Jump to content

General Electric XA100

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Steve7c8 (talk | contribs) at 00:46, 6 February 2020 (Development). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

XA100
Type Adaptive cycle engine
National origin United States
Manufacturer General Electric
Major applications F-35 Lightning II (planned)

The General Electric XA100 is a three-stream adaptive cycle engine demonstrator being developed by General Electric (GE) for the Lockheed Martin F-35 Lightning and for the U.S. Air Force's sixth generation fighter program.

The three-stream adaptive cycle design can direct air to the bypass third stream for increased fuel efficiency and cooling or to the core and fan streams for additional thrust and performance. The 45,000 lbf (200 kN) thrust class engine is expected to be significantly more powerful and efficient than existing low-bypass turbofans.

Development

The U.S. Air Force and U.S. Navy began pursuing adaptive cycle engine in 2007 with the Adaptive Versatile Engine Technology (ADVENT) program, a part of the larger Versatile Affordable Advanced Turbine Engine (VAATE) program. This technology research program was then followed by the Adaptive Engine Technology Demonstrator (AETD) program in 2012, which continued to mature the technology, with tests performed using demonstrator engines. GE's ground demonstrator tests in 2015 yielded the highest combined compressor and turbine temperatures in the history of jet propulsion.[1] The follow-on Adaptive Engine Transition Program (AETP) was launched in 2016 to develop and test adaptive engines for sixth generation fighter propulsion as well as potential re-engining of the F-35 from the existing F135 turbofan engine. The demonstrators were assigned the designation XA100 for General Electric's design and XA101 for Pratt & Whitney's. The AETP goal is to demonstrate 25% improved fuel efficiency, 10% additional thrust, and significantly better thermal management.[2] Further contract awards and modifications from Air Force Life Cycle Management Center (AFLCMC) in 2018 increased the focus on re-engining of the F-35, and GE's design became "F-35 design-centric"; there has also been investigations on applying the technology in upgrades for F-15, F-16, and F-22 propulsion systems.[3] GE's detailed design was completed in February 2019.[4][5]

Design

The XA100 is a three-stream adaptive cycle engine that can adjust the bypass ratio and fan pressure to increase fuel efficiency or thrust, depending on the scenario. It does this by employing a third bypass stream where the engine can direct air to in order to increase fuel economy and act as a heat sink for cooling; in particular, this would enable greater use of the high speed, low altitude part of the F-35 envelope. The increased cooling and power generation also enables the potential employment of directed energy weapons in the future.[6][7] When additional thrust is needed, the air from the third stream can be directed to the core and fan streams. In addition to three-steam adaptive cycle configuration, the engine also uses new heat-resistant materials such as ceramic matrix composites to enable higher turbine temperatures and improved performance. According to GE, the engine can offer up to 35% increased range and 25% reduction in fuel burn over current turbofans.

Applications

Specifications (XA100)

Data from Flight Global,[3]

General characteristics

  • Type: Three-stream adaptive cycle engine
  • Length:
  • Diameter:
  • Dry weight:

Components

  • Compressor:

Performance

See also

Related development

Comparable engines

Related lists

References

  1. ^ Clark, Colin (18 June 2015). "GE Jet Sets Record; Will F-35 Get New AETD Engine?". Breaking Defense. Retrieved 11 January 2020.
  2. ^ Mehta, Aaron (1 July 2016). "US Air Force Funds Next Advanced Engine Stage". DefenseNews. Retrieved 11 January 2020.
  3. ^ a b Trimble, Steven (9 July 2018). "USAF starts work on defining adaptive engine for future fighter". Flight Global. Retrieved 11 January 2020.
  4. ^ Zazulia, Nick (1 March 2019). "Detailed Design Complete for GE's Revolutionary Adaptive Fighter Engine". Avionics International. Retrieved 11 January 2020.
  5. ^ Norris, Guy (29 January 2015). "GE Details Sixth-Generation Adaptive Fighter Engine Plan". Aviation Week. Retrieved 11 January 2020.
  6. ^ Mathews, Jim (26 June 2017). "Engines of Innovation". Air Force Magazine. Retrieved 11 January 2020.
  7. ^ Norris, Guy; Anselmo, Joe (21 July 2018). "F-35 Engine Upgrade Would Enable Directed Energy Weapons". Aviation Week. Retrieved 11 January 2020.