# Euler–Mascheroni constant

(Redirected from Euler–Mascheroni constant γ)
The area of the blue region converges to the Euler–Mascheroni constant.

The Euler–Mascheroni constant (also called Euler's constant) is a mathematical constant recurring in analysis and number theory, usually denoted by the lowercase Greek letter gamma (γ).

It is defined as the limiting difference between the harmonic series and the natural logarithm:

{\displaystyle {\begin{aligned}\gamma &=\lim _{n\to \infty }\left(-\ln n+\sum _{k=1}^{n}{\frac {1}{k}}\right)\\[5px]&=\int _{1}^{\infty }\left(-{\frac {1}{x}}+{\frac {1}{\lfloor x\rfloor }}\right)\,dx.\end{aligned}}}

Here, ${\displaystyle \lfloor x\rfloor }$ represents the floor function.

The numerical value of the Euler–Mascheroni constant, to 50 decimal places, is;

0.57721566490153286060651209008240243104215933593992(sequence A001620 in the OEIS)
 Binary 0.1001001111000100011001111110001101111101… Decimal 0.5772156649015328606065120900824024310421… Hexadecimal 0.93C467E37DB0C7A4D1BE3F810152CB56A1CECC3A… Continued fraction [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, … ][1] (It is not known whether this continued fraction is finite, infinite periodic or infinite non-periodic. Shown in linear notation)

## History

The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled De Progressionibus harmonicis observationes (Eneström Index 43). Euler used the notations C and O for the constant. In 1790, Italian mathematician Lorenzo Mascheroni used the notations A and a for the constant. The notation γ appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time perhaps because of the constant's connection to the gamma function.[2] For example, the German mathematician Carl Anton Bretschneider used the notation γ in 1835[3] and Augustus De Morgan used it in a textbook published in parts from 1836 to 1842.[4]

## Appearances

The Euler–Mascheroni constant appears, among other places, in the following ('*' means that this entry contains an explicit equation):

## Properties

The number γ has not been proved algebraic or transcendental. In fact, it is not even known whether γ is irrational. Continued fraction analysis reveals that if γ is rational, its denominator must be greater than 10242080.[5] The ubiquity of γ revealed by the large number of equations below makes the irrationality of γ a major open question in mathematics. Also see Sondow (2003a).

### Relation to gamma function

γ is related to the digamma function Ψ, and hence the derivative of the gamma function Γ, when both functions are evaluated at 1. Thus:

${\displaystyle -\gamma =\Gamma '(1)=\Psi (1).}$

This is equal to the limits:

{\displaystyle {\begin{aligned}-\gamma &=\lim _{z\to 0}\left(\Gamma (z)-{\frac {1}{z}}\right)\\&=\lim _{z\to 0}\left(\Psi (z)+{\frac {1}{z}}\right).\end{aligned}}}

Further limit results are (Krämer, 2005):

{\displaystyle {\begin{aligned}\lim _{z\to 0}{\frac {1}{z}}\left({\frac {1}{\Gamma (1+z)}}-{\frac {1}{\Gamma (1-z)}}\right)&=2\gamma \\\lim _{z\to 0}{\frac {1}{z}}\left({\frac {1}{\Psi (1-z)}}-{\frac {1}{\Psi (1+z)}}\right)&={\frac {\pi ^{2}}{3\gamma ^{2}}}.\end{aligned}}}

A limit related to the beta function (expressed in terms of gamma functions) is

{\displaystyle {\begin{aligned}\gamma &=\lim _{n\to \infty }\left({\frac {\Gamma \left({\frac {1}{n}}\right)\Gamma (n+1)\,n^{1+{\frac {1}{n}}}}{\Gamma \left(2+n+{\frac {1}{n}}\right)}}-{\frac {n^{2}}{n+1}}\right)\\&=\lim \limits _{m\to \infty }\sum _{k=1}^{m}{m \choose k}{\frac {(-1)^{k}}{k}}\ln {\big (}\Gamma (k+1){\big )}.\end{aligned}}}

### Relation to the zeta function

γ can also be expressed as an infinite sum whose terms involve the Riemann zeta function evaluated at positive integers:

{\displaystyle {\begin{aligned}\gamma &=\sum _{m=2}^{\infty }(-1)^{m}{\frac {\zeta (m)}{m}}\\&=\ln {\frac {4}{\pi }}+\sum _{m=2}^{\infty }(-1)^{m}{\frac {\zeta (m)}{2^{m-1}m}}.\end{aligned}}}

Other series related to the zeta function include:

{\displaystyle {\begin{aligned}\gamma &={\tfrac {3}{2}}-\ln 2-\sum _{m=2}^{\infty }(-1)^{m}\,{\frac {m-1}{m}}{\big (}\zeta (m)-1{\big )}\\&=\lim _{n\to \infty }\left({\frac {2n-1}{2n}}-\ln n+\sum _{k=2}^{n}\left({\frac {1}{k}}-{\frac {\zeta (1-k)}{n^{k}}}\right)\right)\\&=\lim _{n\to \infty }\left({\frac {2^{n}}{e^{2^{n}}}}\sum _{m=0}^{\infty }{\frac {2^{mn}}{(m+1)!}}\sum _{t=0}^{m}{\frac {1}{t+1}}-n\ln 2+O\left({\frac {1}{2^{n}\,e^{2^{n}}}}\right)\right).\end{aligned}}}

The error term in the last equation is a rapidly decreasing function of n. As a result, the formula is well-suited for efficient computation of the constant to high precision.

Other interesting limits equaling the Euler–Mascheroni constant are the antisymmetric limit (Sondow, 1998):

{\displaystyle {\begin{aligned}\gamma &=\lim _{s\to 1^{+}}\sum _{n=1}^{\infty }\left({\frac {1}{n^{s}}}-{\frac {1}{s^{n}}}\right)\\&=\lim _{s\to 1}\left(\zeta (s)-{\frac {1}{s-1}}\right)\\&=\lim _{s\to 0}{\frac {\zeta (1+s)+\zeta (1-s)}{2}}\end{aligned}}}

and de la Vallée-Poussin's formula

${\displaystyle \gamma =\lim _{n\to \infty }{\frac {1}{n}}\,\sum _{k=1}^{n}\left(\left\lceil {\frac {n}{k}}\right\rceil -{\frac {n}{k}}\right)}$

where ${\displaystyle \lceil \,\rceil }$ are ceiling brackets.

Closely related to this is the rational zeta series expression. By taking separately the first few terms of the series above, one obtains an estimate for the classical series limit:

${\displaystyle \gamma =\sum _{k=1}^{n}{\frac {1}{k}}-\ln n-\sum _{m=2}^{\infty }{\frac {\zeta (m,n+1)}{m}},}$

where ζ(s,k) is the Hurwitz zeta function. The sum in this equation involves the harmonic numbers, Hn. Expanding some of the terms in the Hurwitz zeta function gives:

${\displaystyle H_{n}=\ln(n)+\gamma +{\frac {1}{2n}}-{\frac {1}{12n^{2}}}+{\frac {1}{120n^{4}}}-\varepsilon ,}$

where 0 < ε < 1/252n6.

### Integrals

γ equals the value of a number of definite integrals:

{\displaystyle {\begin{aligned}\gamma &=-\int _{0}^{\infty }e^{-x}\ln x\,dx\\&=-\int _{0}^{1}\ln \left(\ln {\frac {1}{x}}\right)dx\\&=\int _{0}^{\infty }\left({\frac {1}{e^{x}-1}}-{\frac {1}{x\cdot e^{x}}}\right)dx\\&=\int _{0}^{1}\left({\frac {1}{\ln x}}+{\frac {1}{1-x}}\right)dx\\&=\int _{0}^{\infty }\left({\frac {1}{1+x^{k}}}-e^{-x}\right){\frac {dx}{x}},\quad k>0\\&=\int _{0}^{1}H_{x}\,dx,\end{aligned}}}

where Hx is the fractional harmonic number.

Definite integrals in which γ appears include:

{\displaystyle {\begin{aligned}\int _{0}^{\infty }e^{-x^{2}}\ln x\,dx&=-{\frac {(\gamma +2\ln 2){\sqrt {\pi }}}{4}}\\\int _{0}^{\infty }e^{-x}\ln ^{2}x\,dx&=\gamma ^{2}+{\frac {\pi ^{2}}{6}}.\end{aligned}}}

One can express γ using a special case of Hadjicostas's formula as a double integral (Sondow 2003a, 2005) with equivalent series:

{\displaystyle {\begin{aligned}\gamma &=\int _{0}^{1}\int _{0}^{1}{\frac {x-1}{(1-xy)\ln xy}}\,dx\,dy\\&=\sum _{n=1}^{\infty }\left({\frac {1}{n}}-\ln {\frac {n+1}{n}}\right).\end{aligned}}}

An interesting comparison by J. Sondow (2005) is the double integral and alternating series

{\displaystyle {\begin{aligned}\ln {\frac {4}{\pi }}&=\int _{0}^{1}\int _{0}^{1}{\frac {x-1}{(1+xy)\ln xy}}\,dx\,dy\\&=\sum _{n=1}^{\infty }\left((-1)^{n-1}\left({\frac {1}{n}}-\ln {\frac {n+1}{n}}\right)\right).\end{aligned}}}

It shows that ln 4/π may be thought of as an "alternating Euler constant".

The two constants are also related by the pair of series (see Sondow 2005 #2)

{\displaystyle {\begin{aligned}\gamma &=\sum _{n=1}^{\infty }{\frac {N_{1}(n)+N_{0}(n)}{2n(2n+1)}}\\\ln {\frac {4}{\pi }}&=\sum _{n=1}^{\infty }{\frac {N_{1}(n)-N_{0}(n)}{2n(2n+1)}},\end{aligned}}}

where N1(n) and N0(n) are the number of 1s and 0s, respectively, in the base 2 expansion of n.

We have also Catalan's 1875 integral (see Sondow and Zudilin)

${\displaystyle \gamma =\int _{0}^{1}\left({\frac {1}{1+x}}\sum _{n=1}^{\infty }x^{2^{n}-1}\right)\,dx.}$

### Series expansions

Euler showed that the following infinite series approaches γ:

${\displaystyle \gamma =\sum _{k=1}^{\infty }\left({\frac {1}{k}}-\ln \left(1+{\frac {1}{k}}\right)\right).}$

The series for γ is equivalent to a series Nielsen found in 1897:

${\displaystyle \gamma =1-\sum _{k=2}^{\infty }(-1)^{k}{\frac {\left\lfloor \log _{2}k\right\rfloor }{k+1}}.}$

In 1910, Vacca found the closely related series:

{\displaystyle {\begin{aligned}\gamma &=\sum _{k=2}^{\infty }(-1)^{k}{\frac {\left\lfloor \log _{2}k\right\rfloor }{k}}\\[5pt]&={\tfrac {1}{2}}-{\tfrac {1}{3}}+2\left({\tfrac {1}{4}}-{\tfrac {1}{5}}+{\tfrac {1}{6}}-{\tfrac {1}{7}}\right)+3\left({\tfrac {1}{8}}-{\tfrac {1}{9}}+{\tfrac {1}{10}}-{\tfrac {1}{11}}+\cdots -{\tfrac {1}{15}}\right)+\cdots ,\end{aligned}}}

where log2 is the logarithm to base 2 and ⌊ ⌋ is the floor function.

In 1926 he found a second series:

{\displaystyle {\begin{aligned}\gamma +\zeta (2)&=\sum _{k=2}^{\infty }\left({\frac {1}{\left\lfloor {\sqrt {k}}\right\rfloor ^{2}}}-{\frac {1}{k}}\right)\\[5pt]&=\sum _{k=2}^{\infty }{\frac {k-\left\lfloor {\sqrt {k}}\right\rfloor ^{2}}{k\left\lfloor {\sqrt {k}}\right\rfloor ^{2}}}\\[5pt]&={\frac {1}{2}}+{\frac {2}{3}}+{\frac {1}{2^{2}}}\sum _{k=1}^{2\cdot 2}{\frac {k}{k+2^{2}}}+{\frac {1}{3^{2}}}\sum _{k=1}^{3\cdot 2}{\frac {k}{k+3^{2}}}+\cdots \end{aligned}}}

From the MalmstenKummer expansion for the logarithm of the gamma function we get:

${\displaystyle \gamma =\ln \pi -4\ln \left(\Gamma ({\tfrac {3}{4}})\right)+{\frac {4}{\pi }}\sum _{k=1}^{\infty }(-1)^{k+1}{\frac {\ln(2k+1)}{2k+1}}.}$

An important expansion for Euler's constant is due to Fontana and Mascheroni

${\displaystyle \gamma =\sum _{n=1}^{\infty }{\frac {|G_{n}|}{n}}={\frac {1}{2}}+{\frac {1}{24}}+{\frac {1}{72}}+{\frac {19}{2880}}+{\frac {3}{800}}+\cdots ,}$

where Gn are Gregory coefficients.

Another important expansion with the Gregory coefficients involving Euler's constant is:

{\displaystyle {\begin{aligned}H_{n}&=\gamma +\ln n+{\frac {1}{2n}}-\sum _{k=2}^{\infty }{\frac {(k-1)!|G_{k}|}{n(n+1)\cdots (n+k-1)}},&&n=1,2,\ldots ,\\&=\gamma +\ln n+{\frac {1}{2n}}-{\frac {1}{12n(n+1)}}-{\frac {1}{12n(n+1)(n+2)}}-{\frac {19}{120n(n+1)(n+2)(n+3)}}-\cdots &&\end{aligned}}}

and is convergent for all n.

Series of prime numbers:

${\displaystyle \gamma =\lim _{n\to \infty }\left(\ln n-\sum _{p\leq n}{\frac {\ln p}{p-1}}\right).}$

Series relating to square roots:[6]

${\displaystyle \gamma =\lim _{n\to \infty }\left(\sum _{k=1}^{n}{\frac {1}{k}}-\ln {\sqrt {\sum _{k=1}^{n}k}}\,\right)-{\frac {\ln 2}{2}}.}$

### Asymptotic expansions

γ equals the following asymptotic formulas (where Hn is the nth harmonic number):

${\displaystyle \gamma \sim H_{n}-\ln n-{\frac {1}{2n}}+{\frac {1}{12n^{2}}}-{\frac {1}{120n^{4}}}+\cdots }$ (Euler)
${\displaystyle \gamma \sim H_{n}-\ln \left({n+{\frac {1}{2}}+{\frac {1}{24n}}-{\frac {1}{48n^{3}}}+\cdots }\right)}$ (Negoi)
${\displaystyle \gamma \sim H_{n}-{\frac {\ln n+\ln(n+1)}{2}}-{\frac {1}{6n(n+1)}}+{\frac {1}{30n^{2}(n+1)^{2}}}-\cdots }$ (Cesàro)

The third formula is also called the Ramanujan expansion.

### Exponential

The constant eγ is important in number theory. Some authors denote this quantity simply as γ′. eγ equals the following limit, where pn is the nth prime number:

${\displaystyle e^{\gamma }=\lim _{n\to \infty }{\frac {1}{\ln p_{n}}}\prod _{i=1}^{n}{\frac {p_{i}}{p_{i}-1}}.}$

This restates the third of Mertens' theorems.[7] The numerical value of eγ is:

1.78107241799019798523650410310717954916964521430343 .

Other infinite products relating to eγ include:

{\displaystyle {\begin{aligned}{\frac {e^{1+{\frac {\gamma }{2}}}}{\sqrt {2\pi }}}&=\prod _{n=1}^{\infty }e^{-1+{\frac {1}{2n}}}\left(1+{\frac {1}{n}}\right)^{n}\\{\frac {e^{3+2\gamma }}{2\pi }}&=\prod _{n=1}^{\infty }e^{-2+{\frac {2}{n}}}\left(1+{\frac {2}{n}}\right)^{n}.\end{aligned}}}

These products result from the Barnes G-function.

We also have

${\displaystyle e^{\gamma }={\sqrt {\frac {2}{1}}}\cdot {\sqrt[{3}]{\frac {2^{2}}{1\cdot 3}}}\cdot {\sqrt[{4}]{\frac {2^{3}\cdot 4}{1\cdot 3^{3}}}}\cdot {\sqrt[{5}]{\frac {2^{4}\cdot 4^{4}}{1\cdot 3^{6}\cdot 5}}}\cdots }$

where the nth factor is the (n + 1)th root of

${\displaystyle \prod _{k=0}^{n}(k+1)^{(-1)^{k+1}{n \choose k}}.}$

This infinite product, first discovered by Ser in 1926, was rediscovered by Sondow (2003) using hypergeometric functions.

### Continued fraction

The continued fraction expansion of γ is of the form [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, ...] , of which there is no apparent pattern. The continued fraction is known to have at least 470,000 terms,[5] and it has infinitely many terms if and only if γ is irrational.

## Generalizations

abm(x) = γx

Euler's generalized constants are given by

${\displaystyle \gamma _{\alpha }=\lim _{n\to \infty }\left(\sum _{k=1}^{n}{\frac {1}{k^{\alpha }}}-\int _{1}^{n}{\frac {1}{x^{\alpha }}}\,dx\right),}$

for 0 < α < 1, with γ as the special case α = 1.[8] This can be further generalized to

${\displaystyle c_{f}=\lim _{n\to \infty }\left(\sum _{k=1}^{n}f(k)-\int _{1}^{n}f(x)\,dx\right)}$

for some arbitrary decreasing function f. For example,

${\displaystyle f_{n}(x)={\frac {(\ln x)^{n}}{x}}}$

gives rise to the Stieltjes constants, and

${\displaystyle f_{a}(x)=x^{-a}}$

gives

${\displaystyle \gamma _{f_{a}}={\frac {(a-1)\zeta (a)-1}{a-1}}}$

where again the limit

${\displaystyle \gamma =\lim _{a\to 1}\left(\zeta (a)-{\frac {1}{a-1}}\right)}$

appears.

A two-dimensional limit generalization is the Masser–Gramain constant.

Euler–Lehmer constants are given by summation of inverses of numbers in a common modulo class:[9][10]

${\displaystyle \gamma (a,q)=\lim _{x\to \infty }\left(\sum _{0

The basic properties are

{\displaystyle {\begin{aligned}\gamma (0,q)&={\frac {\gamma -\ln q}{q}},\\\sum _{a=0}^{q-1}\gamma (a,q)&=\gamma ,\\q\gamma (a,q)&=\gamma -\sum _{j=1}^{q-1}e^{-{\frac {2\pi aij}{q}}}\ln \left(1-e^{\frac {2\pi ij}{q}}\right),\end{aligned}}}

and if gcd(a,q) = d then

${\displaystyle q\gamma (a,q)={\frac {q}{d}}\gamma \left({\frac {a}{d}},{\frac {q}{d}}\right)-\ln d.}$

## Published digits

Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Mascheroni attempted to calculate the constant to 32 decimal places, but made errors in the 19th–21st and 32nd decimal places; starting from the 19th digit, he calculated …1811209008239 when the correct value is …0651209008240.

Published Decimal Expansions of γ
Date Decimal digits Author
1734 5 Leonhard Euler
1735 15 Leonhard Euler
1781 16 Leonhard Euler
1790 32 Lorenzo Mascheroni, with 19-21 and 32 wrong
1809 22 Johann G. von Soldner
1811 22 Carl Friedrich Gauss
1812 40 Friedrich Bernhard Gottfried Nicolai
1857 34 Christian Fredrik Lindman
1861 41 Ludwig Oettinger
1867 49 William Shanks
1871 99 James W.L. Glaisher
1871 101 William Shanks
1952 328 John William Wrench Jr.
1961 1050 Helmut Fischer and Karl Zeller
1962 1271 Donald Knuth
1962 3566 Dura W. Sweeney
1973 4879 William A. Beyer and Michael S. Waterman
1977 20700 Richard P. Brent
1980 30100 Richard P. Brent & Edwin M. McMillan
1993 172000 Jonathan Borwein
1999 108000000 Patrick Demichel and Xavier Gourdon
2009 29844489545 Alexander J. Yee & Raymond Chan[11]
2013 119377958182 Alexander J. Yee[11]

## Notes

Footnotes
1. ^
2. ^ Lagarias, Jeffrey C. (October 2013). "Euler's constant: Euler's work and modern developments" (PDF). Bulletin of the American Mathematical Society. 50 (4): 556. doi:10.1090/s0273-0979-2013-01423-x.
3. ^ Carl Anton Bretschneider: Theoriae logarithmi integralis lineamenta nova (13 October 1835), Journal für die reine und angewandte Mathematik 17, 1837, pp. 257–285 (in Latin; "γ = c = 0,577215 664901 532860 618112 090082 3.." on [Euler–Mascheroni constant p. 260])
4. ^ Augustus De Morgan: The differential and integral calculus, Baldwin and Craddock, London 1836–1842 ("γ" on p. 578)
5. ^ a b Havil 2003 p. 97.
6. ^ http://mathworld.wolfram.com/Euler-MascheroniConstant.html
7. ^
8. ^ Havil, pp. 117–118
9. ^ Ram Murty, M.; Saradha, N. (2010). "Euler–Lehmer constants and a conjecture of Erdos". JNT. 130: 2671–2681. doi:10.1016/j.jnt.2010.07.004.
10. ^ Lehmer, D. H. (1975). "Euler constants for arithmetical progressions" (PDF). Acta Arith. 27 (1): 125–142.
11. ^ a b Nagisa – Large Computations
References