Ambient ionization

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Diagram of ambient ionization in mass spectrometry indicating desorption/extraction (spray, heat, laser), optional post-ionization (electrospray, chemical ionization, plasma), ion formation, and entry into the vacuum of the mass spectrometer.

Ambient ionization is a form of ionization in which ions are formed in an ion source outside the mass spectrometer without sample preparation or separation.[1][2][3][4] Ions can be formed by extraction into charged electrospray droplets, thermally desorbed and ionized by chemical ionization, or laser desorbed or ablated and post-ionized before they enter the mass spectrometer.[5]

Solid-liquid extraction[edit]

Schematic of a DESI solid-liquid extraction ion source: primary charged droplets hit the sample surface and molecules are extracted into the liquid. Secondary charged droplets removed from the surface produce bare ions as the solvent evaporates.

Solid-liquid extraction based ambient ionization is based on the use of a charged spray, for example electrospray to create a liquid film on the sample surface.[3][6] Molecules on the surface are extracted into the solvent. The action of the primary droplets hitting the surface produces secondary droplets that are the source of ions for the mass spectrometer.

Desorption electrospray ionization (DESI) is one of the original ambient ionization sources[7] and uses an electrospray source to create charged droplets that are directed at a solid sample. The charged droplets pick up the sample through interaction with the surface and then form highly charged ions that can be sampled into a mass spectrometer.[8]

Desorption atmospheric pressure photoionization (DAPPI) is a solid-liquid extraction ambient ionization method that enables the direct analysis of samples deposited on surfaces by means of a jet of hot solvent vapour and ultraviolet light. The hot jet thermally desorbs the sample from a surface and the vaporized sample is ionized by a vacuum ultraviolet light and consequently sampled into a mass spectrometer.[9]

Plasma-based techniques[edit]

Plasma-based ambient ionization is based on an electrical discharge in a flowing gas that produces metastable atoms and molecules and reactive ions. Heat is often used to assist in the desorption of volatile species from the sample. Ions are formed by chemical ionization in the gas phase.

One proposed mechanism involves Penning ionization of ambient water clusters in a helium discharge:

.

The protonated water clusters can then protonate the sample molecules via

.

For this ionization pathway, the gas-phase acidity of the protonated water clusters and the gas-phase basicity of the analyte molecule are of crucial importance. However, since especially smaller protonated water clusters with n = 1,2,3... exhibit very high gas-phase acidities, even compounds with a rather low gas-phase basicity are readily ionized by proton transfer, yielding [M+H]+ quasimolecular ions.[10][11]

Besides protonated water clusters, other positively charged reagent ions, such as NO+, O2+, NO2+ and CO2+, may be formed in the afterglow region.[10][11][12][13] These additional reagent ions are capable of ionizing compounds via charge-transfer processes and, thus, offer alternative routes of ionization besides proton transfer, leading to a broader range of suitable analytes. Nevertheless, these ionization mechanisms may also lead to the formation of adducts and oxidation of the original analyte compounds.[11]

Although most applications focus on the detection of positive ions, measurements in the negative mode are for most of the plasma-based ion sources also possible. In this case, reagent ions, such as O2, can deprotonate the analyte molecules to give [M–H] quasimolecular ions, or form adducts with species such as NO3, yielding [M+NO3] ions.[11][13] Measurements in the negative ion mode are especially favorable when the analyte molecules exhibit a high gas-phase acidity, as it is the case e.g. for carboxylic acids.

A direct analysis in real time (DART) metastable ion source for plasma based ambient ionization.

One of the most used plasma-based techniques for ambient ionization is probably Direct analysis in real time (DART), since it is commercially available. DART is an atmospheric pressure ion source that operates by exposing the sample to a gas stream (typically helium or nitrogen) that contains long-lived electronically or excited neutral atoms, vibronically excited molecules (or "metastables"). Excited states are formed in a glow discharge in a chamber through which the gas flows.[14]

Laser assisted[edit]

Ion source for ambient mass spectrometry employing a combination of laser desorption and electrospray. The sample target is on the left.

Laser-based ambient ionization is a two-step process in which a pulsed laser is used to desorb or ablate material from a sample and the plume of material interacts with an electrospray or plasma to create ions. Lasers with ultraviolet and infrared wavelengths and nanosecond to femtosecond pulse widths have been used. Although atmospheric pressure MALDI is performed under ambient conditions,[15] it is not generally considered to be an ambient mass spectrometry technique.[16][17]

Laser ablation was first coupled with mass spectrometry in the 1980s for the analysis of metals using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).[18] The laser ablates the sample material that is introduced into an ICP to create atomic ions.

Infrared laser desorption can be coupled with atmospheric pressure chemical ionization using laser desorption atmospheric pressure chemical ionization (LD-APCI).[19] For ambient ionization with a spray, the sample material is deposited on a target near the spray. The laser desorbs or ablates material from the sample that is ejected from the surface and into the spray, which can be an APCI spray with a corona discharge or an electrospray. Ambient ionization by electrospray-assisted laser desorption/ionization (ELDI) can be accomplished with ultraviolet[20] and infrared lasers[21] to the desorb material into the electrospray plume. Similar approaches to laser desorption/ablation into an electrospray are matrix-assisted laser desorption electrospray ionization (MALDESI),[22] laser ablation electrospray ionization (LAESI),[23] laser assisted desorption electrospray ionization (LADESI),[24] laser desorption electrospray ionization (LDESI),[25][26] laser ablation mass spectrometry (LAMS),[27] and laser desorption spray post-ionization (LDSPI).[28] The term laser electrospray mass spectrometry has been used to denote the use of a femtosecond laser for ablation.[29][30] Laser ablation into an electrospray produces highly charged ions that are similar to those observed in direct electrospray.

An alternative ionization approach following laser desorption is a plasma. UV laser ablation can be combined with a flowing afterglow plasma for mass spectrometry imaging of small molecules.[31] and IR desorption has been combined with a metastable ion source.[32]

Two step non-laser[edit]

In two-step non-laser methods, the material removal from the sample and the ionization steps are separate.

Probe electrospray ionization schematic

Probe electrospray ionization (PESI) is a modified version of conventional electrospray ionization in which the capillary for sample solution transferring is replaced by a solid needle with a sharp tip.[33] Compared with conventional electrospray ionization, high salt tolerance, direct sampling, and low sample consumption are found with PESI. PESI is not a continuous process; the needle for sampling and spraying is driven up and down at a frequency of 3–5 Hz.

Table of techniques[edit]

In the table below, ambient ionization techniques are classified in the categories "extraction" (a solid or liquid extraction processes dynamically followed by spray or chemical ionization), "plasma" (thermal or chemical desorption with chemical ionization), "two step" (desorption or ablation followed by ionization), "laser" (laser desorption or ablation followed by ionization), "acoustic" (acoustic desorption followed by ionization), multimode (involving two of the above modes), other (techniques that do not fit into the other categories).[3]

Acronym Technique Classification
AFAI[34] Air flow-assisted ionization Extraction
AFADESI[35] Air flow-assisted desorption electrospray ionization Extraction
APGDDI[36] Atmospheric pressure glow discharge desorption ionization Plasma
APPIS[37] Ambient pressure pyroelectric ion source
APTDCI[38] Atmospheric pressure thermal desorption chemical ionization Two-step
APTDI[39] Atmospheric pressure thermal desorption/ionization Plasma
ASAP[40] Atmospheric pressure solids analysis probe Plasma
BADCI[41] Beta electron-assisted direct chemical ionization Two step
CALDI[42] Charge assisted laser desorption/ionization Laser
DAPCI[43] Desorption atmospheric pressure chemical ionization Plasma
DAPPI[44] Desorption atmospheric pressure photoionization Extraction
DART[45] Direct analysis in real time Plasma
DBDI[46] Dielectric barrier discharge ionization Plasma
DCBI[46] Desorption corona beam ionization Plasma
DCI Desorption chemical ionization Plasma
DEFFI[47] Desorption electro-flow focusing ionization Extraction
DEMI[48] Desorption electrospray/metastable-induced ionization Multimode
DESI[7] Desorption electrospray ionization Extraction
DeSSI[49] Desorption sonic spray ionization Extraction
DICE[50] Desorption ionization by charge exchange Extraction
DIP-APCI[51] Direct inlet probe–atmospheric-pressure chemical ionization Two-step
DPESI[52] Direct probe electrospray ionization
EADESI[53] Electrode-assisted desorption electrospray ionization Extraction
EASI[54] Easy ambient sonic-spray ionization Extraction
EESI[55] Extractive electrospray ionization Two step
ELDI[56] Electrospray laser desorption ionization Laser
ESA-Py[57] Electrospray-assisted pyrolysis ionization Spray
ESTASI[58] Electrostatic spray ionization Extraction
FAPA[12] Flowing atmospheric pressure afterglow Plasma
FIDI[59] Field-induced droplet ionization
HALDI[60] High-voltage-assisted laser desorption ionization Laser
HAPGDI[12] Helium atmospheric pressure glow discharge ionization Plasma
IR-LAMICI[32] Infrared laser ablation metastable-induced chemical ionization Laser
JeDI[61] Jet desorption electrospray ionization Extraction
LADESI[24] Laser assisted desorption electrospray ionization Laser
LAESI[62] Laser ablation electrospray ionization Laser
LA-FAPA[31] Laser ablation flowing atmospheric pressure afterglow Laser
LA-ICP[63] Laser ablation inductively coupled plasma Laser
LD-APCI[19] Laser desorption atmospheric pressure chemical ionization Laser
LDTD[64] Laser diode thermal desorption Laser
LDESI[25][26] Laser desorption electrospray ionization Laser
LDSPI[28] Laser desorption spray post-ionization Laser
LEMS[30] Laser electrospray mass spectrometry Laser
LESA[65] Liquid extraction surface analysis Extraction
LIAD-ESI[66] Laser-induced acoustic desorption-electrospray ionization Acoustic
LMJ-SSP[67] Liquid microjunction-surface sampling probe Extraction
LPTD[68] Leidenfrost phenomenon-assisted thermal desorption Two-step
LS-APGD[69] Liquid sampling-atmospheric pressure glow discharge Plasma
LSI[70] Laser spray ionization Other
LTP[71] Low temperature plasma Plasma
MAII[72] Matrix-assisted inlet ionization Other
MALDESI[73] Matrix-assisted laser desorption electrospray ionization Laser
MFGDP[74] Microfabricated glow discharge plasma Plasma
MIPDI[75] microwave induced plasma desorption ionization Plasma
nano-DESI[76] Nanospray desorption electrospray ionization Extraction
ND-EESI[77] Neutral desorption extractive electrospray ionization Two step
PADI[78] Plasma-assisted desorption ionization Plasma
Paint Spray*[79] Paint spray Extraction
PALDI[80] Plasma-assisted laser desorption ionization Laser
PAMLDI[81] Plasma-assisted multiwavelength laser desorption ionization Laser
PASIT[82] Plasma-based ambient sampling/ionization/transmission Extraction
PAUSI[83] Paper assisted ultrasonic spray ionization
PESI[84] Probe electrospray ionization Two step
PS[85] Paper spray
PTC-ESI[86] Pipette tip column electrospray ionization Extraction
RADIO[87] Radiofrequency acoustic desorption and ionization Acoustic
RASTIR[88] Remote analyte sampling transport and ionization relay
REIMS[89] Rapid evaporative ionization mass spectrometry Other
RoPPI[90] Robotic plasma probe ionization Two-step
SACI[91] Surface activated chemical ionization
SAII[92] Solvent-assisted inlet ionization Other
SAWN[93] Surface acoustic wave nebulization Acoustic
SESI[94] Secondary electrospray ionization
SPA-nanoESI[95] Solid probe assisted nanoelectrospray ionization Two-step
SPAMS[96] Single-particle aerosol mass spectrometry Other
SSP[97] Surface sampling probe Extraction
SwiFerr[98] Switched ferroelectric plasma ionizer Other
TDAMS[99] Thermal desorption-based ambient mass spectrometry Spray
TM-DESI[100] Transmission mode desorption electrospray ionization Extraction
TS[101] Touch spray Two-step
UASI[102] Ultrasonication-assisted spray ionization Acoustic
V-EASI[103] Venturi easy ambient sonic-spray ionization Extraction

(*) Not an acronym.

References[edit]

  1. ^ Domin, Marek; Cody, Robert (2014). Ambient Ionization Mass Spectrometry. RSC (Royal Society of Chemistry). doi:10.1039/9781782628026. ISBN 978-1-84973-926-9. 
  2. ^ Cooks, R. Graham; Ouyang, Zheng; Takats, Zoltan; Wiseman, Justin M. (2006). "Ambient Mass Spectrometry". Science. 311 (5767): 1566–70. Bibcode:2006Sci...311.1566C. doi:10.1126/science.1119426. PMID 16543450. 
  3. ^ a b c Monge, María Eugenia; Harris, Glenn A.; Dwivedi, Prabha; Fernández, Facundo M. (2013). "Mass Spectrometry: Recent Advances in Direct Open Air Surface Sampling/Ionization". Chemical Reviews. 113 (4): 2269–2308. doi:10.1021/cr300309q. ISSN 0009-2665. PMID 23301684. 
  4. ^ Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie (2010). "Ambient Ionization Mass Spectrometry". Annual Review of Analytical Chemistry. 3 (1): 43–65. Bibcode:2010ARAC....3...43H. doi:10.1146/annurev.anchem.111808.073702. ISSN 1936-1327. 
  5. ^ Paine, Martin R. L.; Barker, Philip J.; Blanksby, Stephen J. (15 January 2014). "Ambient ionisation mass spectrometry for the characterisation of polymers and polymer additives: a review". Analytica Chimica Acta. 808: 70–82. doi:10.1016/j.aca.2013.10.001. PMID 24370094. 
  6. ^ Badu-Tawiah, Abraham K.; Eberlin, Livia S.; Ouyang, Zheng; Cooks, R. Graham (2013). "Chemical Aspects of the Extractive Methods of Ambient Ionization Mass Spectrometry". Annual Review of Physical Chemistry. 64 (1): 481–505. Bibcode:2013ARPC...64..481B. doi:10.1146/annurev-physchem-040412-110026. ISSN 0066-426X. 
  7. ^ a b Takats, Z.; Wiseman, J. M.; Gologan, B; Cooks, R. G. (2004). "Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization". Science. 306 (5695): 471–473. Bibcode:2004Sci...306..471T. doi:10.1126/science.1104404. ISSN 0036-8075. PMID 15486296. 
  8. ^ Takáts Z, Wiseman JM, Cooks RG (2005). "Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology". Journal of mass spectrometry : JMS. 40 (10): 1261–75. doi:10.1002/jms.922. PMID 16237663. 
  9. ^ Haapala M, Pól J, Saarela V, Arvola V, Kotiaho T, Ketola RA, Franssila S, Kauppila TJ, Kostiainen R (2007). "Desorption Atmospheric Pressure Photoionization". Anal. Chem. 79 (20): 7867–7872. doi:10.1021/ac071152g. PMID 17803282. 
  10. ^ a b Shelley, Jacob T.; Wiley, Joshua S.; Chan, George C. Y.; Schilling, Gregory D.; Ray, Steven J.; Hieftje, Gary M. (2009-05-01). "Characterization of Direct-Current Atmospheric-Pressure Discharges Useful for Ambient Desorption/Ionization Mass Spectrometry". Journal of the American Society for Mass Spectrometry. 20 (5): 837–844. doi:10.1016/j.jasms.2008.12.020. 
  11. ^ a b c d Brüggemann, Martin; Karu, Einar; Hoffmann, Thorsten (2016-02-01). "Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA–MS". Journal of Mass Spectrometry. 51 (2): 141–149. doi:10.1002/jms.3733. ISSN 1096-9888. 
  12. ^ a b c Andrade, Francisco J.; Shelley, Jacob T.; Wetzel, William C.; Webb, Michael R.; Gamez, Gerardo; Ray, Steven J.; Hieftje, Gary M. (2008). "Atmospheric Pressure Chemical Ionization Source. 1. Ionization of Compounds in the Gas Phase". Analytical Chemistry. 80 (8): 2646–2653. doi:10.1021/ac800156y. ISSN 0003-2700. PMID 18345693. 
  13. ^ a b Gross, Jürgen H. (2013-09-15). "Direct analysis in real time—a critical review on DART-MS". Analytical and Bioanalytical Chemistry. 406 (1): 63–80. doi:10.1007/s00216-013-7316-0. ISSN 1618-2642. 
  14. ^ R.B. Cody; J.A. Laramée; H.D. Durst (2005). "Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions". Anal. Chem. 77 (8): 2297–2302. doi:10.1021/ac050162j. PMID 15828760. 
  15. ^ Laiko, Victor V.; Baldwin, Michael A.; Burlingame, Alma L. (2000). "Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry". Analytical Chemistry. 72 (4): 652–657. doi:10.1021/ac990998k. ISSN 0003-2700. PMID 10701247. 
  16. ^ Ifa, Demian R.; Wu, Chunping; Ouyang, Zheng; Cooks, R. Graham (2010). "Desorption electrospray ionization and other ambient ionization methods: current progress and preview". The Analyst. 135 (4): 669–81. Bibcode:2010Ana...135..669I. doi:10.1039/b925257f. ISSN 0003-2654. PMID 20309441. 
  17. ^ Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R. (2013). "Mass spectrometry imaging under ambient conditions". Mass Spectrometry Reviews. 32 (3): 218–243. doi:10.1002/mas.21360. ISSN 0277-7037. PMC 3530640Freely accessible. PMID 22996621. 
  18. ^ Gray, Alan L. (1985). "Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry". The Analyst. 110 (5): 551. Bibcode:1985Ana...110..551G. doi:10.1039/an9851000551. ISSN 0003-2654. 
  19. ^ a b Coon, Joshua J.; McHale, Kevin J.; Harrison, W. W. (2002). "Atmospheric pressure laser desorption/chemical ionization mass spectrometry: a new ionization method based on existing themes". Rapid Communications in Mass Spectrometry. 16 (7): 681–685. doi:10.1002/rcm.626. ISSN 0951-4198. PMID 11921247. 
  20. ^ Shiea J, Huang MZ, Hsu HJ, Lee CY, Yuan CH, Beech I, Sunner J (2005). "Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids". Rapid Commun. Mass Spectrom. 19 (24): 3701–4. doi:10.1002/rcm.2243. PMID 16299699. 
  21. ^ Peng, Ivory X.; Ogorzalek Loo, Rachel R.; Margalith, Eli; Little, Mark W.; Loo, Joseph A. (2010). "Electrospray-assisted laser desorption ionization mass spectrometry (ELDI-MS) with an infrared laser for characterizing peptides and proteins". The Analyst. 135 (4): 767–72. Bibcode:2010Ana...135..767P. doi:10.1039/b923303b. ISSN 0003-2654. PMC 3006438Freely accessible. PMID 20349541. 
  22. ^ Sampson JS, Hawkridge AM, Muddiman DC (2006). "Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry". J. Am. Soc. Mass Spectrom. 17 (12): 1712–6. doi:10.1016/j.jasms.2006.08.003. PMID 16952462. 
  23. ^ Nemes P, Vertes A (2007). "Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry". Analytical Chemistry. 79 (21): 8098–106. doi:10.1021/ac071181r. PMID 17900146. 
  24. ^ a b Rezenom, Yohannes H.; Dong, Jianan; Murray, Kermit K. (2008). "Infrared laser-assisted desorption electrospray ionization mass spectrometry". The Analyst. 133 (2): 226–32. Bibcode:2008Ana...133..226R. doi:10.1039/b715146b. ISSN 0003-2654. PMID 18227946. 
  25. ^ a b Sampson, Jason S.; Muddiman, David C. (2009). "Atmospheric pressure infrared (10.6 µm) laser desorption electrospray ionization (IR‐LDESI) coupled to a LTQ Fourier transform ion cyclotron resonance mass spectrometer". Rapid Communications in Mass Spectrometry. 23 (13): 1989–1992. doi:10.1002/rcm.4113. ISSN 0951-4198. PMID 19504481. 
  26. ^ a b Berisha, Arton; Dold, Sebastian; Guenther, Sabine; Desbenoit, Nicolas; Takats, Zoltan; Spengler, Bernhard; Römpp, Andreas (2014). "A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods". Rapid Communications in Mass Spectrometry. 28 (16): 1779–1791. doi:10.1002/rcm.6960. ISSN 0951-4198. 
  27. ^ Jorabchi, Kaveh; Smith, Lloyd M. (2009). "Single Droplet Separations and Surface Partition Coefficient Measurements Using Laser Ablation Mass Spectrometry". Analytical Chemistry. 81 (23): 9682–9688. doi:10.1021/ac901819r. ISSN 0003-2700. PMC 2911232Freely accessible. PMID 19886638. 
  28. ^ a b Liu, Jia; Qiu, Bo; Luo, Hai (2010). "Fingerprinting of yogurt products by laser desorption spray post-ionization mass spectrometry". Rapid Communications in Mass Spectrometry. 24 (9): 1365–1370. doi:10.1002/rcm.4527. ISSN 0951-4198. PMID 20391610. 
  29. ^ Flanigan, P.; Levis, R. (2014). "Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry". Annual Review of Analytical Chemistry. 7: 229–256. Bibcode:2014ARAC....7..229F. doi:10.1146/annurev-anchem-071213-020343. PMID 25014343. 
  30. ^ a b Brady, John J.; Judge, Elizabeth J.; Levis, Robert J. (2009). "Mass spectrometry of intact neutral macromolecules using intense non-resonant femtosecond laser vaporization with electrospray post-ionization". Rapid Communications in Mass Spectrometry. 23 (19): 3151–3157. doi:10.1002/rcm.4226. ISSN 0951-4198. PMID 19714710. 
  31. ^ a b Shelley, Jacob T.; Ray, Steven J.; Hieftje, Gary M. (2008). "Laser Ablation Coupled to a Flowing Atmospheric Pressure Afterglow for Ambient Mass Spectral Imaging". Analytical Chemistry. 80 (21): 8308–8313. doi:10.1021/ac801594u. ISSN 0003-2700. PMID 18826246. 
  32. ^ a b Galhena, Asiri S.; Harris, Glenn A.; Nyadong, Leonard; Murray, Kermit K.; Fernández, Facundo M. (2010). "Small Molecule Ambient Mass Spectrometry Imaging by Infrared Laser Ablation Metastable-Induced Chemical Ionization". Analytical Chemistry. 82 (6): 2178–2181. doi:10.1021/ac902905v. ISSN 0003-2700. PMID 20155978. 
  33. ^ PESI was first introduced by Kenzo Hiraoka et al. in 2007 — Hiraoka K.; Nishidate K.; Mori K.; Asakawa D.; Suzuki S. (2007). "Development of probe electrospray using a solid needle". Rapid Communications in Mass Spectrometry. 21 (18): 3139–3144. doi:10.1002/rcm.3201. PMID 17708527. 
  34. ^ He, Jiuming; Tang, Fei; Luo, Zhigang; Chen, Yi; Xu, Jing; Zhang, Ruiping; Wang, Xiaohao; Abliz, Zeper (2011). "Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application". Rapid Communications in Mass Spectrometry. 25 (7): 843–850. doi:10.1002/rcm.4920. ISSN 0951-4198. PMID 21416520. 
  35. ^ Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper (2013). "Air Flow-Assisted Ionization Imaging Mass Spectrometry Method for Easy Whole-Body Molecular Imaging under Ambient Conditions". Analytical Chemistry. 85 (5): 2977–2982. doi:10.1021/ac400009s. ISSN 0003-2700. PMID 23384246. 
  36. ^ Jecklin, Matthias Conradin; Gamez, Gerardo; Touboul, David; Zenobi, Renato (2008). "Atmospheric pressure glow discharge desorption mass spectrometry for rapid screening of pesticides in food". Rapid Communications in Mass Spectrometry. 22 (18): 2791–2798. doi:10.1002/rcm.3677. ISSN 0951-4198. PMID 18697232. 
  37. ^ Neidholdt, Evan L.; Beauchamp, J. L. (2007). "Compact Ambient Pressure Pyroelectric Ion Source for Mass Spectrometry". Analytical Chemistry. 79 (10): 3945–3948. doi:10.1021/ac070261s. ISSN 0003-2700. PMID 17432828. 
  38. ^ Corso, Gaetano; D'Apolito, Oceania; Garofalo, Daniela; Paglia, Giuseppe; Dello Russo, Antonio (2011). "Profiling of acylcarnitines and sterols from dried blood or plasma spot by atmospheric pressure thermal desorption chemical ionization (APTDCI) tandem mass spectrometry". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1811 (11): 669–679. doi:10.1016/j.bbalip.2011.05.009. ISSN 1388-1981. 
  39. ^ Chen, Hao; Ouyang, Zheng; Cooks, R. Graham (2006). "Thermal Production and Reactions of Organic Ions at Atmospheric Pressure". Angewandte Chemie International Edition. 45 (22): 3656–3660. doi:10.1002/anie.200600660. ISSN 1433-7851. PMID 16639755. 
  40. ^ McEwen, Charles N.; McKay, Richard G.; Larsen, Barbara S. (2005). "Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments". Analytical Chemistry. 77 (23): 7826–7831. doi:10.1021/ac051470k. ISSN 0003-2700. PMID 16316194. 
  41. ^ Steeb, Jennifer; Galhena, Asiri S.; Nyadong, Leonard; Janata, Jiří; Fernández, Facundo M. (2009). "Beta electron-assisted direct chemical ionization (BADCI) probe for ambient mass spectrometry". Chemical Communications (31): 4699. doi:10.1039/b909072j. ISSN 1359-7345. 
  42. ^ Jorabchi, Kaveh; Westphall, Michael S.; Smith, Lloyd M. (2008). "Charge Assisted Laser Desorption/Ionization Mass Spectrometry of Droplets". Journal of the American Society for Mass Spectrometry. 19 (6): 833–840. doi:10.1016/j.jasms.2008.02.012. ISSN 1044-0305. PMC 2488387Freely accessible. PMID 18387311. 
  43. ^ Takats, Zoltan; Cotte-Rodriguez, Ismael; Talaty, Nari; Chen, Huanwen; Cooks, R. Graham (2005). "Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry". Chemical Communications (15): 1950. doi:10.1039/b418697d. ISSN 1359-7345. 
  44. ^ Haapala, Markus; Pól, Jaroslav; Saarela, Ville; Arvola, Ville; Kotiaho, Tapio; Ketola, Raimo A.; Franssila, Sami; Kauppila, Tiina J.; Kostiainen, Risto (2007). "Desorption Atmospheric Pressure Photoionization". Analytical Chemistry. 79 (20): 7867–7872. doi:10.1021/ac071152g. ISSN 0003-2700. PMID 17803282. 
  45. ^ Cody, Robert B.; Laramée, James A.; Durst, H. Dupont (2005). "Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions". Analytical Chemistry. 77 (8): 2297–2302. doi:10.1021/ac050162j. ISSN 0003-2700. PMID 15828760. 
  46. ^ a b Na, Na; Zhao, Mengxia; Zhang, Sichun; Yang, Chengdui; Zhang, Xinrong (2007). "Development of a dielectric barrier discharge ion source for ambient mass spectrometry". Journal of the American Society for Mass Spectrometry. 18 (10): 1859–1862. doi:10.1016/j.jasms.2007.07.027. ISSN 1044-0305. PMID 17728138. 
  47. ^ Forbes, Thomas P.; Brewer, Tim M.; Gillen, Greg (2013). "Desorption electro-flow focusing ionization of explosives and narcotics for ambient pressure mass spectrometry". The Analyst. 138 (19): 5665–73. Bibcode:2013Ana...138.5665F. doi:10.1039/c3an01164j. ISSN 0003-2654. PMID 23923127. 
  48. ^ Nyadong, Leonard; Galhena, Asiri S.; Fernández, Facundo M. (2009). "Desorption Electrospray/Metastable-Induced Ionization: A Flexible Multimode Ambient Ion Generation Technique". Analytical Chemistry. 81 (18): 7788–7794. doi:10.1021/ac9014098. ISSN 0003-2700. PMID 19689156. 
  49. ^ Haddad, Renato; Sparrapan, Regina; Eberlin, Marcos N. (2006). "Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry". Rapid Communications in Mass Spectrometry. 20 (19): 2901–2905. doi:10.1002/rcm.2680. ISSN 0951-4198. PMID 16941547. 
  50. ^ Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B. (2010). "Desorption ionization by charge exchange (DICE) for sample analysis under ambient conditions by mass spectrometry". Journal of the American Society for Mass Spectrometry. 21 (9): 1554–1560. doi:10.1016/j.jasms.2010.04.020. ISSN 1044-0305. PMID 20542709. 
  51. ^ Krieger, Sonja; Hayen, Heiko; Schmitz, Oliver J. (2013). "Quantification of coumarin in cinnamon and woodruff beverages using DIP-APCI-MS and LC-MS". Analytical and Bioanalytical Chemistry. 405 (25): 8337–8345. doi:10.1007/s00216-013-7238-x. ISSN 1618-2642. PMID 23912829. 
  52. ^ Jeng, Jingyueh; Lin, Che-Hsin; Shiea, Jentaie (2005). "Electrospray from Nanostructured Tungsten Oxide Surfaces with Ultralow Sample Volume". Analytical Chemistry. 77 (24): 8170–8173. doi:10.1021/ac0512960. ISSN 0003-2700. PMID 16351172. 
  53. ^ Özdemir, Abdil; Chen, Chung-Hsuan (2010). "Electrode-assisted desorption electrospray ionization mass spectrometry". Journal of Mass Spectrometry. 45 (10): 1203–1211. doi:10.1002/jms.1815. ISSN 1076-5174. PMID 20857387. 
  54. ^ Haddad, Renato; Sparrapan, Regina; Kotiaho, Tapio; Eberlin, Marcos N. (2008). "Easy Ambient Sonic-Spray Ionization-Membrane Interface Mass Spectrometry for Direct Analysis of Solution Constituents". Analytical Chemistry. 80 (3): 898–903. doi:10.1021/ac701960q. ISSN 0003-2700. PMID 18179250. 
  55. ^ Chen, Huanwen; Venter, Andre; Cooks, R. Graham (2006). "Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation". Chemical Communications (19): 2042. doi:10.1039/b602614a. ISSN 1359-7345. 
  56. ^ Huang, Min-Zong; Hsu, Hsiu-Jung; Wu, Chen-I; Lin, Shu-Yao; Ma, Ya-Lin; Cheng, Tian-Lu; Shiea, Jentaie (2007). "Characterization of the chemical components on the surface of different solids with electrospray-assisted laser desorption ionization mass spectrometry". Rapid Communications in Mass Spectrometry. 21 (11): 1767–1775. doi:10.1002/rcm.3011. ISSN 0951-4198. PMID 17479981. 
  57. ^ Hsu, Hsiu-Jung; Kuo, Tseng-Long; Wu, Shu-Huey; Oung, Jung-Nan; Shiea, Jentaie (2005). "Characterization of Synthetic Polymers by Electrospray-Assisted Pyrolysis Ionization-Mass Spectrometry". Analytical Chemistry. 77 (23): 7744–7749. doi:10.1021/ac051116m. ISSN 0003-2700. PMID 16316184. 
  58. ^ Qiao, Liang; Tobolkina, Elena; Lesch, Andreas; Bondarenko, Alexandra; Zhong, Xiaoqin; Liu, Baohong; Pick, Horst; Vogel, Horst; Girault, Hubert H. (2014). "Electrostatic Spray Ionization Mass Spectrometry Imaging". Analytical Chemistry. 86 (4): 2033–2041. doi:10.1021/ac4031779. ISSN 0003-2700. PMID 24446793. 
  59. ^ Grimm, Ronald L.; Beauchamp, J. L. (2003). "Field-Induced Droplet Ionization Mass Spectrometry". The Journal of Physical Chemistry B. 107 (51): 14161–14163. doi:10.1021/jp037099r. ISSN 1520-6106. 
  60. ^ Ren, Xinxin; Liu, Jia; Zhang, Chengsen; Luo, Hai (2013). "Direct analysis of samples under ambient condition by high-voltage-assisted laser desorption ionization mass spectrometry in both positive and negative ion mode". Rapid Communications in Mass Spectrometry. 27 (5): 613–620. doi:10.1002/rcm.6499. ISSN 0951-4198. PMID 23413220. 
  61. ^ Van Berkel, Gary J.; Pasilis, Sofie P.; Ovchinnikova, Olga (2008). "Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry". Journal of Mass Spectrometry. 43 (9): 1161–1180. doi:10.1002/jms.1440. ISSN 1076-5174. PMID 18671242. 
  62. ^ Nemes, Peter; Vertes, Akos (2007). "Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry". Analytical Chemistry. 79 (21): 8098–8106. doi:10.1021/ac071181r. ISSN 0003-2700. PMID 17900146. 
  63. ^ K. Janssens; R. Van Grieken (26 November 2004). Non-destructive Micro Analysis of Cultural Heritage Materials. Elsevier. pp. 313–. ISBN 978-0-08-045442-9. 
  64. ^ Wu, Jin; Hughes, Christopher S.; Picard, Pierre; Letarte, Sylvain; Gaudreault, Mireille; Lévesque, Jean-François; Nicoll-Griffith, Deborah A.; Bateman, Kevin P. (2007). "High-Throughput Cytochrome P450 Inhibition Assays Using Laser Diode Thermal Desorption-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry". Analytical Chemistry. 79 (12): 4657–4665. doi:10.1021/ac070221o. ISSN 0003-2700. PMID 17497828. 
  65. ^ "LESA – A New Mass Spectrometry-based Surface Analysis Technique Using the TriVersa NanoMate". Retrieved 2014-07-20. 
  66. ^ Cheng, Sy-Chyi; Cheng, Tain-Lu; Chang, Hui-Chiu; Shiea, Jentaie (2009). "Using Laser-Induced Acoustic Desorption/Electrospray Ionization Mass Spectrometry To Characterize Small Organic and Large Biological Compounds in the Solid State and in Solution Under Ambient Conditions". Analytical Chemistry. 81 (3): 868–874. doi:10.1021/ac800896y. ISSN 0003-2700. PMID 19178334. 
  67. ^ Van Berkel, Gary J.; Kertesz, Vilmos; King, Richard C. (2009). "High-Throughput Mode Liquid Microjunction Surface Sampling Probe". Analytical Chemistry. 81 (16): 7096–7101. doi:10.1021/ac901098d. ISSN 0003-2700. PMID 19606841. 
  68. ^ Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo (2013). "Leidenfrost Phenomenon-assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry". Journal of the American Society for Mass Spectrometry. 24 (3): 341–347. Bibcode:2013JASMS..24..341S. doi:10.1007/s13361-012-0564-y. ISSN 1044-0305. PMID 23423791. 
  69. ^ Quarles, C. Derrick; Carado, Anthony J.; Barinaga, Charles J.; Koppenaal, David W.; Marcus, R. Kenneth (2011). "Liquid sampling–atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit". Analytical and Bioanalytical Chemistry. 402 (1): 261–268. doi:10.1007/s00216-011-5359-7. ISSN 1618-2642. PMID 21910014. 
  70. ^ Trimpin, S.; Inutan, E. D.; Herath, T. N.; McEwen, C. N. (2009). "Laserspray Ionization, a New Atmospheric Pressure MALDI Method for Producing Highly Charged Gas-phase Ions of Peptides and Proteins Directly from Solid Solutions". Molecular & Cellular Proteomics. 9 (2): 362–367. doi:10.1074/mcp.M900527-MCP200. ISSN 1535-9476. PMC 2830846Freely accessible. PMID 19955086. 
  71. ^ Harper, Jason D.; Charipar, Nicholas A.; Mulligan, Christopher C.; Zhang, Xinrong; Cooks, R. Graham; Ouyang, Zheng (2008). "Low-Temperature Plasma Probe for Ambient Desorption Ionization". Analytical Chemistry. 80 (23): 9097–9104. doi:10.1021/ac801641a. ISSN 0003-2700. PMID 19551980. 
  72. ^ McEwen, Charles N.; Pagnotti, Vincent S.; Inutan, Ellen D.; Trimpin, Sarah (2010). "New Paradigm in Ionization: Multiply Charged Ion Formation from a Solid Matrix without a Laser or Voltage". Analytical Chemistry. 82 (22): 9164–9168. doi:10.1021/ac102339y. ISSN 0003-2700. PMID 20973512. 
  73. ^ Sampson, Jason S.; Hawkridge, Adam M.; Muddiman, David C. (2006). "Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) fourier transform ion cyclotron resonance mass spectrometry". Journal of the American Society for Mass Spectrometry. 17 (12): 1712–1716. doi:10.1016/j.jasms.2006.08.003. ISSN 1044-0305. PMID 16952462. 
  74. ^ Wang, Bo; Ding, Xuelu; Zhao, Zhongjun; Duan, Yixiang (2014). "Method development for directly screening pesticide residues in foodstuffs using ambient microfabricated glow discharge plasma (MFGDP) desorption/ionization mass spectrometry". International Journal of Mass Spectrometry. 377: 507–514. Bibcode:2015IJMSp.377..507W. doi:10.1016/j.ijms.2014.05.018. ISSN 1387-3806. 
  75. ^ Zhan, Xuefang; Zhao, Zhongjun; Yuan, Xin; Wang, Qihui; Li, Dandan; Xie, Hong; Li, Xuemei; Zhou, Meigui; Duan, Yixiang (2013). "Microwave-Induced Plasma Desorption/Ionization Source for Ambient Mass Spectrometry". Analytical Chemistry. 85 (9): 4512–4519. doi:10.1021/ac400296v. ISSN 0003-2700. PMID 23534913. 
  76. ^ Roach, Patrick J.; Laskin, Julia; Laskin, Alexander (2010). "Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry". The Analyst. 135 (9): 2233–6. Bibcode:2010Ana...135.2233R. doi:10.1039/c0an00312c. ISSN 0003-2654. PMID 20593081. 
  77. ^ Chen, Huanwen; Wortmann, Arno; Zenobi, Renato (2007). "Neutral desorption sampling coupled to extractive electrospray ionization mass spectrometry for rapid differentiation of biosamples by metabolomic fingerprinting". Journal of Mass Spectrometry. 42 (9): 1123–1135. doi:10.1002/jms.1282. ISSN 1076-5174. PMID 17721903. 
  78. ^ Ratcliffe, Lucy V.; Rutten, Frank J. M.; Barrett, David A.; Whitmore, Terry; Seymour, David; Greenwood, Claire; Aranda-Gonzalvo, Yolanda; Robinson, Steven; McCoustra, Martin (2007). "Surface Analysis under Ambient Conditions Using Plasma-Assisted Desorption/Ionization Mass Spectrometry". Analytical Chemistry. 79 (16): 6094–6101. doi:10.1021/ac070109q. ISSN 0003-2700. PMID 17628043. 
  79. ^ Paine, Martin R. L.; Barker, Philip J.; Blanksby, Stephen J. (2012). "Paint Spray Mass Spectrometry for the Detection of Additives from Polymers on Conducting Surfaces". Mass Spectrometry Letters. 3 (1): 25–28. doi:10.5478/MSL.2012.3.1.025. 
  80. ^ Feng, Baosheng; Zhang, Jialing; Chang, Cuilan; Li, Liping; Li, Min; Xiong, Xingchuang; Guo, Chengan; Tang, Fei; Bai, Yu; Liu, Huwei (2014). "Ambient Mass Spectrometry Imaging: Plasma Assisted Laser Desorption Ionization Mass Spectrometry Imaging and Its Applications". Analytical Chemistry. 86 (9): 4164–4169. doi:10.1021/ac403310k. ISSN 0003-2700. PMID 24670045. 
  81. ^ Zhang, Jialing; Zhou, Zhigui; Yang, Jianwang; Zhang, Wei; Bai, Yu; Liu, Huwei (2012). "Thin Layer Chromatography/Plasma Assisted Multiwavelength Laser Desorption Ionization Mass Spectrometry for Facile Separation and Selective Identification of Low Molecular Weight Compounds". Analytical Chemistry. 84 (3): 1496–1503. doi:10.1021/ac202732y. ISSN 0003-2700. PMID 22243032. 
  82. ^ Zhou, Yueming; Zhang, Ning; Li, Yafeng; Xiong, Caiqiao; Chen, Suming; Chen, Yongtai; Nie, Zongxiu (2014). "Plasma-based ambient sampling/ionization/transmission integrated source for mass spectrometry". The Analyst. 139 (21): 5387–92. Bibcode:2014Ana...139.5387Z. doi:10.1039/C4AN00979G. ISSN 0003-2654. PMID 25147876. 
  83. ^ Zhu, Hongying; Li, Gongyu; Huang, Guangming (2014). "Screening of Complicated Matrixes with Paper Assisted Ultrasonic Spray Ionization Mass Spectrometry". Journal of the American Society for Mass Spectrometry. 25 (6): 935–942. Bibcode:2014JASMS..25..935Z. doi:10.1007/s13361-014-0862-7. ISSN 1044-0305. PMID 24664810. 
  84. ^ Hiraoka, Kenzo; Nishidate, Kentaro; Mori, Kunihiko; Asakawa, Daiki; Suzuki, Shigeo (2007). "Development of probe electrospray using a solid needle". Rapid Communications in Mass Spectrometry. 21 (18): 3139–3144. doi:10.1002/rcm.3201. ISSN 0951-4198. PMID 17708527. 
  85. ^ Liu, Jiangjiang; Wang, He; Manicke, Nicholas E.; Lin, Jin-Ming; Cooks, R. Graham; Ouyang, Zheng (2010). "Development, Characterization, and Application of Paper Spray Ionization". Analytical Chemistry. 82 (6): 2463–2471. doi:10.1021/ac902854g. ISSN 0003-2700. PMID 20158226. 
  86. ^ Huang, Yun-Qing; You, Jin-Qing; Yuan, Bi-Feng; Feng, Yu-Qi (2012). "Sample preparation and direct electrospray ionization on a tip column for rapid mass spectrometry analysis of complex samples". The Analyst. 137 (19): 4593–7. Bibcode:2012Ana...137.4593H. doi:10.1039/c2an35856e. ISSN 0003-2654. PMID 22898704. 
  87. ^ Dixon, R. Brent; Sampson, Jason S.; Muddiman, David C. (2009). "Generation of multiply charged peptides and proteins by radio frequency acoustic desorption and ionization for mass spectrometric detection". Journal of the American Society for Mass Spectrometry. 20 (4): 597–600. doi:10.1016/j.jasms.2008.11.024. ISSN 1044-0305. PMID 19112029. 
  88. ^ Dixon, R. Brent; Sampson, Jason S.; Hawkridge, Adam M.; Muddiman, David C. (2008). "Ambient Aerodynamic Ionization Source for Remote Analyte Sampling and Mass Spectrometric Analysis". Analytical Chemistry. 80 (13): 5266–5271. doi:10.1021/ac800289f. ISSN 0003-2700. PMID 18529018. 
  89. ^ Schäfer, Karl-Christian; Dénes, Júlia; Albrecht, Katalin; Szaniszló, Tamás; Balog, Júlia; Skoumal, Réka; Katona, Mária; Tóth, Miklós; Balogh, Lajos; Takáts, Zoltán (2009). "In Vivo, In Situ Tissue Analysis Using Rapid Evaporative Ionization Mass Spectrometry". Angewandte Chemie International Edition. 48 (44): 8240–8242. doi:10.1002/anie.200902546. ISSN 1433-7851. 
  90. ^ Bennett, Rachel V.; Morzan, Ezequiel M.; Huckaby, Jacob O.; Monge, María Eugenia; Christensen, Henrick I.; Fernández, Facundo M. (2014). "Robotic plasma probe ionization mass spectrometry (RoPPI-MS) of non-planar surfaces". The Analyst. 139 (11): 2658–62. Bibcode:2014Ana...139.2658B. doi:10.1039/c4an00277f. ISSN 0003-2654. PMID 24603806. 
  91. ^ Crotti, Sara; Traldi, Pietro (2009). "Aspects of the Role of Surfaces in Ionization Processes". Combinatorial Chemistry & High Throughput Screening. 12 (2): 125–136. doi:10.2174/138620709787315427. ISSN 1386-2073. 
  92. ^ Pagnotti, Vincent S.; Inutan, Ellen D.; Marshall, Darrell D.; McEwen, Charles N.; Trimpin, Sarah (2011). "Inlet Ionization: A New Highly Sensitive Approach for Liquid Chromatography/Mass Spectrometry of Small and Large Molecules". Analytical Chemistry. 83 (20): 7591–7594. doi:10.1021/ac201982r. ISSN 0003-2700. PMID 21899326. 
  93. ^ Heron, Scott R.; Wilson, Rab; Shaffer, Scott A.; Goodlett, David R.; Cooper, Jonathan M. (2010). "Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry". Analytical Chemistry. 82 (10): 3985–3989. doi:10.1021/ac100372c. ISSN 0003-2700. PMC 3073871Freely accessible. PMID 20364823. 
  94. ^ Wu, Ching; Siems, William F.; Hill, Herbert H. (2000). "Secondary Electrospray Ionization Ion Mobility Spectrometry/Mass Spectrometry of Illicit Drugs". Analytical Chemistry. 72 (2): 396–403. doi:10.1021/ac9907235. ISSN 0003-2700. PMID 10658336. 
  95. ^ Mandal, Mridul Kanti; Yoshimura, Kentaro; Saha, Subhrakanti; Ninomiya, Satoshi; Rahman, Md. Obaidur; Yu, Zhan; Chen, Lee Chuin; Shida, Yasuo; Takeda, Sen; Nonami, Hiroshi; Hiraoka, Kenzo (2012). "Solid probe assisted nanoelectrospray ionization mass spectrometry for biological tissue diagnostics". The Analyst. 137 (20): 4658–61. Bibcode:2012Ana...137.4658M. doi:10.1039/c2an36006c. ISSN 0003-2654. PMID 22937532. 
  96. ^ Martin, Audrey N.; Farquar, George R.; Steele, Paul T.; Jones, A. Daniel; Frank, Matthias (2009). "Use of Single Particle Aerosol Mass Spectrometry for the Automated Nondestructive Identification of Drugs in Multicomponent Samples". Analytical Chemistry. 81 (22): 9336–9342. doi:10.1021/ac901208h. ISSN 0003-2700. PMID 19842633. 
  97. ^ Van Berkel, Gary J.; Sanchez, Amaury D.; Quirke, J. Martin E. (2002). "Thin-Layer Chromatography and Electrospray Mass Spectrometry Coupled Using a Surface Sampling Probe". Analytical Chemistry. 74 (24): 6216–6223. doi:10.1021/ac020540. ISSN 0003-2700. PMID 12510741. 
  98. ^ Neidholdt, Evan L.; Beauchamp, J. L. (2011). "Switched Ferroelectric Plasma Ionizer (SwiFerr) for Ambient Mass Spectrometry". Analytical Chemistry. 83 (1): 38–43. doi:10.1021/ac1013833. ISSN 0003-2700. PMID 21128617. 
  99. ^ Lin, Jia-Yi; Chen, Tsung-Yi; Chen, Jen-Yi; Chen, Yu-Chie (2010). "Multilayer gold nanoparticle-assisted thermal desorption ambient mass spectrometry for the analysis of small organics". The Analyst. 135 (10): 2668–75. Bibcode:2010Ana...135.2668L. doi:10.1039/c0an00157k. ISSN 0003-2654. PMID 20721383. 
  100. ^ Chipuk, Joseph E.; Brodbelt, Jennifer S. (2008). "Transmission mode desorption electrospray ionization". Journal of the American Society for Mass Spectrometry. 19 (11): 1612–1620. doi:10.1016/j.jasms.2008.07.002. ISSN 1044-0305. PMID 18684639. 
  101. ^ Kerian, Kevin S.; Jarmusch, Alan K.; Cooks, R. Graham (2014). "Touch spray mass spectrometry for in situ analysis of complex samples". The Analyst. 139 (11): 2714–20. Bibcode:2014Ana...139.2714K. doi:10.1039/c4an00548a. ISSN 0003-2654. PMC 4063212Freely accessible. PMID 24756256. 
  102. ^ Chen, Tsung-Yi; Chao, Chin-Sheng; Mong, Kwok-Kong Tony; Chen, Yu-Chie (2010). "Ultrasonication-assisted spray ionization mass spectrometry for on-line monitoring of organic reactions". Chemical Communications. 46 (44): 8347–9. doi:10.1039/c0cc02629h. ISSN 1359-7345. PMID 20957254. 
  103. ^ Santos, Vanessa G.; Regiani, Thaís; Dias, Fernanda F. G.; Romão, Wanderson; Jara, Jose Luis Paz; Klitzke, Clécio F.; Coelho, Fernando; Eberlin, Marcos N. (2011). "Venturi Easy Ambient Sonic-Spray Ionization". Analytical Chemistry. 83 (4): 1375–1380. doi:10.1021/ac102765z. ISSN 0003-2700. PMID 21235233.