Jump to content

Burmese pythons in Florida

From Wikipedia, the free encyclopedia
Range of Burmese pythons in 2007

Burmese pythons (Python bivittatus) are native to Southeast Asia. However, since the end of the 20th century, they have become an established breeding population in South Florida. The earliest python sightings in Florida date back to the 1930s and although Burmese pythons were first sighted in Everglades National Park in the 1990s, they were not officially recognized as a reproducing population until 2000.[1] Since then, the number of python sightings has exponentially increased with over 30,000 sightings from 2008 to 2010.

Burmese pythons prey on a wide variety of birds, mammals, and crocodilian species occupying the Everglades. Pronounced declines in several mammalian species have coincided spatially and temporally with the proliferation of pythons in South Florida, indicating the already devastating impacts upon native animals.[2] The importation of Burmese pythons was banned in the United States in January 2012 by the U.S. Department of the Interior.

Introduction

[edit]

Burmese pythons were introduced to Florida in the 1970s as part of the exotic pet trade. Many owners who found it challenging to care for these snakes released them into the wild. Then, in 1992, hurricane Andrew destroyed a python breeding center which resulted in hundreds more snakes being let loose. [3]

Invasive impact

[edit]
An American alligator and a Burmese python in Everglades National Park struggling in lock

Burmese pythons in the state of Florida are classified as an invasive species. They disrupt the ecosystem by preying on native species, outcompeting native species for food or other resources, and/or disrupting the physical nature of the environment. They are comparable in size or even larger than adult native snake species and quickly reach sizes that reduce their vulnerability to predation. The native American alligator (Alligator mississippiensis) is known to be both the prey, predator and competitor of the serpent, depending upon size of individuals.[4][5][6] Bobcats (Lynx rufus) have also been observed raiding python nests for eggs.[7]

Burmese python coiled in the grass in the Everglades.

The high reproductive potential, rapid sexual development, and longevity of Burmese pythons results in difficulty controlling the population through removal of individuals. A typical female breeds every other year, produces a clutch of between 20 and 50 eggs, and can live for 20 years or more.

Additionally, as predators and dietary generalists, Burmese pythons target a wide array of taxonomic groups.[8] Thus, they are not dependent upon a specific prey species. The flexible dietary requirements of Burmese pythons enable them to survive for long periods of time without food, but when prey is readily available, they will eat regularly.[9] Consequently, Burmese pythons pose a great threat to wildlife, especially mid-sized mammals.

Severe declines in mammalian populations across the Everglades may be tied to the proliferation of pythons.[10][11] Comparisons of road surveys conducted in 1996–1997 (prior to proliferation) and 2003–2011 (after proliferation) indicated declines from 88% to 100% in the frequency of raccoon, opossum, bobcat, rabbit, fox, and other mammalian species sightings.[10] These declines were concordant with the spatial geography of python spread. Most of these species are well known to have increased in numbers following human disturbance, however.

Smaller declines were observed where pythons were only recently documented and the greatest mammalian abundances were observed outside of the python's current range.[10] Burmese pythons were the dominant predator of reintroduced marsh rabbits (Sylvilagus palustris) in Everglades National Park, and predation by pythons extirpated the rabbit population in less than 11 months.[12] The overall extent to which the greatly reduced mammalian populations will disrupt the complex food web of the Everglades by indirectly affecting other native species, however, is unclear.

In the Everglades

[edit]
A Burmese python captured in Everglades National Park

The Everglades is a region of tropical wetlands comprising the lower third of the Florida peninsula. Only 25% of the original Everglades remains, protected within Everglades National Park. The climate of South Florida and the location of the Everglades, surrounded by a metropolitan area to the east, Naples to the west, and Florida Bay to the south, make it particularly vulnerable to infestations of exotic species. Miami, in particular, is the hub for trade in exotic pets within the United States. Although the exact origin of Burmese pythons in the Everglades is unknown, it is likely that many were once pets released by owners who found them too difficult to care for.[9] However, the majority of experts concur that the python population grew particularly after Hurricane Andrew. The category 5 storm destroyed a python breeding facility, which released numerous snakes into the adjacent swamps.[13] An evaluation of the genetic structure of Burmese pythons sampled from Everglades National Park determined that the population is genetically distinct from pythons sampled in their native range, but within the Everglades population, there is little genetic diversity.

In 2001, the United States Geological Survey began a 10-year period analysis of 400 pythons captured in the Everglades.[14] The survey discovered that there existed a tangled genetic tree between these captured snakes, and that hybrid pythons were manifesting within the Everglades.[15][14] Thirteen out of the 400 pythons analyzed had genetic signatures of the Indian rock python within their DNA.[16] Indian rock pythons are a smaller and faster species than the Burmese python.[14]

Estimating the population of Burmese pythons in the Everglades is challenging because of the secretive nature of this species and the limited ability to conduct traditional mark-recapture assessments.[17] Namely, it is counterintuitive to the primary goal of python removal to return captured pythons to the wild.

Furthermore, the low detectability of pythons means that even if mark-recapture studies could be conducted, they would require a greater research effort than is currently possible. Pythons spend a majority of their day in hiding, whether in burrows or aquatic habitats, and one study indicated that even seasoned herpetologists showed only a 1% efficacy in detecting pythons housed in a seminatural environment.[18] Consequently, estimates of python populations range from at least 30,000 to more than 300,000.[19]

Spatial ecology

[edit]

Several attempts have been made at better understanding the spatial ecology of Burmese pythons in the Everglades, including capture analysis and radio telemetry studies. Since the recognition of the breeding population of pythons, researchers have made an effort to note the capture history (date, location, and time) as well as characteristics (mass, length, sex, reproduction condition, and gut contents) of each animal to better characterize the python's activity patterns, spread, and ecology.[20][19] More than 2,000 pythons have been captured since 2005, including hatchling pythons, gravid females, and adults in excess of 17 ft 6 in (5.3 m) in total length.[9] Gut analyses indicate that captured pythons consume nearly any bird, mammal, or alligator found in the Everglades,[4] including nationally endangered Key Largo woodrats (Neotoma floridana smalli) and wood storks (Mycteria americana).[21][20]

Radio telemetry includes the use of small, surgically implanted radiotransmitters to track the movement patterns of captured and released animals over extended periods of time.[22] A 2014 study suggests that Burmese pythons have navigational map and compass senses.[23] In contrast to previous research that documented the poor navigational abilities of terrestrial snakes, the movement behavior of the Burmese python seems to be nonrandom. The movements of 12 adult Burmese pythons in Everglades National Park were tracked after they were translocated from their initial locations. Five of the six snakes that were displaced 21–36 kilometres (13–22 mi) from their capture sites displayed oriented movement by returning to within 5 kilometres (3 mi) of their original location. This homing ability of the Burmese python is therefore an additional factor that must be considered in predictions of the future range of the python within the southern US and the management of the current population within South Florida.[23]

They have carried Raillietiella orientalis (a pentastome parasitic disease) with them from SE Asia. Other reptiles in Florida have become infested and the parasite appears to have become endemic.[24]

Risk assessment

[edit]

One of the most contentious issues related to the Burmese python population in Florida is the potential spread to other areas of the southern United States. A potential limitation to a species's habitat range is climate. In February 2008, USGS scientists published a projected range map for the US, based on average climate data of the snake's home range and global warming projections, which predicted that by the end of the 21st century, these snakes could migrate to and flourish in as much as a third of the continental United States, including three of the country's coasts.[25] Numerous climate matching models have indicated that most of Florida and vast portions of the coast of the rest of Southeastern United States provide hospitable habitats for Burmese pythons.[26][27][28] The original model takes into account only the fundamental climate space of the python and thus disregards other factors that could limit python spread.[26] Furthermore, most of the data set was obtained from localities outside of the Burmese python's native range.[29]

However, a subsequent study produced a map incorporating both climatic extremes and averages which projected that the Burmese python's range as limited to southern Florida and extreme south Texas,[30] though this projection was criticized in an unsigned Axcess News article as not having been peer-reviewed.[31] Burmese pythons kept throughout winter in an experimental enclosure in South Carolina all died during the study, apparently because they could not properly acclimate to the cold, but most survived extended periods at temperatures below those typical of southern Florida. The report concluded, "Regarding areas of putative suitability and potential expansion within the United States, we find, remarkably, that the area in which the snakes are known to have colonized (south Florida) is essentially the only region where the climatic conditions are suitable for the pythons. Almost no potential for further continental expansion is predicted based on the results from the ecological niche models".[32]

In contrast to the 2009 proposal, the more conservative niche model identifies regions of suitable climate in South Florida, extreme southern Texas, and spotty areas across the Central and Southern Americas.[33] However, the use of this model has been criticized for the overfitting of data from excess variables and the misidentification of four Blood pythons as Burmese pythons.[28] A model corrected for these miscalculations showed a greater projected range of Burmese python climate match including nearly all of Florida, much of the lower Coastal Plain of the southeast United States, and southern Texas.[28]

A severe freeze in the southeastern United States during January 2010 provided additional insight into the threat of Burmese python range extension. In the wake of this extended cold spell, several investigators reported dead snakes coiled along canal banks and in outdoor enclosures.[34][35][36] However, numerous snakes survived this cold spell, potentially by using behavioral mechanisms (such as seeking refuge underground). If these behavioral traits are heritable, it is possible that the winter of 2009–2010 served as a selection event for more cold-tolerant pythons. This selected population of pythons would have an enhanced ability to spread northwards and extend the python's invasive range.[9] In addition to behavioral traits, a study in 2018 showed that the surviving pythons showed evidence of:

directional selection in genomic regions enriched for genes associated with thermosensation, behavior, and physiology...several of these genes are linked to regenerative organ growth, an adaptive response that modulates organ size and function with feeding and fasting in pythons.[37]

If these traits continue to be passed on then they would enable pythons to continue digestion during colder periods of time, which would be useful in geographic regions further north.

Data published in 2012[38] contradict the initial USGS study[39] which claimed that non-native Burmese pythons could expand as far north as the southern third of the United States. The Burmese python will remain in the Everglades.[40] Furthermore, other reputable herpetologists have commented on the controversial theory positing future migration past the Florida Everglades. The National Geographic Society's resident herpetologist, Dr. Brady Barr, said, "Climate data reveal that temperatures found in southern Florida simply are not conducive to the long-term survival of large tropical snakes. When it gets cold, these snakes die." Dr. Barr also said "Feral hogs are a bigger problem for the Everglades than pythons. The press has sensationalized this story to the point that people think the sky is falling. Hopefully, comprehensive research such as Jacobson et al. will put an end to the hysteria."[41]

Control

[edit]

Several methods have been proposed to control the thriving Burmese python population in Florida because much of the python's introduced range includes areas inaccessible to humans. Unfortunately, all strategies proposed thus far have resulted in only limited success. For example, numerous people have suggested using dogs to detect pythons. A 2011 assessment of detection dogs as a mode of python removal determined that the success of a dog search team (73%) was not significantly greater when compared to human search teams (69%) in controlled plot searches.[42] Thick vegetation, which can both reduce visibility and hold odors, limited the efficacy of both human and dog searchers within the plots. However, the dog search team was significantly more successful in canal searches (92%) and was capable of covering three times the distance of human searchers.[42] Despite the potential of dog search teams to detect free-ranging pythons, several impracticalities prevent the widespread use of dog search teams, including the danger posed to released dogs in the Everglades, limited efficacy of chemoreceptive cues in the shallow waters of the Everglades, and extensive limestone substrate that would hinder movement.[9] The greater cost of a dog search team as compared to human searchers is an additional consideration.[42] In the second week of December 2020, this program had its first success.[43]

The Burmese python system also poses challenges to trapping efforts. Trapping, a traditional method of snake capture, can include both the use of a device with an inescapable funnel and a drift fence that directs snake movement towards the trap. It is crucial that drift fences are inserted several inches into the ground in order to ensure that snakes cannot bypass them, but the hard limestone foundation of the area would make the construction of adequate drift fences difficult. Additionally, a python moves infrequently because of its predation habits and thus is less likely to crawl into a trap. Finally, the immense area occupied by the Burmese python undermines the utility of extensive trapping. Trapping could be practical on a smaller scale if critical areas were targeted.[9]

Biocontrol, or biological control, of pythons, has also been proposed by several scientists, likely because of the low detectability of pythons. Traditionally, biocontrols use a virus, parasite, or a bacterium that is selective to the target species in order to reduce the population's size.[44] If the pathogen is not species-specific, it could harm other species. Given that biocontrol methods present a nontrivial and somewhat unpredictable risk to the area's delicate ecosystem, additional research and careful deliberation are necessary before such techniques are used. One of the possible ways of biocontrol is reintroduction of native predators. For example, jaguars had lived in Florida during the Pleistocene, but became locally extinct. These big cats can kill and eat large snakes (their diet in South America includes anacondas).

Beyond the scientific community, the use of bounty hunters has received a great deal of support from officials and the media, and although the results have not been very significant in the context of the high estimates of python populations, these conservation efforts have increased awareness of the problem. The 2013 Florida Python Challenge, a month-long event with cash incentives for python removals sponsored by the Florida Fish and Wildlife Conservation Commission, resulted in only 68 total pythons removed by 1,600 registered participants.[45] Another hunt was nonetheless held in 2016, resulting in 106 pythons removed by over 1,000 participants.[46] The challenge returned in 2020 and has since been an annual event over the duration of ten days.[47] Recently, in 2023, it resulted in 209 pythons removed by 1,050 participants.[48]

In 2017, the Florida Water Management District created a permanent team of 50 contracted bounty hunters working alongside another 50 contractors employed under the Florida Fish and Wildlife Conservation Commission.[3]

Some participants in the state-sponsored hunts have had snakeskin products made from the carcasses,[46] but hunting the animals for food is not recommended, as many top level predators of the Everglades have dangerously high levels of mercury through bioaccumulation, the pythons being no exception. Environmental chemist Dr. David Krabbenhoft of the U.S. Geological Survey tested tissue samples from a collection of frozen python tails maintained by scientists at Everglades National Park. Analysis of more than 50 samples yielded up to 3.5 ppm of mercury. The state of Florida considers fish containing more than 1.5 ppm of mercury unsafe to eat.[49][50] However as of December 2020 the FWC is studying mercury levels again in order to make recommendations about what size, age, and location of origin might be safe to eat.[51][52][53] The eggs are edible.[52]

In July 2020, the South Florida Water Management District and the Florida Fish and Wildlife Conservation Commission announced that the 5,000th python had been removed from the Everglades.[54]

Legislation

[edit]

While an effective and practical control method for South Florida's Burmese python population has yet to be proposed, regulatory measures are in place to prevent its further spread. Recently, Florida legislators have also put into place provisions targeted at the release of exotic snakes into the wild. Specifically, in 2008 the Florida Fish and Wildlife Commission instituted regulations requiring permits for boas and pythons greater than 2 inches (51 mm) in diameter as well as PIT tags implanted in the snake's skin for identification purposes.[55] This measure aims to prevent the introduction of snake species such as the Burmese python to other regions beyond South Florida. Further, the United States Department of the Interior placed four additional species of snakes, including the Burmese python, under the Lacey Act provisions.[56] According to these provisions, importation of Burmese pythons to the United States is illegal as of January 2012.

See also

[edit]

References

[edit]
  1. ^ "14 Jun 1937, 3 - Pensacola News Journal at Newspapers.com". Newspapers.com. Retrieved 2022-08-11.
  2. ^ Willson, John D. (2017). "Indirect effects of invasive Burmese pythons on ecosystems in southern Florida". Journal of Applied Ecology. 54 (4): 1251–1258. Bibcode:2017JApEc..54.1251W. doi:10.1111/1365-2664.12844. ISSN 1365-2664.
  3. ^ a b Liles, Lindsey (October 15, 2024). "She's One of Florida's Most Lethal Python Hunters". Garden & Gun. Retrieved October 26, 2024.
  4. ^ a b Nolen, R. S. (2012). "How big is Florida's python problem?". J Am Vet Med Assoc. 240 (7): 778–782. doi:10.2460/javma.240.7.778. PMID 22443430.
  5. ^ Gator-guzzling python comes to messy end. Associated Press (October 5, 2005). Retrieved 2008-03-11.
  6. ^ Butler, Rhett A. (October 5, 2005) Python explodes after swallowing 6-foot alligator in Florida Everglades. Mongabay.com. Retrieved 2008-03-11.
  7. ^ Kaplan, Matt (2022-03-28). "Bobcats With a Taste for Python Eggs Might Be the Guardians of Florida's Swamp". The New York Times. ISSN 0362-4331. Retrieved 2022-03-30.
  8. ^ Reed, Robert N., John D. Willson, Gordon H. Rodda, and Michael E. Dorcas. "Ecological Correlates of Invasion Impact for Burmese Pythons in Florida." Integrative Zoology 7, no. 3 (September 2012): 254–70. doi:10.1111/j.1749-4877.2012.00304.x.
  9. ^ a b c d e f Dorcas, M. E., and J. D. Willson. 2011. Invasive pythons in the United States: ecology of an introduced predator. Athens, GA: University of Georgia Press.
  10. ^ a b c Dorcas, M. E., J. D. Willson, R. N. Reed, R. W. Snow, M. R. Rochford, M. A. Miller, W. E. Mehsaka, Jr., P. T. Andreadis, F. J. Mazzotti, C. M. Romagosa, and K. M. Hart. 2012. "Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park." Proceedings of the National Academy of Sciences 109:2418-2422.
  11. ^ McCleery RA, Sovie A, Reed RN, Cunningham MW, Hunter ME, Hart KM (2015) Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades.PROC B, 282, 1805, in press
  12. ^ McCleery RA, Sovie A, Reed RN, Cunningham MW, Hunter ME, Hart KM (2015) Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades.PROC B, 282, 1805, in press.
  13. ^ "How Burmese Pythons Took Over the Florida Everglades". History. 20 Feb 2020.
  14. ^ a b c Luscombe, Richard (25 August 2018). "Super-snake: hybrid pythons could pose new threat to Florida Everglades". Guardian.
  15. ^ Hunter, Margaret E.; Johnson, Nathan A.; Smith, Brian J.; Davis, Michelle C.; Butterfield, John S. S.; Snow, Ray W.; Hart, Kristen M. (2017-08-02). "Cytonuclear discordance in the Florida Everglades invasive Burmese python (Python bivittatus) population reveals possible hybridization with the Indian python (P. molurus)". Ecology and Evolution. 8 (17): 9034–9047. doi:10.1002/ece3.4423. PMC 6157680. PMID 30271564.
  16. ^ Katz, Brigit (30 August 2018). "Newly Discovered Hybrid Pythons Are Threatening Florida's Wildlife". Smithsonian Magazine.
  17. ^ Dorcas, M. E. and J. D. Willson. 2009. Innovative methods for studies of snake ecology and conservation. In S. J. Mullin and R. A. Seigel (Eds.). Snakes: ecology and conservation. Ithaca, NY: Cornell University Press.
  18. ^ Dorcas, M. E. and J. D. Willson. 2013. Hidden giants: problems associated with studying secretive invasive pythons. In: W. Lutterschmidt (ed.), Reptiles in Research: Investigations of Ecology, Physiology, and Behavior from Desert to Sea. Nova Science Publishers, Inc., Hauppauge, NY.
  19. ^ a b Snow, R. W., K. L. Krysko, K. M. Enge, L. Oberhofer, A. Warren-Bradley, and L. Wilkins. 2007a. "Introduced populations of Boa constrictor (Boidae) and Python molurus bivittatus (Pythonidae) in southern Florida." Pp 416-438. In R. W. Henderson and R. Powell (Eds.). Biology of the Boas and Pythons. Eagle Mountain, UT: Eagle Mountain Press.
  20. ^ a b Dove, C. J., R. W. Snow, M. R. Rochford, and F. J. Mazzotti. 2011. "Birds consumed by the invasive python (Python molurus bivittatus) at Everglades National Park, Florida, USA." The Wilson Journal of Ornithology 123:126-131.
  21. ^ Snow, R. W., Brien, M. L., Cherkiss, M. S., Wilkins, L., and Mazzotti, F. J. 2007b. "Dietary habits of the Burmese python, Python molurus bivittatus, in Everglades National Park, Florida." Herpetological Bulletin 101:5-7.
  22. ^ Reinert, H. K., and D. Cundall. 1982. An improved surgical implantation method for radiotracking snakes. Copeia 1982:702-705.
  23. ^ a b Pittman, S. E., K. M. Hart, M. S. Cherkiss, R. W. Snow, I. Fujisaki, B. J. Smith, F. J. Mazzotti, and M. E. Dorcas. "Homing of Invasive Burmese Pythons in South Florida: Evidence for Map and Compass Senses in Snakes." Biology Letters 10, no. 3 (March 19, 2014): 20140040–20140040. doi:10.1098/rsbl.2014.0040.
  24. ^ Waymer, Jim; Today, Florida (2019-04-11). "Bloodsucking worms in pythons are killing Florida snakes, study says". Florida Today. Retrieved 2021-12-16.
  25. ^ U.S. Department of the Interior, U.S. Geological Survey (2008-02-20). USGS Maps Show Potential Non-Native Python Habitat Along Three U.S. Coasts. www.usgs.gov, last accessed 2008-03-11.
  26. ^ a b Rodda, G. H., C. S. Jarnevich, and R. N. Reed. 2009. What parts of the US mainland are climatically suitable for alien pythons spreading form Everglades National Park? Biological Invasions 11:241-252.
  27. ^ Van Wilgen, N. J., N. Roura-Pascual, and D. M. Richardson. 2009. A quantitative climate-match score for risk-assessment screening of reptile and amphibian introductions. Environmental Management 44:590-607.
  28. ^ a b c Rodda, G. H., C. S. Jarnevich, and R. N. Reed. 2011. Challenges in identifying sites climatically matched to the native ranges of animal invaders. PLoS ONE 6:e14670
  29. ^ Barker, David G., and Tracy M. Barker. "A Discussion of Two Methods of Modeling Suitable Climate for the Burmese Python, Python Bivittatus, with Comments on Rodda, Jarnevich and Reed (2011)." Bull. Chicago Herp. Soc 47, no. 6 (2012): 69–76.
  30. ^ Pyron, RA; Burbrink, FT; Guiher, TJ (2008). "Claims of Potential Expansion throughout the U.S. by Invasive Python Species Are Contradicted by Ecological Niche Models". PLOS ONE. 3 (8): e2931. Bibcode:2008PLoSO...3.2931P. doi:10.1371/journal.pone.0002931. PMC 2490718. PMID 18698351.
  31. ^ Axcess News (2012-03-12). U.S. Fish and Wildlife turn blind eye to science, fact. AXcess Business News, undated, last accessed 2017-02-09, previously accessed 2012-03-12 at a different URL.
  32. ^ Dorcas, M. E.; Willson, J. D.; Gibbons, J. W. (2010). "Can invasive Burmese pythons inhabit temperate regions of the southeastern United States?". Biological Invasions. 13 (4): 793. doi:10.1007/s10530-010-9869-6. S2CID 207096785.
  33. ^ Pyron, R. A., F. T. Burbrink, and T. J. Guiher. 2008. Claims of potential expansion throughout the US by invasive pythons are contradicted by ecological niche models. PLoS One 3:e2931.
  34. ^ Mazzotti, Frank J.; Cherkiss, Michael S.; Hart, Kristen M.; Snow, Ray W.; Rochford, Michael R.; Dorcas, Michael E.; Reed, Robert N. (2010-06-15). "Cold-induced mortality of invasive Burmese pythons in south Florida". Biological Invasions. 13 (1). Springer Science and Business Media LLC: 143–151. doi:10.1007/s10530-010-9797-5. ISSN 1387-3547.
  35. ^ Dorcas, M. E., J. D. Willson, and J. W. Gibbons. 2011. Can invasive Burmese pythons inhabit temperate regions of the southeastern United States. Biological Invasions 13:793-802.
  36. ^ Avery, M. L., R. M. Engeman, K. L. Keacher, J. S. Humphrey, W. E. Bruce, T. C. Mathies, and R. E. Mauldin. 2010. Cold weather and the potential range of introduced Burmese pythons. Biological Invasions 12:2955-2958.
  37. ^ Card, Daren C.; Perry, Blair W.; Adams, Richard H.; Schield, Drew R.; Young, Acacia S.; Andrew, Audra L.; Jezkova, Tereza; Pasquesi, Giulia I. M.; Hales, Nicole R.; Walsh, Matthew R.; Rochford, Michael R. (2018). "Novel ecological and climatic conditions drive rapid adaptation in invasive Florida Burmese pythons". Molecular Ecology. 27 (23): 4744–4757. Bibcode:2018MolEc..27.4744C. doi:10.1111/mec.14885. ISSN 1365-294X. PMID 30269397. S2CID 52889558.
  38. ^ Jacobson; et al. (2012). "Environmental, physiology and behavior limit the range expansion of invasive Burmese pythons in southeastern USA". Integrative Zoology. 7 (3): 271–85. doi:10.1111/j.1749-4877.2012.00306.x. PMID 22938524.
  39. ^ (Reed Rodda 2008)
  40. ^ Jacobson et al. (2012), Avery et al. 2010; Dorcas et al. 2011; Mazzotti et al. 2011
  41. ^ "New Study Contradicts USGS Python Climate Projections; growing evidence suggest struggling Florida pythons won't expand north - USARK". usark.org. Retrieved 27 February 2018.
  42. ^ a b c Romagosa, Christina M.; Melissa A. Miller; Bart Rogers; T.C. Angle; Todd D. Steury; Robert L. Gillette; C. Guyer (2011). Assessment of Detection Dogs as a Potential Tool for Python Detection Efforts. Final Report to the South Florida Water Management District, West Palm Beach, FL. Contract No. 4500059338 (Report). West Palm Beach, Florida: South Florida Water Management District.
  43. ^ Sblendorio, Peter (2020-12-17). "Python-sniffing dog finds first snake as Florida introduces new way to address invasive species". New York Daily News. Retrieved 2020-12-29.
  44. ^ Barratt, B.I.P.; Howarth, F.G.; Withers, T.M.; Kean, J.M.; Ridley, G.S. (2010). "Progress in risk assessment for classical biological control". Biological Control. 52 (3). Elsevier BV: 245–254. Bibcode:2010BiolC..52..245B. doi:10.1016/j.biocontrol.2009.02.012. ISSN 1049-9644.
  45. ^ Coleman, K. Florida's great python challenge is over; not many are caught. NPR News. Feb 16 2013.
  46. ^ a b "Snake hunters capture 106 Burmese pythons in Florida Everglades". The Guardian. February 27, 2016.
  47. ^ "Florida Python Challenge - Python Challenge". Florida Python Challenge. Retrieved 2024-03-29.
  48. ^ "ICYMI: Lieutenant Governor Jeanette Nuñez Announces Winners of the 2023 Florida Python Challenge®". Florida Fish And Wildlife Conservation Commission. Retrieved 2024-03-29.
  49. ^ "News". www.usgs.gov. Retrieved 27 February 2018.
  50. ^ "Mercury Keeps Invasive Pythons Off the Menu". livescience.com. 31 August 2010. Retrieved 27 February 2018.
  51. ^ "FWC study could lead to adding python to the menu". WTSP. 2020-12-03. Retrieved 2020-12-14.
  52. ^ a b Miller, Kimberly (2020-11-19). "Chicken of the Glades: Can we eat pythons? Mercury levels studied to see if snakes could be the new other white meat". The Palm Beach Post. Retrieved 2020-12-14.
  53. ^ Smith, Taylor; Lowenstein, Jack (2020-12-01). "Invasive species: FWC studies whether Burmese python is safe to eat". WINK-TV.
  54. ^ "FWC, SFWMD announce milestone in effort to restore the Everglades: 5,000 Burmese pythons removed". South Florida Water Management District. 2020-07-28. Retrieved 2020-11-29.
  55. ^ Ferriter, A., D. Thayer, M. Bodle, and B. Doren. 2009. Chapter 9: The status of nonindigenous species in the south Florida environment. 2009 South Florida environmental report (Volume I). South Florida Water Management District.
  56. ^ U.S. Fish and Wildlife Service. 2012. Salazar announces a ban on importation and interstate transportation of four giant snakes that threaten Everglades. U.S. Fish and Wildlife Service Press Release. Jan 17 2012.
[edit]