "The physical structure of general relativity". Rev. Mod. Phys. 36, 463-469 (1964).
  7. ^ Tom W. B. Kibble, "Lorentz invariance and the gravitational field". J. Math. Phys. 2, 212-221 (1961).
  8. ^ F. W. Hehl; B. K. Datta (1971). "Nonlinear spinor equation and asymmetric connection in general relativity". J. Math. Phys. 12 (7): 1334–1339. Bibcode:1971JMP....12.1334H. doi:10.1063/1.1665738. {{cite journal}}: Unknown parameter |lastauthoramp= ignored (|name-list-style= suggested) (help)
  9. ^ Friedrich W. Hehl; Paul von der Heyde; G. David Kerlick; James M. Nester (1976). "General relativity with spin and torsion: Foundations and prospects". Rev. Mod. Phys. 48 (3): 393–416. Bibcode:1976RvMP...48..393H. doi:10.1103/RevModPhys.48.393. {{cite journal}}: Unknown parameter |last-author-amp= ignored (|name-list-style= suggested) (help)
  10. ^ Nikodem J. Popławski (2010). "Nonsingular Dirac particles in spacetime with torsion". Phys. Lett. B. 690 (1): 73–77. arXiv:0910.1181. Bibcode:2010PhLB..690...73P. doi:10.1016/j.physletb.2010.04.073.
  11. ^ Walter Thirring (1958). "A soluble relativistic field theory". Annals of Physics. 3 (1): 91–112. Bibcode:1958AnPhy...3...91T. doi:10.1016/0003-4916(58)90015-0.
  12. ^ Mario Soler (1970). "Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy". Phys. Rev. D. 1 (10): 2766–2769. Bibcode:1970PhRvD...1.2766S. doi:10.1103/PhysRevD.1.2766.